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We discuss how the Hamiltonian changes in quantum canonical transformations. To
the operator M(p, q ) one can associate (in a given ordering rule) a c-number function

A (p, q). It is this function that appears in the action of the phase-space path integral. A
quantum canonical transformation A —+A ' can now be expressed as an integral transfor-

mation A (p, q) = dp dqW(p, q;p, q)Pi (p, q). The kernel W is constructed explicitly for

point transformations and for the p = —q, q =p reflection by studying changes of vari-

ables in the path integral. The ordering dependence of W is displayed. The invariance of
commutation rules is also discussed.

I. INTRODUCTION

The prospective uses of canonical transforma-
tions (CT's) in the functional integral quantization
are numerous. Recently, CT's have been used, e.g.,
in the connection of quantizing classically integr-
able systems. '

We know that in classical mechanics it is possi-
ble to make a CT to a coordinate system where the
new Hamiltonian is identically zero. It has been
suggested that the same method could be used to
solve quantum mechanics; unfortunately such an

approach does not work in general. We cannot use
classical CT's in the c-number action function of
the path-integral formalism because there will be
additional purely quantum-mechanical effects.
(These are usually of order R and in the semiclas-
sical approximation they do not matter. ') In fact
only for point transformations and linear transfor-
mations do we know how the quantum CT's
should be performed. s

In this paper we will discuss quantum CT'.s in
terms of integral transformations. Our blanket as-
sumption is that any quantum operator A (p,q)
can be given by a c-number (but not necessarily
classical) function A (p, q) through

A (p,q)= f dsd8dpdq(2vrfi) a(r, e)A (p, q)
r

Xexp —[r(p —p}+g(q —p)]

where P gives the ordering rule (see Sec. II A).
With this representation transformations of opera-
tors can be expressed as transformations of the

&&~1(p' q'p q) . (1.3)

This defines an associative product in the set of
CT's as W3 is a CT whenever W2 and W& are.

Let us note here that the representation (1.2) ob-
viously works for classical CT's; if p =p (p,q),
q =q(p, q) is a CT, then

T.l,.(P q;P q}=@p P(P q})&(q P—(p,q)), (1.4—)

corresponding to a direct substitution. Equation
(1.3) gives the usual composition law for classical
CT's.

corresponding c-number functions.
We now propose to describe the effects of a

quantum CT in terms of an integral transforma-
tion kernel: If P '(p, q} results from a quantum
CT applied to P (p, q), we write

A '(p, q)= f dpdqa(p, q;p, q)A (p, q) . (1.2)

The kernel W is the main object of study in this
paper. Previous studies on the CT's have usually
discussed only the transformation of Hamiltonians
that are either quadratic ' or at most finite poly-
nomials in p. Now once W is given we can apply
it to any A to obtain A ', instead of deriving 4 '

from first principles in each case separately. Rep-
resentation (1.2) allows us also to focus on W and
to study its properties without reference to specific
Hamiltonians. (Transformation kernels in coordi-
nate space have been discussed by Fanelli. )

When CT's are represented by integral transfor-
mations according to (1.2) the natural composition
is given by

3(p, q;p, q) =f dp'dq'%2(p, q;p', q')
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In Sec. II8 we construct the quantum transfor-
mation kernel W for the point transformation

q =F(Q), p =P/F'(Q) using the discrete form of
the definition of path integral. The resulting ker-
nel (2.23) is not of the form (1.4) although in the
limit Pi~0 it is obtained. A generalization to
q =F(Q), p=[P+K'(Q)]'/F'(Q) is made in Sec.
II C, and the linear transformation q =P, p =—Q
is considered in Sec. II D.

All of these transformations can be written in
the form (1.2) and this can be done for all order-
ings, although the kernel a~ ' does depend expli-
citly on the ordering function a. The ordering
dependence always enters in a similar fashion al-
lowing us to define ordering-independent quantities
(T) in Sec. III.

In Sec. IV we discuss the additional properties
of normalization

f dkdl T(k, l;k, l)=1

and unitarity

f dk'dl'T(k', l', k, l)*T(k', l', k, l)

(1.5)

=5(k —k)5(l —l) . (1.6)

The linear transformation kernel has these proper-
ties and for point transformations unitarity can be
used to eliminate the additional freedom noticed by
Kerler. We also observe in Sec. IV 8 that the
composition (1.3) of two point transformations is
again a point transformation.

In Sec. V we discuss the transformation kernels
from the viewpoint that they must conserve com-
mutation rules for operators. For the transforma-
tion kernel we derive from this requirement the
equation

f dk, dk, dl, dl, sin —[(k —ki)(l —l2) —(k —kz)(l —li)] T( kill,'
kl, ll) T( k2, 1 p', kil 2)

=f dkdlT(k, l;k, l)sin —[(k —ki)(l —li) —(k —kz)(l —li)]
fi

(1.7)

It can be shown to hold for the kernels derived in

Sec. II. With commutators the possible ordering
dependence enters also in the standard form, which
allows us to write the ordering-independent form
(1.7) using definitions of Sec. III.

Finally in Sec. VI we discuss our results and
some open problems.

II. DERIVATION OF THE TRANSFORMATION
KERNEL FROM FUNCTIONAL INTEGRALS

A. Definition through discrete techinques

To derive the transformation kernels we will dis-
cuss the trace TrI exp[ (i/R)P —T] ] rather than
propagators, because this saves us from considering
end-point effects which are not relevant when the
Hamiltonian is transformed. The starting point in
the functional-integral approach is the discrete pro-
cedure'0

0

Tr exp — A(p,q)T—
N

= »m II f dqk~qk+i tk+i l qk tk &

N~oo I

I

where qN+i
——q„ tk =(k —1)e, e =T/N, and

&uk+I ~k+1~lgk ~k ~ ('7k+imp ——~~(u, q) qk) .

(2.2)

Here and in the following we will explicitly write
out the A' dependence, because we will later also
discuss the classical limit A—+0. As a consequence
all Fourier transforms will have a factor i/I in the
exponent (rather than i) unless otherwise stated.
The i/A' multiplying 4 has a different role from
the other i/A' factors below and is irrelevant for us
since the transformation (1.2) is linear.

When 1V is large we may approximate

&Pk+I ~a+I Ilk &k)= (Pk+I &
——~~&@ eI ea)

(2.3)

To calculate this matrix element we need the repre-
sentation of operators by
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W(p, q) = f drdBdp dq(2iriri) 2 (r, B)A (p, q)exp [—r(p p—)+8(q q—)] (2.4)

w (0,8)=a (r,0)= 1 . (2.5a)

(ii) W may depend on fi in a complicated
manner but to obtain classical correspondence we
need

lima (ah', biri) = 1 .
A~O

(2.5b)

This equation has an arbitrary function W(r, B)
which characterizes the quantum orderings. For
any fixed quantum theory all operators are given

by (2.4), but we may of course consider different
theories characterized by different ordering func-
tions. Note that a given operator can be expressed
in different orderings if a corresponding change is
made in the function 4 (p, q).

The function P is arbitrary save for the follow-

ing considerations:
(i) We require that the functions of one variable

f (p) and g(q) are quantized by direct substitution

f(p)~f(p ),g (p) ~g(q ). This leads to

I

(iii) In the following we will also have to divide
by P, therefore we assume

~(r, B)~0, V~, B

to avoid singularities.
(iv) If we also have

~ (r,B)'=~ ( —r, —8),

(2.5c)

(2.5d)

w (r, B)=exp —
( —, A)rB— ,

l
(2.5e)

which give the Weyl, standard (q q"), and anti-
standard (p "q ) orderings for A, = —,, 1, and 0,
respectively. These orderings have the properties
(i) —(iii) for any A, , but (iv) only for k= —, .

To calculate (2.3) with (2.4) we first note that

then the 4 (p,q) corresponding to a real Pt'(p, q)
will be Hermitian, but below we will not assume
this. Typical examples are given by the so-called A,

orderings

(
r

q' exp fop+By) —q" =5(r+q' q")e—xp 8 , (q'+q"—)— (2.6)

where we have used the canonical commutation rule

[q P]=i&.
We then obtain

(q'
~
4 (p,q)

~

q"):H(q', q")—

(2.7)

= f dBdp dq(2iriri) 'w (q"—q', 8)M(p, q)exp —[8(—q+ —,(q"+q'))+ p(q' —q")]

so that

~~I
h

t
h

~

~~
~

2~ ~ x ~~I
~ ~ ~

~

~

i ~ ~~I
i ~Pk i i

qk+1 1 &~~(p,q) qk
—= 2~exp &

[pk(qk+1 'qk)1 1 ~&H(pk qk+1 qk)

where

(2.8)

H(pk, qk+1 qk)= f dBdq(2~) '~(qk qk+1, 8)~(pk, q)e—xp q[8( —q+-, (qk+1+qk»l (2.10)

We can now write (2.1) either as

S
T«xp — ~(p, q)T = »m g f dqk g @ql+1 ql) ~H(ql+1 ql)

N~oo k ' 1=1

using (2.8), or as' "
(2.11)
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Tr exp — P—(p, q)T

T

N
= lim g f dqkdp„(2M) ' exp —g [pi(qt+i q—t) e—H(pt, q&+, ,q, )]

"k=1- fi I

(2.12)
using (2.9) and (2.10).

In (2.8)—(2.12) A (p, q) is the primary dynamical quantity. After it is given we can for a specific ordering
W, compute H(qt+i, q, ) from (2.8) or H(pt, qt+i, qt) from (2.10) and obtain the above discrete definitions for
the trace. For the particular case of A, orderings we obtain

H(q', q")=f dp(2rriri) 'A {p,Aq'+(1 —A, )q")exp —p(q' —q")

and

H(p, q', q")=A (p, Aq'+(1 —A, )q"), (2.13)

as expected. The qk s introduced in (2.1) can be associated, if one so wishes, with the times tk, then the
dummy variables pk are associated with the intervals (tk, tk+i). ' "

B. The point transformation q =F(Q),p =P/F'(Q)

We will now discuss the effects of a point transformation

q=F(Q),

p =P/F'(Q)

(2.14a)

(2.14b)

on the expression for the trace. We will assume that the function F is bijective.
Let us first consider the Eq. (2.11) as it only depends on the qk's. For each k we can use (2.14a) and ob-

tain

g ~ N
lTr exp — mT = —lim g f dgk IF'(Qk)

I g 8{F(gl+1) F{Qi)) eH( (Ql+I) F(Qi)) '.
fg N~on I 1=1

+

(2.15)

(2.16)

where the functions a and P are otherwise arbitrary except that

We now want to rewrite this in the form {2.11) with possibly a different H.
Let us first take gk i

F'(Qk)
i

inside the curly brackets of the I-product. Because for each 1 both Qt+ i

and Qt appear, we have here some degree of freedom and can write

N N

g iF'(g )i=/ (Q)P(g ),
k=1 1=1

~(Q)P(Q)= iF'(Q)
i

.

These functions are actually functionals of I', so if there is a possibility of confusion we will write
a=a(F;Q) etc. Now, since

&(Ql+i)5(F«i+i) —F{gt))tr(gt) =8{gr~i—Qt)

we can write (2.1S) as

(2.17)

(2.18)

gTr exp ——A T

where

N N
= li g f dg g 5(Q, , —Q ) ——H'(g, ,Q )"k=1- 1=1 fi

(2.19)



25 QUANTUM CANONICAL TRANSFORMATIONS AS INTEGRAL. . . 2107

H'(Qi+»Qi) =a(Qi)p(QI+ i)H(F(Qi+i },F(Qi)) . (2.20)

Only if H' were related to some P '(P, Q) the same way H was related to 4 (p, q) through (2.8) would the
change of coordinates be meaningful. Such an P '(P, Q) can indeed be found as follows: substituting (2.8)
in both sides of (2.20) gives

f dHdp dq P (Q"—Q', 8)A '(p, q)exp —[8(—q+ —,(Q"+Q'))+p(Q' —Q")]

=a(Q")P(Q') f dHdp dq P (F(Q")—F(Q'), 8)A (p, q)

)&exp —{8( —q+ —,[F(Q')+F(Q")])+p(F(Q')—F(Q")) j (2.21)

from which 4 ' can be solved by first taking a Fourier transform with respect to —,(Q"+Q'), dividing by

P, and then taking another pair of Fourier transforms. The result is

4 '(p, q)= f dpdqdHdu dvdw(2iriri) a(v —, u)p—(v+—,u)

X~ (F(v ——,u) —E(v+ , u), 8)[—P( u, w—)]

&&exp —
{p[F(v + —,u) —E(v ——,u)]+8—,[F(v + , u)+F—(v——,u)]

—Hq —vw —up+wq j 4 (p, q) .
J

This can clearly be written in the form of a transformation (1.2) where

+~ '(p, q;p, q)= f dx dydHdw(2irli') a(x)P(y)W(E(x) —E(y),8)[P (x —y, w)]

(2.22)

)&exp —{p[F(y) —F(x)]+8—,[E(x)+E(y)] —Hq+wq —w —,(x+y)=p(x —y) j

(2.23)

We have now obtained the kernel which can be used for quantum CT's corresponding to (2.14). Our regu-
larity assumptions were (2.5a} and (2.5c) for the ordering function P, and bijectivity for the function F.
Thus under these assumptions a kernel can be constructed to transform Hamiltonians.

As an example let us consider the Weyl ordering P = 1. After doing the H, iv, and y integrations we get

~,"'=f dx(2M) '25(q , [F(x+q—)—+F( x+q)])—

Xa(x+q)P( —x+q) exp —
{p[E( x+q) E(x+—q)]+2—px jfi

(2.23')

With this kernel the Hamiltonian A = —,p will be transformed to

A '(p, q)= ,p /F'(q) imp—,[a'(q)p(q—) —a(q)p'(q)] F/'—(q) + —,iri a'(q)p'(q)/F'(q)

In particular if a=P=F'(q)'~ (F'&0) we get the usual result

4 '(p, q)= ,p /F'(q) + , fPF"(q—)/F'(q)—

(2.24)

(2.24')

Let us now check that, in the limit A'~0, (2.23) gives the classical result. Rather than comparing WF '

directly with the distribution (1.4) we will compare their Fourier transforms (this time without the i/A' fac-
tor) with respect to p and q. After also scaling the w integration (w =wfi) we find

WF '(p, q;k, l) =f dx dy dw(2n. ) 'a(x)p(y)5(kiri+E(y) —E(x))W(Ak, fil)[W(x —y, wA')]

Xexp(i {l , [E(x)+E(y)]+p(x —y—)/A'+w[q ——,(x +y)] j ) . (2.25)
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From the 5 function we get

x —y =kfi/F'(x)+O(A' ) . (2.26)

Therefore in the limit R~O the ordering functions P go to 1 due to (2.5b). Then integrating over w we get

u~F' '(p, q;k, l) = f dx dy a(x)P(y)5(kh'+F'(x)(y —x))5(q ——,(x+y))

)& exp(i I —,1[F (x)+F(y)]+pk /F'(x) [ ),
which gives [recall (2.17)]

~~~ '(p, q;k, l) ~ T~"'(p,q;k, l) =exp{i[lF(q)+kp/F'(q)]) .
A—+0

(2.27)

(2.28)

C. Extension to q =F(Q), p ={&+&'(Q)}/F'(Q)

~ p
' of (2.23) also reduces to the classical sub-

stitution q =F(Q) when we have to transform a
function that only depends on q. According to
(1.2) we then need only fdp w F (p, q;p, q), but in-

tegrating over p in (2.23) gives 5(x —y)/
~

F'(x) ~,
and all ordering dependence goes away. The
remaining integration can now be done giving

f

dpi'~

'(p, q;p, q)=5(q —F(q)) .

(2.8). Therefore we eventually obtained a transfor-
mation rule for Hamiltonians, for which the
transformation of p's is also needed.

We could also have started with (2.12) and then
prescribed, e.g.,

pl ~l(QI+1 Ql)/[F(QI+1) —F(Q~)] (2.29)

This indicates how pI is associated with the inter-
val (t~, t~+, ) rather than with either end point. In
the limit Q~+, —QI ~0 we get p =P/F'(Q) as re-
quired. The rule (2.29) guarantees that

The above derivation started with (2.11},where

only q's appeared. We therefore only needed to
specify qI,

——F(Qk ) to continue, but finally we ob-

tained the transformation rule for p as well. This
is not surprising, for even if H's in (2.11) and

(2.15) only depended on q's, they are functionally
dependent on the Hamiltionian 4 (p, q) through

so the form of {2.12) is preserved, but now we can-
not equate H(p, q', q")'s as we did with H's in
(2.21). For example in the Weyl ordering (P= —,

'
}

we would get

M'(P, —,(Q'+Q")) ='M(P[Q' —Q"]/[F(Q') —F(Q")])a(Q")P(Q')

but here the left-hand side depends only on the
sum —,(Q'+Q") while the right-hand side depends
both on the sum —,(Q'+ Q") and the difference
Q' —Q". However, when we keep the integration
over P the differences (Q' —Q") can be converted
to derivatives with respect to P through
exp [(i/A'}P(Q' —Q")], but this would give the
same equations as in the previous derivation.

The above picture is still not quite complete be-
cause corresponding to (2.14a) there is in fact a
family of classical CT's characterized by two func-
tions I: and E:

(2.31)

l
a(x) =a(x)exp —K (x)

(2.32)

For convenience we have chosen a derivative of
the function E here.

What did we miss when we only obtained theE':—0 case? The tacit assumption in deriving
(2.27) was that

lim[a(x)P(x+O(A'))]=
~

F'(x) ~,
%~0

but this need not be the case even if (2.17) holds.
Let us, e.g., assume that a and P depend on A'

nonanalytically as follows:

q =F(Q),

p =(P+&'(Q))/F'(Q) .
(2.30} P(x) =P(x)exp ——K(x)
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where a and P satisfy (2.17) and even (2.31).
When we now take the A' —p0 limit with (2.26) we
get

»m[a(x)P(x —iiik/F'(x)+O(A' ))]
A'-+0

=
~

F'(x)
~

exp[ikE'(x)/F'(x)], (2.33)

D. The transformation q =P,p = —Q

To study the transformation

q =I',
p= —Q

(2.37)

therefore with the choice (2.32) for fi dependence
we indeed obtain the more general result

T~"'=exp{ i[lF(q)+k(p —K'(q))/(F'(q))] J .

(2.34)

we first go back to the definition (2.1). Instead of
inserting eigenstates of the operator q we could
have used eigenstates of p, i.e.,

Tr exp — P'(p—,q)T
fi

This demonstrates that the extra functions a and

P are not idle decorations but determine a part of
transformation. It is even more evident if we con-
sider the classical CT

N

II Jdp &p"k=i
(2.38)

q=Q,

p =P +E'(Q), (2.35)

then the only thing we can do in (2.11) is to write

a(Qi)1=
I+1

(2.36)

and the choice (2.32) with @=1/a gives the quan-
tum CT corresponding to (2.35).

Thus in (2.23) we have the quantum transforma-
tion kernel corresponding to the general point
transformation (2.30) with the above choice (2.32)
for the functions a and P. However, (2.23)
remains a well-defined transformation without any
assumptions on the A' dependence of a,P, or F and
can provide transformations with no classical
counterpart. In Sec. IV we will discuss some
further conditions on a and P.

To compute these matrix elements with A given
as before by (2.4) we need

p' exp —(rp+pq) p")

=5(8+p"—p')exp —r—,(p'+p") (2.40)

Then we get, for example,

r

(pe+»ee+»Ipe ex~=(pe+iexp e~~p &~ pe)

fi
= peri ~ ~~p@e—lp—e),

(2.39)

(p'
~

A (p, q)
~

p" ) =H~(p', p")

= J drdp dq(2M) '~(r,p' p")~(p,q)—

Xexp —[—q(p' —p")+r( —p+ —,(p'+p"))] (2.41)

g I,Tr exp ——4 T = »m II "pl II @pi+i pi) &H —(pi+&—pi)
f1 N —+eo k

(2.42)

corresponding to (2.8) and (2.11), respectively.
We now continue as in Sec. II by making the transformation q =P in (2.11). It will then have the same

Iorm as (2.42), but to make sense out of this change of variables, we must insist that the function H defined
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by (2.8) from some Hamiltonian A must be identical to a H'z arising from some other Hamiltonian A '

through (2.41). In equations

f d8dp dq P (p"—p', 8)P (p, q)exp —[8(—q+ —,(p"+p'))+p(p' —p")]

=I drdpdqP(r, p' p"—)4 '(p, q)exp —[ q(p—' p")—+6—p+ —,(p'+p"))] (2.43)

Now we can solve for A '(p, q) the same way as from (2.21), and obtain

M'(p, q) =J dx dy dp dq(2M) A (p,q) a ( —y,x)[P (x,y)] 'exp —[x(p —q)+y (q+p)) (2.44)

This can again be written as a transformation (1.2) with

w~„~'(p, q;p, q) =f dx dy(2m') M ( —y, x)[W(x,y)] '
exp —x(p —q)+y(q+p) (2.45)

In particular for the A, orderings we get

N, fI(p, q;p, q) =[2M(1 2A, )]—'exp —[(q+p)(p —q)/(1 —2A, )]
fi

(2.46)

which in the A-+0 limit (and for A, = —,) reduces to
the classical substitution

(2.47)

operators

4 (p,q)=(1—A, )P q+iqp

A '(p, q) =(1—A, )p q+Aqp —2(2A, —1)ifiq .
(2.50a)

It should be emphasized that (2A5) and (2.46) do
not always reduce to the classical form (2.47) even
though the reflection (2.37) is classically a linear
CT. The possibility of ordering dependence in a
linear transformation is not generally known and
might lead one to conclude that the Weyl ordering
is the only one possible. Our results show that any
ordering is possible, but the naive substitution
works only for orderings having the symmetry

(2.50b)

Let us now check that P ' results from P' by the
operator substitution q~p, P—+ —q. We get first

P ( —q,p)=(1 —A, )q p+Apq

but this is not in the canonical order. We have to
commute q and p, but then

A ( —q,p)=(1—A, )p q+Aqp

W(x,y)=P ( —y,x) . (2.48)
(2.51)

To get a feeling of what is going on let us con-
sider as an example the case of

(2.49a)

Thus everything is in order and the diagram

(2.46)

with I, orderings. Using (2.46) we get

P '=q p —2(2k —1)ifiq .

Corresponding to these we get from (2.4) the

(2.49b)

„ (2.4)

A
(2.51)

commutes in this example for every A, ordering.



25 QUAhlTVM CANONICAL TRANSFORMATIONS AS INTEGRAL. . .

HI. ELIMINATING ORDERING DEPENDENCE

2111

So far we have constructed the transformation kernels W ' for point transformations (2.23) and for the
reflection (2.45). Both kernels depend explicitly on the ordering function F, but in a similar manner. This
suggests that we define an ordering-independent transformation kernel T by

'(p, q;p, q) =f dx dy dx dy dk dl dk dl (2mb) ~ P (x,y)[P (x,y )]

X exp [X(p—k)+y—(q 1) x—(p ——k}—y(q —1)] T(k, l;k, l), (3.1a)

with the inverse transformation

T(k, l;k, l) =f dx dy dx dy dp dq dp dq (2m') a (x,y)[W(x,y)]

X exp —[—x(p —k) —y(q —1)+x(p —k)+y (q —1)] a~ '(p, q;p, q) . (3.1b)

If a—:1 (Weyl ordering) (3.1) collapses to the identity and we can write

T(p, q;p, q)=~"'""(p q p q) .

For the kernel (2.23} we get

TF(k, 1;k,1)=fdx dy dm dz(2M) a(x)P(y)

(3.2)

Xexp —
I to[1——,(x +y)]+z [—1+ , (F(x)+F(y—))]+k(x—y) + k(F(y) —F(x))I

=f dx dy(2+4) 'a(x)P(y)5(l ——,(x+y))5(l ——,[F(x)+F(y)])

X exp —[k(x —y)+k(F(y) —F(x))]
fi

(3.3)

and for the reflection,

T„a(k,l;k, l) =5(k —1)5(1+k), (3 4)

I

Its inverse is

'(p, q;k, l)= f dxdy(2mB) [P (x,y)]
i.e., the naive substitution, which is proper for
linear transformations.

%e can also define an order-giving operator
8'~(p, q;k, 1) by

&~(k,l;p, q) =f dx dy(2mb) 'W(x, y)

l
Xexp ——[x (p —k)+y (q —1)]

(3.5a}

Xexp —[x (p —k)+y (q —1}]
l

fi

Then (3.1) can be written as

W '=C 'TW-
T = W~N~'W~

(3.5b)

(3.1a')

(3.1b')

It is evident that compositions (1.3) are preserved
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in this transformation.
The operator P~ is unitary if the ordering func-

tion is a pure phase, e.g. , for the A, orderings (2.5e).
For the Weyl ordering we have

cit ordering dependence. However, this question is
beyond the scope of this paper.

@ =1. (3.2'} IV. ADDITIONAL STRUCTURE

This result might suggest that the Weyl ordering is
somehow special. It is true that many equations
simplify in the Weyl ordering, but this does not
mean that other orderings are eliminated. For this
reason we have written the results in arbitrary or-
derings, and we make no claims as to which is the
preferred one.

Corresponding to (3.1) we can also define a func-
tion H by

(3.6a)

(3.6b)

When this is used in (2.4) we can write

~(p,q) =f dx dy dk dl(2vrfi) H(k, l)

Xexp —[x (q —l)+y (p —k)]
fi

(3.7}

where now all ordering dependence (if any) is con-
tained in H(k, l).

With the above definitions, the following di-

agram commutes:

~M~ )

A =A'

(3 7) H =H' (3 7)

In the inner rectangle we have only c-number func-
tions and possible ordering dependence. If we are
only interested in the transformation rule of the
operator A into A ', we can either follow the
upper route with explicit a dependence in (2.4)
and in the transformation a~ ' [(2.23) and (2.45)]
or the lower route without such explict dependence
[see (3.7), (3.3), and (3.4)]. As far as the operator
is concerned, both routes give the same operator
transformation rule. From this viewpoint, it would
appear that any ordering dependence is irrelevant,
except that H(k, l) in (3.7) might have some impli

A. Normalization and Unitarity

In this section we will introduce some general
properties that the transformation kernels should
have. First of' all we should require that under any
CT nothing happens to pure numbers. This can be
put in the form of a normalization condition

fdk dlT(k, l;k, l) =1 . (4.1)

It is easy to see from (3.1') that this holds or fails
for T and W ' simultaneously, also if it is true
for T] and T2, it also holds for their composition
T3 (1.3). For the special transformation kernels
derived in Sec. II property (4.1) can be shown easi-
ly for T„n and also for Tz, e.g., from (3.3).

The other property that we will discuss here is
unitarity

T '(k, l;k, l) = T(k, l;k, l )',

For T„n (4.2) clearly holds, but for point
transformations we get some conditions as follows:
Substituting (3.3) to (4.2), integrating over k', l',
and using the resulting 5 functions, we obtain

i.e.,

fdk'dl'T(k', l'k l )'T(k', l'k, l)

=5(k —k)5(l I) . (4.2)—
From (3.1') it follows that this also holds for T
and a~ ' simultaneously and respects composi-
tions (1.3).

The condition (4.2) differs from the one that is
usually mentioned when one considers quantum
CT's as unitary transformations. ' In this latter
approach unitarity refers primarily to transforma-
tions of wave functions, i.e., unitarity in q space,
while our unitarity (4.2} is in the (p, q) space. Here
we will leave open questions whether either one or
any such condition is neccessary. We only use
(4.2) to restrict the freedom in the functions a and

fdk'dl'T~(k', I', k, l )*TF(k',I';k, l) =5(l l )f dx d—y(2M) '
~

a(x)p(y)
~

5(l ——,[F(x)+F(y)])

)& exp —(k —k')[F(y) —F(x)] (4.3)
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The double integral should be equal to 5(k —k'). Changing variables to u = —,[F(x)+F(y)],
u =F(y) F—(x) we see that (4.2) holds if and only if

Using also (2.17) we obtain

(4.4)

a(x)= ~F'(x)
~

'~ exp E(x—)

P(x)= iF'(x)
i
'i2exp — J:(x—)

fi

(4 5)

and

Tpx(k, l;k, l)= I dx dy (2M)
I

F (x)
I IF (y)

~

5(l 2 (x+y))5(l —
2 [F(x)+F(y)])

Xexp —
I k(x —y)+k[F(y) —F(x}]+X (x)—E(y) I

fi
(4.6)

The form (4.5) with E:Ohas be—en adopted usually in discussions of point transformations, although the
full freedom has been recognized. With the unitarity condition the freedom has been reduced so that now
I' and K have the classical interpretations of Sec. II C, if they are A independent. However, in the derivation
of Sec. II B it is not neccessary to make any assumptions on the fi dependence of a, P, or F aquantu—m CT
is obtained in all cases.

B. Composition of point transformations

Of classical point transformations we know that the composition of two such transformations is also a
point transformation. We will now check what condition this would give to the functions a and P.

Owing to (3.1') we may just consider the ordering independent form and see whether (note the order)

Jdk dol Tpx(k l'k' l )Tg I (k' l'k I) = Tg p~+z F'(k l'k 1} (4.7)

where (G F)(x)=G(F(x)), and we have also written out the extra freedom referred to in (2.30) and (4.5).
Substituting (3.3) the left-hand side (LHS) becomes, after integrating over k' and l',

LHS= I dx)dy(dxgdy2(2m%) 'ap ( x))xP F(yx))a g( ig)xP g(yl)2

X5(—,(xp+y2) ——,[F(x) )+F(y ) )])5(xg—y2 —F(x ) )+F(y ) ) )

X5(l ——,(x, +y, ) }5(l—2 [G(x2)+G(y, )]) exp —Ik(x, —y, )+k[6(yz) —G(x2)])

Here the x2 and y2 integrations can be done and
the results is of form (3.3) for Tg.F x+L,.F provid-
ed that

+g FK+L F(x) +FK(x)+g,L(F(x)) (4.S)

with the same condition for P. This is a fairly
strong condition, but it is compatible with the rep-
resentation (4.5) obtained from unitarity, as can be

readily checked.
For classical CT's the inverse transformation is

given by G =F ' and L = EF '. From (4.—6) it
is easy to check that

T~x(k, l;k, l)*=T~, x ~ i(k, l;k, l) . (4.9)

Finally we note that to obtain a point transfor-
mation
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(4.10)p =F(P),
q =Q/F'(&)

in the p coordinate we can make first the reflection
(2.37), then a point transformation [with F(x)

+ —F(——x)], and finally the inverse of (2.37).
The corresponding kernel is

variant. In the previous sections we constructed
the transformation kernels by chaning variables in
the path integral expression for the trace, Eq. (2.1).
In this section we show that the kernels so ob-
tained also conserve commutation rules.

Let us assume we have three operators related by
a commutation rule

T(4 ip)(k, l;k, l)=T F( „)(I,—k;I, —k)

=TF(l,k;I,k) . (4.11)
[W(p, q), 8F(p, q)] =iftQ'(p, q),

where the elementary commutation rule is

(5 1)

V. CONSERVATION OF COMMUTATION RULES
A. Generalities

Usually canonical transformations are defined by
the property that they leave commutation rules in-

lq p]=i& (5.2)

As usual we assume that the operators are given by
some c-number functions W, A, and 4' according
to (1.1). Substituting them in (5.1), using

exp (ri p+ 8—iq), exp (r2p+8—2q) =exp —[(r(+r2)p+(8)+Hq)q) ( —2i)sin (8,72—1(82)
fi 2A'

and equating coefficients of the operators exp j (i /A)[rp+Hq]], we obtain an equation for the c-number
functions. After taking Fourier transforms this equation can be written in the form [using (3.5)]

(5.3)

Jdkidk2dl(dlz(2M) ( —8/R)sin —[(ki —k)(12 —I)—(k2 —k)(li —I)] (6'~W)(k) I, )(6'~9k )(k212)

=(8'~Ã)(k, l) .

Here again the order dependence appears in the standard way so we could as well go to the order-
independent formalism by (3.6) and write

(5 4)

Jdkidk2dlidl2(2M) ( —8/A')sin —[(ki —k)(lz —I)—(k2 —k)(I) —I)] A(ki, li)B(kz, l2) =C(k, l) .—2 ~ 2

The Moyal-bracket formulation' can be obtained from (5.5) by first writing it as

(5.5)

fdH)d82d&i«2dkidk2dl, dl2(2~) exp —[k(r, +r, )+I(8,+8,) —1,8,—k, r, —1,8,—k,&,]fi
r

lX(—2/i)i)sin (H, r2 —r, 82) A(k„l, )B(k2,1~)=C(k,l) (5-6)

and then converting 8; and r; in the sine function to derivatives with respect to I; and k;. The result is

—sin — — A (p, q)B(p, q) =C(p, q),
2 . ()i'() ()

fl 2 Bqg Bpg Bqa Bpg
(5.7)

where, e.g.,

()
A ( )B( )

BA (pyq) ()B(ptq)
BqA apB

" "
Bq Bp

In the limit Pi~0 (5.7) reduces to the classical Poisson brackets.
Let us now discuss what happens in a CT. When we substitute the transformed quantities

(5.8)
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A(k, l)= fdkdl T(k, l;k, l)A'(k, l),
«c, «(5.5), we obtain

fdkidkzdlidlq(2iriri) ( —8') f1kidkzdlidlqsin —[(k —ki)(l —12)—(k —k2)(l —li)]

(5.9)

XT(ki, li,'ki, li)T(ki, li, ki, li) A'(ki, li)B'(kg, li)

=fdk dl T(k, l;k, l)C'(k, l) .

Therefore the commutation relation (5.6) is invariant, provided that for all k i, l i,kz, l2,k, l,

fdk, dkzdlidlzsin —[(k —ki)(l —lz) —(k —ki)(l —li)] T(ki, l&,k„l, )T(ki, li,ki, lz)

(5.10)

=fdk dl T(k, l;k, l)sin —[(k —ki)(l —1z)—(k —ki)(l —li)] (5.1 1)

Equation (5.11) is the only condition for trans-
formations to leave commutation rules invariant.
One can now approach the problem of quantum
CT's by constructing solutions of (5.11). It should
be noted that (5.11) respects the composition law

of CT's (1.3); this makes the set of canonical
transformations a semigroup. Since the identity
transformation

T(k, l;k, l) =5(k —k)5(l —1)

also satisfies (5.11) CT's actually form a monoid.
In Sec. IV A we discussed the additional condi-

tions of normalization (4.1) and (phase-space) uni-

tarity (4.2). As we mentioned earlier the normali-

zation condition is natural as we do not want con-
stants to change in CT's. Equation (4.1) is also in-

dependent of (5.11), for T=Oclearly sati—sfies (5.11)
but not (4.1). It is not clear if (4.1) is enough to
quarantee that the solutions of (5.11) form a group.
The condition of (p,q) unitarity (4.2) is a strong
additional restriction (although weaker than q uni-

tarity of ' ) and CT's having this property do
I

I

form a group.
The equation (5.11) was derived for the order-

independent transformations. The corresponding
equation for S" ' can be derived directly from
(5.4). Since the order dependence enters in the
standard way it is easy to see that W ' satisfies its
equations if and only if T [related to it by (3.1)] sa-
tisfies (5.11).

For classical CT's it is neccessary and sufficient
that they leave the fundamental Poisson brackets

(5.12)

invariant. For quantum systems this would
correspond to preserving (5.2), i.e., that (5.10) holds
for the special case of

A '(k i,1 i )=1i,

B'(ki, lp) =ki,
C'(k, l )=1 .

This together with (4.1) gives the equation

fdk idl idkzdlgdk idl idkzdlp(2m') ( —8/iri)sin —[(k i —k)(12 —1)—(ki —k)(l i
—1)1

X T(ki, li, ki, li)T(ki, lz, ki, lz)like ——1, (5.13)

for all k, l. This equation is then neccessary while (5.11) with (4.1) is sufficient. Whether either one or
perhaps something else is both necessary and sufficient we do not know. It is also not clear whether for two
solutions of (5.13) also their composition (1.3) is a solution of (5.13). However, if Ti satisfies (5.13) and Ti
(5.11) then T2 Ti does satisfy (5.13). In the following we will only use (5.11).

B. Linear and point transformations

It is easy to see that the reflection (3.4) satisfies
(5.11). In fact we can now do even better and con-

I

sider a general linear CT

q =aQ+PP,
p=yQ+5P . (5.14)
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x5(1—(al+Pk)) . (5.15)

It is easy to show that (5.15) satisfies (5.11), (4.1),
and (4.2) provided only that a5 —Py= l. Linear
quantum CT's are therefore given by the naive
classical substitution in the order-independent for-
mulation.

One can also show with a straightforward but
lengthy calculation that {3.3) satisfies (5.11) with
no restrictions on a and P in addition to the usual

(2.17). This shows that the set of transformations
leaving commutators invariant is larger than the
set of unitary transformations.

IV. DISCUSSION

In this paper we have described quantum canon-
ical transformations in terms of integral transfor-
mations. To each operator and ordering rule one
associates by (1.1) a c-number function. The ef-
fects of a quantum CT can then be described by
the transformation (1.2) on the c-number function.
It is such a function, corresponding to the operator
Hamiltonian, that appears in the exponent of the
integrand in the path-integral formalism. If we
want to change variables in. the path integral the
corresponding new c-number Hamiltonian is ob-
tained by (1.2).

In Sec. II we constructed the needed transforma-
tion kernels for point transformations (II8—IIC)
and reflections q =P, p = —Q (IID) by analyzing

Classically (5.14) is a CT if a5 —Py=1. Corre-
sponding to this we define the transformation ker-
nel of the quantum CT by

Ti;„„,(k, l;k, l) = 5{k—(yl+ 5k))

changes of variables in the discrete definition of
the path integral. The kernels were obtained for
arbitrary ordering rules. (For the reflection, the
kernel was found to be simple only for soine of
them. ) In general the ordering dependence was
shown in Sec. III to be of rather benign type and
we were able to pass to the ordering-independent
formalism.

By construction the bijective point transforma-
tions and reflections leave the spectrum of the
Hamiltonian unchanged. However, not all
transformations that leave commutation rules in-
variant are expressible as finite sequences of point
transformations and reflections. These more gen-
eral CT's might very well change the spectrum of
the Hamiltonian. The construction and interpreta-
tion of them is still an open problem. A possible
starting point could be to search .for more general
solutions of Eq. (5.11).

Pote added. After finishing this work we found
out about the work of Moshinsky et al. (Refs.
14—16 and references therein). In addition to
linear transformations' they have considered more
general transformations. ' Their approach is dif-
ferent from ours as they aim to construct matrix
elements of the corresponding x-space unitary
operator by solving a differential equation. The
paper in Ref. 16 is closest in spirit to the present
work; however, none of these papers take the path
integral as their starting point.
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