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The problem of deriving the Lehmann-Symanzik-Zimmermann reduction formulas for
manifestly covariant quantum electrodynamics is reexamined. The problem of defining
states which satisfy the Gupta-Bleuler condition in the infrared limit is resolved by apply-
ing a nonlocal instantaneous pseudounitary transformation to the direct-product Fock
space before applying the infrared transformation. These states are reduced to find that
the interpolating Heisenberg spinor fields pick up an operator-valued phase which makes
them manifestly gauge invariant. The time-ordered products associated with the scatter-
ing amplitudes are shown to have perturbative representations consistent with the form of
asymptotic limits selected for the interpolating fields. The phase on the spinor fields
causes the S matrix to have the usual Coulomb-gauge Feynman rules, while the infrared
problem is resolved by developing the infrared form for the asymptotic Coulomb-gauge
fields. Strict satisfaction of the Gupta-Bleuler condition is seen to be unnecessary in a
charge-conserving theory.

I. INTRODUCTION

It has long been known that the Lehmann-
Symanzik-Zimmermann (LSZ) reduction tech-
nique' encounters difficulties when a manifestly
covariant formulation of quantum electrodynamics
(QED) is attempted. There are several factors
which conspire to complicate such a program for
QED, each of which has a long history of analysis
in the literature. For the sake of placing the work
presented here in its proper perspective these as-
pects of the problem will be discussed in the first
part of this section.

The first difficulty is created by the presence of
the long-range Coulomb interaction which pre-
cludes use of the noninteracting adiabatic switch-
ing (hereafter NAS) assumption. Stated simply,
this prevents the renormalized interacting Heisen-
berg fields, which obey the full nonlinear equations
of motion, from asymptotically approaching the
respective free Heisenberg fields. In this respect it
was first pointed out by Bloch and Nordsieck, and
subsequently discussed by other authors, that a
state corresponding to a physical charged particle
must necessarily contain an infinite number of
coherent photons. Dollard showed for the non-
relativistic case that careful examination of the in-
teraction leads to selection of a more complicated
form for the asymptotic Hamiltonian, which, how-
ever, can still be diagonalized. In generalizing this

result to the relativistic case Kulish and Faddeev
showed that the fields whose time developments
were given by this Hamiltonian could be obtained
from the free fields by a time-dependent pseudo-
unitary transformation. These are the asymptotic
limits of the Heisenberg fields when an interacting
adiabatic switching (hereafter IAS) assumption is
made. When applied to the original Fock space of
the theory this pseudounitary transformation gen-
erates a space of coherent states which is orthogo-
nal to the Fock space. These states are referred to
as infraparticles. In essence, IAS allows a new
interaction-picture representation of the S matrix
in terms of operators manifesting distortion by the
tail of the Coulomb interaction. The advantage
obtained from this improved S matrix is the ab-
sence of infrared divergences, although ultraviolet
divergences remain.

It is important to note that the standard treat-
ment in textbooks6 defines the S matrix for QED
in the Coulomb gauge and forces NAS on the
theory. It is this assumption which causes the in-
frared divergences in the perturbative representa-
tion of the S matrix. However, these divergences
can be canceled in a consistent way, as shown by
Yennie, Frautschi, and Suura, although it requires
two steps. In intermediate stages of calculation the
photon is given a finite mass. A physical process
is then defined by summing appropriate self-energy
and soft bremstrahlung graphs to cancel infrared-
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divergent pieces, and the photon mass is then re-
stored to zero. Forcing NAS on the theory has not
destroyed it, but has created the need for a rather
tedious redefinition of physical processes. Never-
theless, many practitioners are content with such a
formulation of QED.

A second difficulty associated with the NAS as-
sumption in manifestly covariant QED was first
uncovered by Kallen, who showed that if the
asymptotic vector field satisfies the standard free-
field commutator and the interacting field satisfies
the manifestly covariant Yang-Feldman equation,
then causality is violated in the interacting region
in the sense that the interpolating field fails to
commute at spacelike distances. This difficulty is
not serious to the physical interpretation of the
theory since the components of the Maxwell ten-

sor, which are the physical observables, do com-
mute at spacelike distances. Kallen showed that
this problem is alleviated if the commutator for
the asymptotic vector field carries a vestige of the
interaction in the form of a constant. In later
work Nakanishi' used this commutator to develop
a manifestly covariant LSZ reduction formula for
scalar electrodynamics in order to examine spon-
taneous breakdown of symmetry. Hammer and
DeFacio" have pointed out certain inconsistencies
in Nakanishi's work. However, any attempt to
construct an LSZ reduction formula for Lorentz-
gauge QED particle states must contend with
Kallen's results.

A third source of difficulty in manifestly covari-
ant QED stems from the need to quantize the
theory in an indefinite-metric space. ' In order to
maintain a probabilistic interpretation the Gupta-
Bleuler (hereafter GB) condition' is used to select
a subspace with positive-definite seminorm. This
procedure is unambiguous and clear for the nonin-

teracting case, but the generalization to the in-

teracting case has not been trivial. Evans and Ful-
ton' showed that NAS is inconsistent with the
free GB condition, indicating a nonmanifestly co-
variant formulation of QED is necessary. Several
authors' have showed, under very general assump-
tions, that there exist no localized charged states
which satisfy the GB condition. Recently Froh-
lich, Morchio, and Strocchi' have shown that the
charged sector of scattering states in QED is nei-
ther localized nor boost covariant. For these rea-
sons it is tempting to abandon the GB condition in
favor of alternative constraints which maintain lo-
cality and Lorentz covariance. However, the
viewpoint of this paper is that the GB condition is

necessary to define correctly the charged sector.
This viewpoint is supported by the work of Hail-
er' who has shown that the interaction-picture
states consistent with NAS which satisfy the GB
condition form a coherent subspace obtainable
from the subspace that satisfies the free GB condi-
tion by a pseudounitary transformation. In agree-
ment with rigorous results the charged states are
no longer local and do not transform covariantly
because the pseudounitary operator contains the in-
stantaneous Coulomb potential. However, when
the particle states are defined as these transformed
free-particle states, the S matrix for their scattering
derived from the NAS assumption is term-by-term
equivalent to the standard Coulomb-gauge S ma-
trix. Furthermore, any allowed zero-norm state
contributes nothing to scattering. As a result, the
GB condition forces manifestly covariant formula-
tions of QED to be dynamically equivalent to the
Coulomb gauge, at least for the assumption of
NAS.

It is logical to suppose that the infraparticle
states of Kulish and Faddeev could be used as the
asymptotic particle states of QED. These could
then be reduced by the LSZ technique to obtain
formulas consistent with the infrared structure of
the theory. Such reduction formulas should lead
to an S matrix free of infrared divergences. This
program has been examined in a series of papers
by Zwanziger. ' Zwanziger's formulation employs
asymptotic states which do not satisfy the asymp-
totic form of the GB condition. Instead, alterna-
tive measures are taken to insure positivity. A
second difficulty with the results arises from the
fact that the asymptotic vector fields obey the
free-field commutation relations while the interpo-
lating field satisfies the same Yang-Feldman equa-
tion as that assumed by Kallen. As a result, the
problem with causality discussed earlier in this sec-
tion surfaces.

It is the purpose of this paper to reexamine the
LSZ formulation of QED in both the NAS and
IAS cases. It will be seen that it is possible to con-
struct states which obey the asymptotic form of
the GB condition consistent with the form of adia-
batic switching selected, either NAS of IAS. In
both cases these asymptotic particle states are
represented by coherent states obtained by operat-
ing on the subspace of the Fock space which satis-
fies the free GB condition with a pseudounitary
transformation. In the NAS case the pseudouni-
tary transformation is the one used by Hailer,
while in the IAS case it is a combination of the
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one used by Hailer and the one found by Kulish
and Faddeev. In either case the scattering ampli-
tude takes the same form when written in terms of
interpolating fields. These reduction formulas are
obtained by emptying the original Fock particle
state and leaving the transformation in place on
the Fock vacuum since it leaves the Fock vacuum
unchanged. It will be shown that use of the NAS
assumption leads directly from the reduction for-
mula to the standard Coulomb-gauge S matrix
with its well-known Feynman rules, while using
the IAS assumption leads to an S matrix with very
similar rules but which uses different propagators
for the charged particles. In either case the argu-
ment made by Kallen is circumvented because the
Yang-Feldman equations for the interpolating
fields differ from the standard forms.

Throughout this w'ork familiarity with the LSZ
program at the textbook level' will be assumed,
along with the results of Kulish and Faddeev, al-

though a brief sketch of their work is presented in
Sec. II. The work presented will be heuristic in
nature because of the manipulation of unbounded
operators. This paper is not meant to be a
rigorous analysis of scattering in QED. Instead,
motivation for the steps taken will be made, where
possible, by appealing to formal arguments which
have their origin in perturbation theory. However,
nowhere in this paper will the renormalizability or
convergence of any perturbation series derived be
discussed.

The remainder of this paper can now be out-
lined. In Sec. II the notation is established and the
results of Kulish and Faddeev are reviewed. Sec-
tion III develops the states which satisfy the
asymptotic GB condition consistent with either the
NAS or IAS assumption. In Sec. IV these states
are reduced for both cases and shown to take the
same manifestly gauge-invariant form in terms of
interpolating Heisenberg fields. Section V derives
the S matrix for both cases, verifying that NAS
leads to the Coulomb-gauge Feynman rules with

II. PRELIMINARIES

In this section the notation and basic assump-
tions will be established and a sketch of the deriva-
tion of the infrared coherent states will be present-
ed. The reason for including this is to refresh the
reader's memory regarding several key points in
the derivation which will be important later. For
simplicity attention will be restricted to the Feyn-
man gauge, although generalization is straightfor-
ward.

/

A. Notation

The vector field A& and the bispinor field f are
assumed to obey the equations of motion

CI A q
——e l7jy„1(—:eJ„,

(iy"dq m)g=e—Apy"f .
It follows from current conservation that

(2.1a)

(2.1b)

(2.2)

It is assumed that (2.1) is derived from an action
which can also be used to find the Hamiltonian
and the momenta canonically conjugate to the
fields. The part of the Hamiltonian described by
the interaction is the standard coupling

Hq ——f d x [ed„gy"g] . (2.3)

It is relevant to review brieAy the quantization
of the free v'ector field a& and the bispinor field

The bispinor field is decomposed according to

their infrared divergences, while IAS gives an S
matrix which is free of such problems but is can-
siderably more difficult to calculate with. Section
VI contains conclusions as well as a discussion as
to why strict satisfaction of the GB condition is
not necessary in a charge-conserving theory such as
QED.

1
1/2

P(x)= d'p g (b' u'-e 'l'"+-d tv'-e'l'"),m

(2~)3n e P P P P
p s=1

where

po=E~=(p +pl )
~2 2 1/2

P

The field is quantized with the anticommutation relations

I b'~, b'-„J = I d'-„,d'-„J =5 .5 ( p —k ) .

(2.4a)

(2.4b)

(2.5)
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The vector field has the decomposition

a„(x)= 3 f d k(2c0„) '~ [a&(k)e ' +a„(k)e'~], (2.6a)

where Because of the indefinite metric it follows that

ko ——cog=
/
k

f
(2.6b) [a i, +a i, ,a i +a

&
]=0,3 0 3$ Of (2.1 1)

and

aq(k)=eq(k)a k . (2.6c)

i,'t] u, 'y( k )

where g is the metric tensor with g =—1.
The need to identify a~~ as a creation operator

introduces negative-norm states into the theory and
these threaten the positive-definiteness of the Ham-
iltonian. This problem is avoided by defining the
physical subspace as the one which satisfies the
Gupta-Bleuler condition. ' The time-independent
operator a [fj is defined as

a[f]= f d x f'+'(x, t)B,B„a"(x,t),

(2 7)

(2.8a)

where f'+' is a positive-frequency wave packet
satisfying

f(+) 0 (2.8b)

In (2.6c) the ez are the polarization vectors and the
sum is over all four polarizations. The field is
quantized in an indefinite-metric space by the com-
mutation relation

so that the physical subspace decomposes into the
direct sum of two subspaces, VT, the set of all
transverse photon states of positive norm, and Vp,
a subspace of zero-norm ghost states obtained
by operating on the states of VT with arbitrary
products of (a ~&+a ~k). The unphysical subspace

V„ is obtained by operating on the states of V„h,
= VT 6 Vo with operators of the form (a|, —a „).

B. Infrared asymptotic fields

The form of the asymptotic condition is critical
to the LSZ reduction program. For the purposes
of this paper the IAS form of the asymptotic fields
will be developed using an argument borrowed
from perturbation theory. The argument is heuris-
tic in nature, but the results allow immediate im-
plementation in perturbative representations of the
S matrix.

The interpolating fields are related to their free
counterparts by the tine-dependent unitary
transformation Z(t) in the manner

and is assumed to be well behaved at spatial infini-
ty. The GB condition restricts the physical states
of the theory to those Fock states which satisfy

Z(t)A„(x, t)Z '(t)=a„(x,t),

Z(t)g(x, t)Z-'(t) =P(x, t) .
(2.12)

a [f] ~

physical )F i,——0 .

Using (2.6a) shows that this is equivalent to
demanding that

(a-„+a k )
~
physical)„ i, =0, Vk .

(2.9)

(2.10)

Such a transformation has been shown not to exist
in the infinite-volume limit. ' Nevertheless, this
assumption is crucial to the development of an
interaction-picture representation in operator for-
malisms. It follows from (2.12) that

Z(t)A„(x, t)Z
—'(t) =a„(x,t) —[Z(t)Z —'(t),a„(x,t)],

so that, for Feynman-gauge QED,

Z(t)Z '(t) = —i f d x[ /ye"Pa„]+ieo(t) = iH&(t)—+ieo(t)—

(2.13)

(2.14)

(2.15)

with the time of the operators in (2.14) coinciding with t, and eo(t) is some indeterminate time-dependent c
number.

Care must be taken to state the asymptotic limit of the interpolating fields in terms of a smeared form
with the weak limit understood. The assumption is that

w-lim f d x f(x, t)A&(x, t)= w-lim f d x f(x, t)a&'(x, t),t~t t~t as
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where f(x, t) is a wave packet satisfying

Uf (x, t) =0, (2.16)

and using (2.17) shows that

w-lim U(t)Z(t)=A,
t~t

(2.18)

aq'(x, t) = U(t)aq(x, t) U '(t),

P"(x,t) =U(t)P(x, t) U '(t) .- (2.17)

Clearly, (2.17) is not the most general form for the
asymptotic field. However, it allows an immediate
connection to standard perturbative approaches
and thus the infrared form of the fields may be
found. Furthermore, substituting (2.12) into (2.15)

and it is understood that t„ is arbitrarily far in the
future or past. Similar expressions are assumed for
1(t smeared with a free bispinor function. The as-

sumption to be used in this paper is that the
asymptotic fields are derivable from the free fields

by a pseudounitary transformation U(t), so that

where A,
+- is a phase factor.

The noninteracting-adiabatic-switching assump-
tion posits that U(t} is a constant, so that the
fields totally decouple at large times. If U(t) is as-
sumed to be nontrivial, as in the interacting-
adiabatic-switching case, relations (2.18) and (2.13)
place severe restrictions on its form, and indeed al-
low a perturbative calculation of U(t). What fol-
lows is a brief recapitulation of the derivation of
U(t).

The basic tactic is to find a time-ordered repre-
sentation for U(t) U '(t') which can be separated
to obtain U(t). From (2.12) and (2.17) it is clear
that

wlim x xt Z tA& xtZ 't+ ZtZ 't a„xt
t —+f s

=w-lim f d xf (x,t)I U '(t)a&'(x, t)U(t)+[U '(t)U(t), a„(x,t)] j . (2 19)
as

As t approaches t» the first terms on each side cancel because of (2.15) and (2.18). Thus i U '(t) U—(t)
must be related to the large-time behavior of (2.14). Inserting the standard plane-wave decompositions (2.4a)
and (2.6a) into (2.14), and using the large-time form

exp[i(tok —e-+e-+ k )t„)=exp(ik„p"t„!Fp), k„=0

and dropping all terms which oscillate rapidly in this limit gives

U '(t)U(t)= iHI"(t)= i—f d xj—&'(x, t)a (x,t),
where

(2.20)

(2.21)

and

d Pj„"(x,t)=e f 2p(p) "5 x —— t
(2ir)'~' P, P

2

p(p)= g (&'-b'- —d'-d'-) .
s=1

(2.22)

(2.23)

That (2.21) is nonvanishing is a result of the masslessness of the photon which allows condition (2.20} to be
met.

The iteration of expression (2.21) gives
r

t2
U(t2)U '(ti)=T exp i f, dtHI"(t)

r

The time-ordered product may be evaluated explicitly to obtain
'2-

U(t2)U '(ti)=exp i f dtHI'(t) exp , i f d xd —xj'&'(x)Lg"(x x'j)„"(x')—
1

where h~~" is the retarded Green's function which has the representation

(2.24)

(2.25)
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3
bit'i"(x —x')= i—g(t —t')[a&(x),a"(x')]= i8—(t t—') f (2co ) '[e' '" "'—e ' '" "'],

(2ir)

with 8 the standard step function. It is straightforward to find

f2
exp i f, dtHt"(t) =expI —[R(t2)—R(ti)] J,

1

where

R(t)= d d k(2'-)' " [a& (k)e ' a"(k—)e '] .p k a e —a e ~

(2.26)

(2.27)

(2.28)

Using the Baker-Campbell-Hausdorf relation shows that expression (2.27) becomes

expj [R (t2—) —R (ti )] I =exp[ —R (t2)] exp[R (ti )] exp[iC(t2, ti )],
where

C(t„t,)=, f d pd kd qp(p)p(q)(pq)[2cok(pk)(qk!) sin
e'

3 3 3 1 . kPt2 kqt1

(2n. ) P P

(2.29)

(2.30)

(2.31)

Clearly C(t2, t, ) vanishes only when tz t„and is——not separable in t2 and ti. Fortunately, it can be can-
celed against a piece of the other term in (2.25). It is not difficult to show that

exp , i f—dxd xj'„"(x)cg (x —x')j,"(x') = exp[ ip(t, )+—ip(t, ) iC(t„—t, )],
where

2

P(t)= f d kd pd qp(p)p(q)(pq) 2toze-(kq)
(2m. ) 6'

q+

sin kp kq
g-+

(2.32)

Because C, R, and p commute at all times the C
term is canceled, and the form for U(t) is then
given by

U(t)=exp[ —R (t)] exp[ —iP(t)] . (2.33)

This is very similar to forms given elsewhere. The
difference lies in the time dependence of P(t). This
arises from the assumption in other derivations
that there is a time to for which U(to) =1, and
this leads to an artificial introduction of to into the
expression for U. Since such a time to clearly does
not exist, the dependence of U on to is usually dis-
carded. The derivation presented here has the ad-
vantage that this problem never appears, and this
is the primary reason it was presented in such de-
tail. The secondary reason is that this derivation
will be repeated in Sec. V for a different interac-
tion. As a final note it is easy to show that P(t) is
of the form (sgnt) multiplied by a time-independent
operator, and that U does satisfy (2.21). The ex-
pression normally presented in the literature does
not, although it is derived by assuming that it
does.

When the asymptotic fields are evaluated using

as &
= U( t„) I phy (2.34)

It will be seen in the next section that this defini-
tion does not satisfy the asymptotic form of the
GB condition in the interacting theory for either
the NAS or IAS case.

III. THE GUPTA-BLEULER CONDITION

Because the Lorentz scalar B&A" satisfies the
free field equation (2.2), it is possible to define the
time-independent annihilation operator

&[f]=f d x f'+'(x, t)B,B„A"(x,t), (3.1)

(2.33) in (2.17) it shows that the asymptotic vector
field is the free Feynman gauge field (2.6a) with a
modification due to the Lienard-Wiechert potential
of any charges present. The charged particles pick
up an eikonal phase which represents a distortion
of the plane wave due to the Lienard-Wiechert po-
tentials of the other charged particles present. The
standard definition of the infraparticle spectrum is
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where f'+' is the positive-frequency wave packet
which satisfies (2.8b). The Gupta-Bleuler (GB)
condition for the interacting theory demands that
the physical states satisfy the analog of (2.9), so

that

A [f] ~

physical) =0 .

Using assumption (2.12) gives

(3.2)

A [f]=Z-'(t) f d'xf'+'"a, a„a~ Z(t) —f d' xf' +'[Z-'(t)Z(t), Z-'(t)a„aZ(t)] .

It is straightforward to show that

[Z-'Z, Z-'a„a~Z] =—Z-'[ZZ-', a„a~]Z,

so that, from (2.14) and the commutation relations,

A [f]=Z 'a [f]Z+Z ' f d x f'+j'o Z,
where

Jo —=e41'4 ~

(3.3)

(3.4)

(3.5)

(3.6)

In the large-time limit the first term in (3.5) depends upon the form of the asymptotic condition selected.
The second term does not. To see that it does not, it is only necessary to recall the photon-like time depen-
dence of f'+' and the large-time limit (2.20) to find, for t large,

Z-' f d xf'+j'o Z= f d'xf'+'go', (3.7)

regardless of the asymptotic condition selected. To be sure that the order of limit and commutator in (3.7)
is irrelevant it need only be noted that for large t

e f d x f'+'p"yp"= f d3x f'+j'

Thus, the asymptotic form of the operator (3.3) is

A"[f]=U [f]U '+ f d' f"Ji'

(3.8)

(3.9)

The difficulty in implementing the GB condition (3.2) is now apparent. If the asymptotic states are de-

fined by (2.34) it follows that

A "[f]
~

as) =U(t„)f d x f'+'(x, t„)jo'(x,t„)
~
physical)F k, (3.10)

which does not vanish if there is net charge in the Pock state. The solution to the dilemma posed by (3.10)
requires the abandonment of locality and manifest Lorentz covariance in the charged sector by preparing the
physical Fock space with the pseudounitary transformation'

V"(t„)=exp , i f d3x—dx'[V' a(x, t„)—ao(x, t„)]G(x—x ')jo (x,t„)

where G(x —x ') is the instantaneous Coulomb Green's function which satisfies

V' G(x —x')=5'(x —x') . (3.12)

The photon operators appearing in (3.11) are the zero norm ghosts of the form (a~k —a&) excluded from
the Fock space by the free GB condition (2.9). If the asymptotic particle states are defined as

~
as) = U(t„)V(t„)

~
physical)F~q,

it is straightforward to show that

A "[f]
~

as) =0,
where the commutators

—,[V a(x, t) —ao(x, t),B„a"(x', t)]=0

(3.13)

(3.14)

(3.15a)
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——,[V a(x, t) —ao(x, t), ()qa (x', t)]=iV 5 (x —x') (3.15b)

(3.16a)

are useful.
The necessity of introducing V can be seen from another argument based on examination of the asymptot-

ic form of Maxwell's equations written in terms of the vector potential. For consistency it must obtain that

w-lim I d'x f(x,t}[VXB(x,t}+E(x,t) —J(x,t)]=pf~t

and

w-lim J d x f(x,t)[V.E(x,t) —Jo(x,t)]=p,
f~t~

(3.16b)

where f is defined as a wave packet satisfying (2.16). The other two Maxwell equations hold trivially when

written in terms of the vector potential and need not be considered. It is left as an exercise to show that

w-lim J d x f(V)&B+E—J )=U(t„) I d x f(x, t„)V(3&a"(x,t„) U '(t„), (3.17)

and

w-lim f d x f(V' E—JD)=U(t„) f d x f(x, t„)(3„a"(x,t„) U '(t„) Jd x—fjo'.
'as

(3.18)

When placed between states of the form (2.34) relation (3.18) fails to vanish. However, when placed between
states of the form (3.13), hereafter referred to as infra-Gaussian states, both relations vanish. The reader
will recall that the breakdown of covariance and locality in the charged sector, discussed in more rigorous
analyses, ' ' is deduced by careful examination of the implications of Gauss's law (3.16b). Such results are
in support of the manipulations of this section.

IV. THE REDUCTION FORMULAS

In this section the LSZ reduction program will be applied to the infra-Gaussian states defined by (3.13).
The Fock state will be emptied by moving the operators past the UV product. Once the state is emptied the
UV product will be left in place since

U(t)V"(t) [0&= ~0& . (4.1)

All the zero-norm coherent states in the spectrum defined by (3.13) are excluded from contributing to
scattering by construction, as the reader may readily verify, and thus only states with transverse photons and

charged particles in the Fock state will be reduced.
The transverse photon can be reduced very simply because the transverse photon operator commutes with

the V operator. It follows then that an in state with a transverse photon of momentum k& and helicity A,

(A, =1,2) can be written

fk, X,A&;„=U(t;„)V (t;„)az /8&F (,
——U(t;„) i I d x f&

' (k—,x)d,a"(x), , V (t;„))8& qF,

where f„'
'" is a negative-frequency wave packet satisfying

Qf( —9, Q/lf( —)k f(—I, p

It follows that

(4.2)

(4.3)

Ua„= —(Ua„U ') U —[UU ', a„'"]U .
()t

(4.4)
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Using the form (2.33) shows that the second term in (4.4) vanishes. As a result

~k, X,B&,„=i.f d'xf„' ~-'(k,xg,a""(x), , ~B),„. (4.5)

From the asymptotic condition {2.15) relation (4.5) can be written

~
k, A, ,B);„=w-limi f d x f&

' (k,x)B,A"(x) ~B);„.
~in

Using the standard replacement

out ()
lim =— dt—+ limt~t;„~&n Bt t~t „

(4.6)

(4.7)

the definition of time ordering, the absence of forward scattering, and the equation of motion (4.3), it can be
shown

,„,(A i TI ~

J /k, i,B);„='f d f„' ' (k, )Cl„,„,{A
i
Tf A ( ) I iB);„. (4.8)

The complex conjugate of (4.8) occurs when a photon is reduced out of the out state.
The reduction formulas for the charged particles are affected by the presence of the V operator. It is easy

to show

V"(t)b'- =b'-exp —, ie —dx 6 x — t [V a(x, t) —ao(x, t)] V"(t),
P P p —+

P

while

(4.9a)

V"(t)d' =d'-exp , ie —d xG x — t [V.a(x, t) —ao(x, t)] V"(t) .
E'~

PI

In the large-time limit these equations have the equivalent representations

V"(t)d'-„= f d x u-, ( x)P( x)e' '"'V"(t),

V"(t)b'- = d x P (x)u (x)e ' '"'V"(t),
P P,S

where u and u are free spinor functions satisfying

(A"8„+i,m)u -,=u-, (y"r)„im) =0—,
and the phase of the spinor fields is given by

C(x, t)= —,e f d x'G(x —x')[V.a(x', t) —ao(x', t)] .

(4.9b)

(4.10a)

(4.10b)

(4.1 1)

(4.12)

To see that relations (4.9) and (4.10) coincide in the large-time limit the exponential phase is expanded in
a power series and the integration is performed using the plane-wave representations (2.4a) and (2.6a) for the
free fields. The large-time limit (2.20) is then used to find the asymptotic form. A simple calculation is il-
lustrative since this is a critical point. For convenience the operator V'. a —io will be given the decomposition

V a —ao —— (B'-e' +B e ' ),dk
(2~)3/2 k k (4.13}

while the Coulomb Green's function (3.12}has the standard representation

d3'-
6(x x ) f il —2 'k ( — ')

(2ir)
(4.14)

i f d x Pt(x—,t}u-,(x,t)C(x, t}=—,'ie f d pd k
P P

The first nontrivial term in the expansion of (4.10b) is given by
T

7tl

' 1/2
l.Sf
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In the limit
~

t
~

becomes large all but vanishingly small values of k„are suppressed in the integral, so that
(4.15) becomes

b—' , ie—dsxG x — t [V a(x, t) —ao(x, t)],
p 2

P

which is the first nontrivial term in the expansion of (4.9a)
Another derivation of the form (4.10) follows from the fact that, in the large-time limit,

(4.16)

lim V(t)= lim exp ——, f d xd x'[V.a(x, t) —ao(x, t)G(x —x')jo(x', t) =V"(t»),
t~t t~tS

(4.17)

where jo is given by (3.6). The reason that (4.17) holds is that the time dependence of the operator V is
identical to that of the interaction-picture Hamiltonian (2.14), and so the limit (2.20) is once again appropri-
ate. Using the commutators

[jo(x,t),p (x ', t)]=ept(x', t)5 (x —x '),
[jo(x,t},p(x ', t)]= ep—(x ', t)5'(x —x ')

(4.18)

quickly verifies the relations of (4.10), valid in the large-time limit.
The reduction formulas may now be developed. Reducing a charged particle of helicity s and momentum

k& from the in state gives

=,„,&A
~
TI .

j f d3xgt"(x)e 'c '"'u-„,(x), , ~B);„, (4.19)

where C'" is C with the free fields replaced by the asymptotic fields at time t;„Usin.g the form (4.7), the
definition of time ordering, and the absence of forward scattering, gives

,„,&A [T{ . .
j ~k,s,B);„= i f d x—,„,&A

~
TI . g(x)e j ~B);„( iy 8—„—m)up, (x),

(4.20)

CH(x) = —,e f d x G(x —x ')[V A(x ', t) —Ao(x ', t)] .

An antiparticle is reduced similarly, giving

,„,&A ( TI .
j ~

k,s,B);„=if d xiT-„,(x)(iy a„m),„,&A—
~
TI P(x)e j ~B),„.

(4.21)

(4.22)

(4.23)

where

ClA=0 . (4.24)

Because of (4.24) the Q operator breaks into two

Related formulas are obtained for reducing parti-
cles out of the out state.

While the appearance of the nonlocal instantane-

ous phase CH in the expressions for the charged
particles might seem unusual, it is possible to view

it as a logical outgrowth of the gauge invariance of
QED. The generator of gauge transformations for
the Heisenberg theory in the Feynman gauge is

Q(t)= f d'x A(x, tg, ay~(x, t),

parts,

Q(t) =A t[A]+A [A], (4.25)

(4.26)[Q(t),CH(x, t)]=eA(x, t)
iC~ .

so that the combination Pe is manifestly gauge

where A [A] is given by (3.1), so that the operator

Q vanishes when evaluated between states which
satisfy the GB condition. Clearly, the infra-
Gaussian states satisfy this condition asymptotical-
ly by explicit construction, and thus the reduction
formulas should be manifestly gauge invariant. It
is apparent that under a gauge transformation
which satisfies (4.24}
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invariant as promised. This will be discussed
further in the Conclusions.

V. THE S MATRIX

While the reduction formulas derived in the pre-
vious section have an intrinsic value by exhibiting
the scattering amplitude as an exact expression in
terms of interpolating fields, most calculations

resort to a perturbative representation of the time-
ordered fields. In this section the perturbative rep-
resentation consistent with the adiabatic switching
chosen will be derived.

The starting point is the Green s function associ-
ated with a totally reduced amplitude. This takes
the form of a set of time-ordered fields such as
(4.8), (4.20), and (4.22) between the Fock vacuum.
This Green's function will be denoted

F (x„x2,x3, . . . )=&0~ TIA„(x, )i)'j(X3)e " 'g(X3)e " ' .
I ~0&, (5.1)

where a is the set of Lorentz and spinor indices associated with the fields in (5.1). It follows from (2.12)
and (4.17) that

A„(x,r) =Z '(t) V
—'(t)a„(x,t) V(t)z(r),

p(x, r)e " ' -Z '(r)v '(t)p(x, r)v(r)z(r) .

(5.2a)

(5.2b)

The fact that A& is integrated against a wave pack-
et that satisfies (4.3) allows (5.2a) to hold, while it
is necessary to use V, as opposed to V", because
the fields are in the interpolating region where

~

r
~

is not necessarily large.
The asymptotic fields are introduced by the rela-

tion

P= U '$"U .

(5.3a)

(5.3b)

The NAS assumption is the U is a constant. Of
course, careful examination of the S matrix will
make such an assumption obviously incorrect.
Nevertheless, for the completeness of this paper the
form of the S matrix consistent with such an as-
sumption will be derived. For the IAS case it
must be noted that U may not coincide with the U
of (2.24), and there is no a priori reason to expect

that it should. This is due to the presence of the V
operator. The form for U derived in Sec. II was
developed by examining the asymptotic limit of
(2.14) which is related through (2.19) only to the Z
operator. With the necessity of introducing the V
operator by the relations (5.2), the effective interac-
tion has been changed, and a form for U must be
found which allows this interaction to switch adia-
batically off at asymptotic times. As a preview, U
will differ from U in the exclusion of ghost opera-
tors and the inclusion of the instantaneous Cou-
lomb interaction. Note that the asymptotic rela-
tion (2.17) for the Feynman gauge fields still holds,
but the presence of V forces a redefinition of U in
the S matrix.

In order to find U the representation of the S
matrix consistent with assumptions (5.2) and (5.3)
must be found. The amplitude (5.1) can now be
written

F(g(xi x3 x3 ~ ) —&0
~

Zo Vo Uo TI Uo VozoZ, '
Vi '

Uialj (xi ) Ui ViZi Z;

x v, -'U, -'
IU, vz, io&, (5.4)

where the subscripts refer to the time of the operator, 0 being t,„, and i being t;„. Using the fact that
asymptotically ZU goes into a constant and V goes into V" which leaves the Fock vacuum unchanged, and
the nature of time ordering, it can be shown that

F~(x, , . . . )=A, +A, &0~ Uo
' ITap'( x)yi"( x)y"( X) 3U0V0Z0Z; 'V, 'U; 'IU/~0&.

Relation (5.5) shows that the condition

U(r.,}~0&= ~0&

must be met in order that the Dyson-Wick contraction method can be employed.

(5.5)

(5 6)
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Defining W(t) by

W(t) = U(t) V(t)Z(t),

and H(t) by

W'(t) W-'(t) =—iH(t),

the evolution operator W(t) W '(t') is found to satisfy the differential equation

(5 7)

(5.8)

(5.9)

Iteration of this equation leads to the representation
r

t
W(t,„,) W '(t;„)=T exp i f— dtH(t)

in

By definition

iH(t) —= UU '+ U(VV '+ VZ-Z 'V ')-U-

From the forms (2.14) and (4.17) it follows that

(5.10)

(5.11)

yZZ —'y —'+yy —'= ) 3~ J',. x, t a,.T x, t

+i , f d —xdx'[ B&j"(x,t)G(x —x')[V.a(x', t) —ap(x', t)]

+ V j (x,t)G(x —x')B&a"(x',t}+jp(x,t)G(x —x'}d„a"(x',t}

—jp(x, t)G(x —x ')jp(x ', t) I,
where a; refers to the transverse part of a;, and is given by

a; (x, t) =a;(x, t) —V; f d x'G(x —x ') V a(x ', t} .

Using conservation of the free current j& simplifies (5.12) to the form

VZZ 'V '+VV '= i f d'x j—(x,t).ar(x, t)

(5.12)

(5.13)

——f d x d x' jp(x, t)G(x —x ')jp(x ', t)+2[jp(x, t)G(x —x '}B„a"(x', t)]

(5.14)

At this point the NAS version of the S matrix may be found by setting U equal to some constant and in-
serting (5.14) into (5.10) and (5.5) to obtain

F (xbxg, x3, . . .)=( A. (0 T a„(x, gl(x~)P(x, )

T

Out

Xexp i f d—td x j a + —,jp f d x'Gj p
111 ) (5.15}

where the time derivative in (5.14) has been discarded since B&a& has no contractions with any other opera-
tor appearing in the S matrix. The reader immediately recognizes (5.15) as the standard Coulomb-gauge
representation of the time-ordered products. Of course, expression (5.15) exhibits the infrared-divergence
problem previously discussed because (5.14}does not adiabatically switch off at asymptotic times. Note that
the c number sp(t) defined in (2.14) has been suppressed throughout this derivation. This is because it is
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canceled by the factor X+A, , which is given by

tout
0 T exp i dtd x j.a + —,jo d x'Gjo

tin ) (5.16)

(5.17)

As a final note, the series (5.15) is the unrenormalized Green s function. As mentioned in the Introduction,
the renormalization of the theory lies outside the scope of this paper.

In order to find the form of the asymptotic fields (5.3} it is necessary to assume a nonconstant U. The
IAS assumption demands that the argument of the S matrix, i.e., the effective interaction Hamiltonian (5.8),
must vanish at asymptotic times. This means that

w-lim[UU '+U(VV '+VZZ 'V ')U ]=0.

Inverting (5.17) gives

w-lim U 'U= —w-lim(VV '+VZZ 'V ') .
t—+t s

(5.18)

Thus, the expression for U U may be found by applying the same analysis to the effective interaction as
was applied to (2.14). A minor complication occurs because of the Coulomb interaction appearing in expres-
sion (5.14). Inserting the plane-wave expansion (2.4a) into the Coulomb interaction shows that there occur
operator combinations of the form

2e 3 3 3 2 —1/2 i 2 3 4

(2n )
d pd kd qm (e-e - e-e---) b-d - -d -b- -u- v

p —p —k —q q —k p —p —k —q q —k ps& —p —ks2
sl, s2,s3,s4

X
~

k
~

v -, u- -„, exp[ —i(e-+e - g e- —e- —-„)t]—2 f (5.19a)

and

3 3 3 2

(2n.
dpdkdqm(E E +t, 6 E k} b b +kb b i, u u

p p+ q q — p p+ q q — ps( p+»2
sl, s2,s3,s4

X
~

k
~

u - u- - exp[ i (e-—e- —-+e- e- -—)t]q, s3 q —k,s4 p p+k q q —k (5.19b)

which, because of their time dependence, may not vanish in the asymptotic limit. All forms which do not
contain equal numbers of annihilation and creation will vanish. In the limit ~t

~

becomes very large the ex-
ponentials become

and

lim exp[ i (E- —e—-+ i, +e- —e k )t]=exp i k p
t~t p p+k q q —k E'~

as P

, k=0, (5.20a)

lim exp[ i (e-+e—- i,
—e -—e- i, )t]=exp i +— t, p=q,

k.p k q
t~t p —p —k —q q —k E'~~ as P q

k=o. (5.20b)

The terms of the form (5.19a} then vanish because the spinor products are zero for k =0. The Coulomb in-
teraction then becomes

w-lim f d xd xj (ox, t) G(x —x')jo(x', t)= f d xd xj 0(x, t) G(x —x')jo'(x', t) .
t

(5.21)

The asymptotic form of the effective interaction is

U U=i f d x j "(x) a (x)+ , i f d xd xj —(0x,t)G(x —x')jo'(x', t), (5.22)

where the terms proportional to B&o& have been dropped since they will have no contractions with any other
fields.
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Repeating the steps of Sec. IIB gives

i2
0(t2)U '(t&)=exp i f dtd x j" a exp ,'i—fd xd x'j;"(x)b'ii T(x x'—j)k'(x')

1

t2

Xexp , i—f d x d x'dtj 0'(x, t)G(x x')—jo'(x', t}
1

where b,z z is the transverse retarded Green's function given by

rig z(x —x')= i8—(t —t')[a; (x),aj (x')]

k;k..
6)( e} f (2 }

—1 g
' 1 [ ik(x —x') ik(—x —x')]

(2m) /k f2

and the sum in (5.23) runs over spatial indices only. It follows that U has the representation

U(t) =exp[ —R(t)] exp[ —iP(t)],

where

(5.23}

(5.24)

(5.25)

and

(2n. ) ~ k~p"

]k.q
2

P(t)= 3 f d pd kd qp(p)p(q).
(2n.)'

k p

P
E'~

+[p q —to(, '(p k)(q k)] 2'-„e e (kq)k P q 6 6
p q

sin

sin

k.p

P

k q

q

kp kq
E~

P R

(5.26a)

(5.26b)

In (5.26a) a; is the transverse operator satisfying

k a (k)=0, [a; (k),aj (p)]= 5J — 53(k —p) . (5.27)

The IAS form of the amplitudes (5.1) is given by

F (x(,xz,x3, . . . )
r

0 T'Qp X) X2 X3

X exp i f —dtd x j(p"(x)).a "(x)+ 2JO(((} '(x, t)) f d x'G(x —x')jo(p"(x', t))
iln

I

)—j "(x)~ a (x)——,jo'(x) f d x'G(x —x'}jo'(x', t)

(5.28)

Again, the c-number time dependence in the exponential is canceled by the phase factor A, +'A, ', given by
e

toutk+'k '=(0 T exp i I deH(e) 0) .
tin

e

(5.29)

It is now apparent that the perturbative representation of the amplitudes associated with physical scatter-

ing processes derived through the LSZ reduction technique is equivalent to a set of Coulomb-gauge Feyn-

man rules, as opposed to a set of Feynman-gauge Feynman rules. This point will be discussed further in the
Conclusions. It is also obvious that the time dependences of P and P are irrelevant to the amplitude, since it
has no effect upon contractions of either field appearing in the perturbation series. In addition the asymp-
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totic form of a; "may be deleted and replaced by the free field a; since

(0
~
TIa; "(x)aj "(x')]

(
0) = (0 ( TIa; (x)aj (x')]

~
0) . (5.30)

This shows that the infrared divergences are removed by changing the propagator for the charged particles,
and thus that R is the important part of U.

Using (5.28) the Yang-Feldman equation for the interpolating fields may be derived. It is straight-
forward to show that, in the weak limit,

A;(x)=a;"(x)+f d yb„~' (x —y)[JJ(y) —jj"(y)], (5.31)

where h,z' is the retarded transverse propagator defined by (5.24), and J is the current written in terms of
the interpolating spinor fields.

At this point Killen's argument can be invalidated. It is based on the fact that the current commutator
must have the representation

(0
~
[J;(x),JJ(y)] ~0&=f d'pe'"" "e(p)(&;.p' —p;p )~(p'), (5.32)

where m(p ) can be related to the spectral function, and the assumption that A& has the Yang-Feldman rep-
resentation

A;(x)=a;"(x)+f d y4g(x —y)JJ(y), i4 —— i8(t t—')(0 —
~

[a",aj"]
~

0) . (5.33)

When the commutator [A;(x),AJ(y)] is calculated
using (5.32) and (5.33), the terms proportional to

p;pj in (5.32) leave a nonvanishing contribution at
equal time. If instead of (5.33) expression (5.31) is
used in the commutator, it is straightforward to
show that these terms are canceled due to the
transverse nature of the propagator. This allows
both (2.15) and causality to hold in the interpolat-
ing region.

VI. CONCLUSIONS

The goal of this paper is to reexamine the prob-
lem of deriving the LSZ reduction formulas for
Feynman-gauge electrodynamics and to resolve the
role of the Gupta-Bleuler condition in this pro-
cedure. It is relevant to review the steps of the pa-
per. By examining the asymptotic limit of the
Feynman-gauge interaction Hamiltonian the in-
frared limit of the interpolating Feynman gauge
fields was found. However, the particle states
which evolve into the Feynman gauge fields were
found not to satisfy the Gupta-Bleuler condition.

I

Those states which do satisfy the Gupta-Bleuler
condition evolve into the Feynman gauge fields
with a phase on the spinor fields. When perturba-
tively analyzed these amplitudes are represented by
a Coulomb-gauge series rather than a Feynman-
gauge series because of the phase on the spinor
fields. In effect, applying the Gupta-Bleuler condi-
tion leads directly to a theory which is dynamically
equivalent to Coulomb-gauge electrodynamics,
while still allowing all the degrees of freedom asso-
ciated with manifestly covariant quantization.

There are several points to be made regarding
the results derived in this paper. The first is that,
as has already been shown, the Gupta-Bleuler con-
dition and the demand for manifest gauge invari-
ance are very similar. Satisfying this restriction
led to a nonlocal instantaneous result. That this
should happen can be seen from the equation of
motion (2.1) for i)'j. If the new field f is defined by

g(x) =g(x)e (6.1)

and is inserted into (2.1), it follows that

(iy"8& m)g=eA —yP+ , eye V f d x'G—(x—x')B„A"(x',t)

+ , eye f d x—'G(x x')B„A„(x'—, t) eye f d x'G(x——x ')g(x')ygP(x') . (6.2)

The equation of motion (6.2) is invariant under a
gauge transformation solely upon A„ if the gauge
function satisfies (4.24). Thus, (6.1) is the decom-
position of the bispinor field which decouples it

from its gauge phase. That the phase must be in-
stantaneous is now apparent, and this also illus-
trates the fact that the gauge transformation on the
bispinor field g is automatically induced by a
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gauge transformation on the vector field through
relation (6.1).

The second point is that, for the case of quan-
tum electrodynamics, the static potential between
two charged particles appears in the effective in-
teraction (5.14) or (5.28) if the subsidiary condition
is satisfied, and is not caused to appear by the in-

frared analysis. This is an extremely interesting
point because of the current interest in finding the
static potential associated with non-Abelian gauge
theories. However, such topics are beyond the
scope of this paper.

The final point to be made is that strict satisfac-
tion of the Gupta-Bleuler condition is not neces-

sary in quantum electrodynamics. As the reader is
undoubtedly aware, most scattering amplitudes for
the NAS assumption are calculated using a set of

manifestly covariant Feyman rules, i.e., the S-
matrix operator is defined as

'ouIS=T exp i—f d xj„(x)a&(x) . (6.3)
in

It has been shown that the Green's functions calcu-
lated with (6.3) and those associated with (5.15)
differ only in terms which vanish when the ampli-
tude is placed on its energy shell. ' Thus, using
(6.3} for an on-shell physical process will not give
an incorrect answer. Another way to see that the
Gupta-Bleuler condition is not critical to the
reduction scheme in QED is to examine the contri-
bution of zero norm states to scattering derived
from states which have not been transformed by V.

In terms of Heisenberg fields this would be given by

(0( Tj,g(, )17(x2) J ~ghost)=i f d x f' '( )CI (0(T[8„A"( )p( )g(, ) . .
J (0) .

Because the V operator is absent the spinor fields do not have the phase attached in (6.4). Applying the
d'Alembertian to the Green's function gives

(Ol Tt @(,}@( ) .
] I

ghost)=i f d f' '( )(Ol Tf C:IB„A"( )f(,)f( ) . j lO)

+i f d x f' '(x)(0~ T] [B„A"(x),g(x, )]5(t t, )P( x)—

+g(x, )[B„A"(x),f(x2)]5(t —t2) + .
] ~0),

(6.4)

(6.5)

(6.6a)

and

where the second term on the right-hand side is the sum of equal-time commutators between B„A„and all
other field operators in the time-ordered product. Clearly, the first term vanishes from (2.2). The second
term requires care because the commutators do not necessarily vanish. In fact,

[B&A"(x,t),P(x ', t)]=ef(x ', t)5 (x —x ')

[B&A"(x,t),g(x', t)]= ef(x ', t)5 (x ——x') . (6.6b)

'However, the set of commutators in (6.5) sum to
zero for any amplitude for which electric charge is
conserved, since for such a process there are equal
numbers of the two types of commutators (6.6).
This particular problem does not occur for ampli-
tudes where the spinor fields have the phase at-
tached because

(6.7)

Thus, physical processes calculated by either set of
Feynman rules (5.16}or (6.3) will be the same in

quantum electrodynamics because of the conserva-
tion of electric charge.

There are several extensions of the work present-
ed here. An immediate problem is in understand-

ing how the infrared problem is resolved in a
path-integral formulation of QED. In recent
work it was shown that the Coulomb-gauge path
integral can be derived using intermediate
Feynman-gauge interaction-picture coherent states
which satisfy the Gupta-Bleuler condition. It is
not clear how the infrared structure of the asymp-
totic particle states is related to this result, and
since path integrals are in such wide usage this
needs to be understood. A second project, already
undertaken by many authors, is to extend these re-
sults to non-Abelian gauge theories. Several au-
thors ' have argued that the extension of the
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Gupta-Bleuler condition to the non-Abelian case is
given by demanding that the generator of the
Becchi-Rouet-Stora transformation annihilate
physical states. It is possible that 3n analysis simi-
lar to the one provided for QED would generate
the non-Abelian static potential, but this must
remain speculation for the time being.
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