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After reviewing the current understanding of relativistic shock waves, a detailed
analysis of relativistic detonation waves is presented. It is proposed that the motion of a
detonation wave is analogous to the growth of a bubble nucleated during false vacuum
decay at finite temperatures. Some possible applications of these results to cosmology are

discussed.

I. INTRODUCTION

The relativistic theory of hydrodynamic shock
waves has been well established for years.!—*
Closely related to the shock wave is a phenomenon
that takes place in a combustible medium when the
combustion process is mediated by a shock wave.
The fluid on the front side of the shock wave is
unburnt fluid whereas the fluid on the rear side of
the wave is fluid that has undergone combustion
and is of different “chemistry” from the front side.
When the shock wave passes some point in the un-
burnt fluid, the reaction begins at that point and
continues until all the fluid has burned, i.e., for a
time 7 which characterizes the kinetics of the reac-
tion concerned. The shock wave is therefore fol-
lowed by a layer moving with it in which combus-
tion is occurring. The width of this layer depends
on the velocity of the shock and the characteristic
time 7. When the dimensions in the problem are
sufficiently large, one can regard the shock wave
and combustion zone following it as a single sur-
face of discontinuity which separates the burnt and
unburnt fluids. The surface is referred to as the
detonation wave. Relativistic detonations have not
been previously analyzed in the literature.’

As the detonation wave travels, stored chemical
energy in the fluid on the front side of the wave is
released and is used to further propel the wave or
is left as kinetic energy in fluid left behind the
traveling wave front. The motion of a spherical
detonation wave is therefore analogous to the
growth of a bubble which is nucleated in a first-
order phase transition. In the latter case, the
raised potential energy of the false vacuum is con-
verted into kinetic energy as the bubble wall passes
and is used to propel the bubble wall or remains in
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particles left behind the bubble wall.

Coleman® has analyzed the decay of a metastable
phase into a stable one for field theories in vacuo
at zero temperature and has shown how the decay
process occurs through the nucleation of bubbles
containing a stable phase. Once nucleated, an iso-
lated bubble grows, accelerating indefinitely until
the velocity of the wall approaches the speed of
light. “All of the energy” released in the decay is
used to further accelerate the bubble wall, thus
leaving the center of the bubble at zero tempera-
ture and with rapidly decreasing energy. If many
bubbles are produced, each grows until the walls
coalesce with the growing walls of the other bub-
bles and the system reaches equilibrium at a tem-
perature near the critical temperature.

Recently, there has been a great deal of interest
in applying Coleman’s results to understanding
phase transitions in early cosmology. The problem
is that in early cosmology the Universe was not a
vacuum and, according to current theories of
cosmology, was at a very high temperature.

Linde® has shown how to modify Coleman’s ex-
pression for the bubble nucleation (by replacing the
energy in Coleman’s expression with the free ener-
gy) for high temperatures. However, there remains
the question as to how the bubbles grow in a non-
vacuum at high temperatures; it is important to
resolve this issue in order to determine how fast
the bubbles coalesce and the transition is complet-
ed.

Therefore, if the bubbles do behave like spherical
detonation waves, the results that are derived in
this paper provide the answers as to what the rate
and manner of growth of bubbles at finite tempera-
tures is. Since the results differ from the conven-
tional assumptions in previous papers,’ ~° they may
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prove interesting.

In Sec. II of this paper, the theory of relativistic
shock waves is reviewed with particular emphasis
on issues not discussed in previous papers. In Sec.
III, the methods of analysis for shock waves are
extended to the case of relativistic detonation
waves. In Sec. IV, the application of these results
to the growth of bubbles in false vacuum decay is
discussed, along with possible applications to
cosmology. Some concluding remarks are made in
Sec. V.

II. RELATIVISTIC SHOCK WAVES

Because detonation waves are closely related to
shock waves, it is useful to review the known
theory of relativistic hydrodynamical shocks. A
consistent notation will be used throughout in
which n is the baryon density, V is the specific
volume, p is the pressure, T is the temperature, s is
the entropy per baryon, e is the internal energy
density, w =e +p is the “enthalpy,”
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Vg =

is the velocity of sound relative to the fluid, and
ug =v, /(1—p,?)1"? (2.2)

is the “four-velocity” of sound. (Newtonian limits
of these quantities are given in Landau and
Lifshitz.?) The quantity x =w/n? will be another
useful variable since plots of p vs x will play a key
role in the analysis. Since by the first law of ther-
modynamics

de = -"‘1—’ dn +nTds 2.3)

and

d |% =Vdp+Tds, 2.4)

a curve of constant entropy (a Poisson adiabat) in
the p vs x plot has a tangent

2,

% <0. (2.5)
ax |

U
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The standard analysis of relativistic shock waves
and the following description of detonation waves
is valid in curved space-times as well as flat—in
any theory with a metric in whose local Lorentz
frames the nongravitational laws of physics assume
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their standard special-relativistic forms.* One con-
siders a moving plane shock front and a particular
event P through which it passes. In the neighbor-
hood of P one introduces a local Lorentz frame in
which the shock is momentarily at rest. If the
shock front locally lies along the y =z =0 plane,
then on either side of the front the fluid travels
along the x direction. (A tangential discontinuity
is unstable and will not be considered in this paper.
Therefore tangential flow is irrelevant to this dis-
cussion.) Taub' has shown that such a frame can
be found.

In Fig. 1 a view of the shock front in the chosen
frame is shown. Region “1” denotes the
unshocked fluid which, in this frame, travels
through the shock front towards region “2” which
contains the shocked fluid. The velocity (with
respect to ¢) of fluids will be denoted by B, for the
unshocked fluid and B3, for shocked fluid with

u;=p;/(1—B;2)1"? (2.6)

representing the “four-velocity” on either side.

The laws of energy and momentum conservation
must be obeyed along the shock front if the front
is to reach equilibrium and travel at a constant
velocity (with respect to the unshocked fluid, for
example). The laws may be found by transforming
the energy-momentum tensor in the local rest
frame of the fluid,

f/‘,~=diag (P,P,P,e) s 2.7

into the local rest frame of the shock wave and by
demanding the energy and momentum be con-
served across the shock front:

W1Y1U =Wy, , (2.8)

wiu 2 +pr=wyur’+p; , (2.9)
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FIG. 1. A relativistic detonation (shock) wave viewed
in the local Lorentz frame of the detonation front.
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where
r=1/(1—gH"% . (2.10)

(These are the .77,, and .7, components.) In ad-
dition, if there is a conserved ‘“charge” such as
baryon number, one might consider the continuity
relation expressing the balancing of the baryon
flux:

n1u1=n2u25j. (2.11)

Then, one can express the baryon flux using Egs.
(2.9) and (2.11) as

2 P2—D1
Xy —X) )

(2.12)

By manipulating the above relations, one obtains
an equation that relates (p,x;) to (p2,x5):

XoWwy —x w1 =(py—p1 Nxy4+x;) . (2.13)

One can also ignore the continuity relation and
consider just Egs. (2.8) and (2.9) to derive a rela-
tion for B, in terms of 3,. In the limit of a highly
relativistic fluid in which p =e /3, the relation has
the simple form

1 1
36, for B, < 3
Bi= (2.14)

- 1
B, for BzZ‘\/—g .

Equations (2.8) —(2.14) are the fundamental rela-
tions governing shock-wave propagation.

To understand the utility of these relations it is
useful to consider a family of shocks each with the
same thermodynamic state on the “1” side but
with different states on the “2” side. Given an
equation of state that relates e to p, Eq. (2.13) con-
strains the possibilities for “2” [defined by (p,,x,)]
to a one-parameter family which can be designated
by a curve (referred to as the Taub adiabat) in the
p vs x plane. The curve (see Fig. 2) passes through
the point (p;,x;). One can also show that the
curve of constant entropy (the Poisson adiabat)
which passes through “1” is tangent to the Taub
adiabat at point “1” and that the two curves have
the same second derivative.* As the shock wave
moves, there is a jump in entropy which, by the
second law of thermodynamics, must be positive.
Increasing entropy means that the point on the
curve corresponding to fluid “2” must lie above
the point (p;,x), i.e.,
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FIG. 2. The Poisson adiabat and Taub adiabat plot-
ted in the p-x plane. Shown are only the adiabats that
pass through “1”. The two adiabats are tangent and
have the same second derivative at “1”.

pa2>pi1s (2.15a)
Xy <X1 , (2.15b)
V2 < V] . (2.150)

Then, from the graph shown in Fig. 3 and the rela-
tion Eq. (2.12), one observes that the slope of the
chord connecting “1” to “2” is just —(j2). There-
fore, one can conclude [see Eq. (2.15)]:

Uy <uy, (2.16a)
Uy >ug (< tangent at “1”), (2.16b)
Uy <ug,( o tangent at “2”) . (2.16c¢)
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FIG. 3. Taub adiabat for a shock wave. The front
side of the wave is in condition “1”, the rear side in
condition “2”, and the slope of the chord between them
is the negative of the square of the baryon flux. The
slope at ““1”” and “2” can be used to determine the speed
of sound in the respective fluids.
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A weak shock corresponds to the situation where
“2” lies only slightly above “1” on the adiabat. As
the shock gets weaker, “2” approaches “1” and

Up—Ugy, Ur—Ugy, (2.17)

i.e., the shock waves approach a sound wave as ex-
pected. As the shock becomes stronger, u; in-
creases, but, surprisingly, u, decreases. From Lan-
dau and Lifshitz? one knows that

B = (p2—p1)e2+p1) 12

1 (ey—e))e;+p,) ’ 2.18)
5 _ | p2mpiertp) 172

27 | (ey—ey)es+py) ’

so that for a highly relativistic fluid, p =e /3, and
a very strong shock (e approaching infinity), the
velocities become

Bi—1, B>t (<v,=1/V3). (2.19)

At first this result seems inconsistent with the
analysis of the adiabat curve in Fig. 3 since both
the slope of the chord, which gives 3,, and the
tangent at “2”, which gives vy, approach infinity
as the shock grows stronger (‘“2” moves further up
the adiabat). However, in both cases the slopes go
to infinity because the specific volume on the “2”
side is going to zero; although both slopes ap-
proach infinity, their ratio is

B, 1
vs2—+‘/§ . (2.20)

Therefore the Taub-adiabat analysis is consistent.
The results can also be plotted using Eq. (2.14)
(see Fig. 4). The plot yields B, in terms of 8, and
contains a larger range of solutions than is physi-

cally applicable. For example, for 3, < %, Biis
greater than one and this is not possible. The re-
gion in which 8, >1/V/3 means that 3, is greater
than v, which is bounded in the highly relativistic
limit by ¢/V'3. By Eq. (2.16¢) this cannot be satis-
fied by a shock wave. The physically interesting
region is the intermediate one which begins at
B>=1/V3 for a weak shock and terminates at
Bz=% for a strong shock. For a shock wave, the
velocity of the fluid at the rear of the wave is al-
ways subsonic with respect to the wave front.
These curves represent an alternative to the con-
ventional Taub-adiabat analysis in which the con-
tinuity condition has not been utilized.
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FIG. 4. A plot of B vs B, for a shock. Only the
middle section of the curve for % <B2<1/V3 is physi-
cally relevant.

III. RELATIVISTIC DETONATION WAVES

The analysis of detonation waves proceeds in
close analogy to the analysis of shock waves. The
expressions governing a detonation-wave propaga-
tion can also be expressed in terms of e and p, per-
mitting application of these results to fluids obey-
ing a general equation of state. For purely peda-
gogical reasons, a specific form for the equation of
state will be presumed. In particular, it will be as-
sumed (1) that both the burnt and the unburnt
fluid are in thermal equilibrium and (2) that the
temperature is so high that the fluids are highly re-
lativistic. Assumption (1) really has two parts:
first it is assumed that the unburnt fluid is in ther-
mal equilibrium, which is a matter of choice of in-
itial conditions; second, it is assumed that the
burnt fluid is also in thermal equilibrium which is
an assumption about the dynamics of the fluid
after combustion. Assumption (2) is (initially) an
example that is as far removed from the zero-
temperature case as possible. It is a trivial process
to recover the expressions for general e and p from
the relations that will be derived.

The assumptions can be condensed into the ex-
pression

1 1 4
Pthermal = 3 €thermal = TCIT . (3.1

As the temperatures T;, i =1,2 on either side of
the wave approach infinity, Eq. (3.1) becomes a
valid approximation. To distinguish this case from
a shock wave, there is an additional stored energy
€ in fluid “1” which is released as the wave front
passes. The energy density on either side is there-
fore
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e;=aT*+e, (3.2)
ey =aT24 . (3.3)
Conservation of energy implies
d dv
— =—p— 34
i (eV)=—p ar (3.4)

where V is a volume of fluid element. The as-
sumption that e and p depend on the temperature
T and no other thermodynamic variables means

that adiabaticity can be assumed. For a small adi-
abatic increase in V, the temperature of particles
behaves like ¥ ~1/3. The stored energy, however, is
independent of V. Therefore, the pressure in fluid
“17” is

pr=vaT,*—e (3.5)

and the energy-momentum tensor in the rest frame
of each fluid is

T =diag(5aT*—¢, 7aT*—¢, 7aT*—¢, aT\*+e), (3.6a)

. 1 1 1
.9'2=d1ag( 7aT24, ?[ITZ“, ?GT24, aT24) .

Transforming both expressions to the frame in
which the shock front is stationary and equating
them on both sides of the discontinuity results in
the fundamental equations of equilibrium for the
detonation wave:

4
FurvaTy = %ul‘}’laT14 ) (3.7a)
(vur+5)aT = (4u 2+ +)aT . (3.7b)
The continuity equation (2.11) is unchanged for
the detonation wave.
Because all the equations for the detonation
wave have the same form as the case for the shock
wave (the only difference is the addition of € to the
expression for the pressure and energy density on

the “1” side), the adiabat equation (2.13) is still
valid; the equation can be reexpressed as

(p2+5P)X— X )=5x 1P +3ex; . (3.8)

However, in plotting the one-parameter family
corresponding to the possible states “2”, the curve
does not pass through the given initial point “1” as
it did for the shock adiabat (see Fig. 5). The new
curve is referred to as the detonation adiabat. The
fact that the shock adiabat passes through the
point “1” is due to the fact that e; and e, are the
same functions of p; and p,, respectively, whereas
this does not now hold on account of the chemical
difference between the two fluids.

In Eq. (3.8), the shock adiabat, corresponding to
€=0, passes through the point (p,,x;) and is a hy-
perbola with asymptotes along p = —p;/3 and
along x =x; /3. The detonation adiabat has the
same asymptotes but a greater major axis D be-
tween the center of the hyperbola (—p,/3,x,/3)
and the nearest point on the curve. In general the
expression for D is

(3.6b)

D =X pi++ex, (3.9)

which increases monotonically with increasing e.
In Fig. 6, various adiabats as a function of € are
shown. The greater € is, the greater the distance
between the shock adiabat and the detonation adia-
bat.

The previous formula, Eq. (2.12), for the baryon
flux density is still valid (independent of ¢€}; its
square is the negative of the slope of the chord
connecting “1” (on the shock adiabat) to ‘“2” (on
the detonation adiabat). From Fig. 5 one observes
that —j? cannot be less than the slope of the
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FIG. 5. Shock and detonation adiabats for the case
where the unburnt fluid is “1” and the burnt fluid lies
on the dashed curve about the point O (e.g., c). The line
from “1” to O corresponds to the Jouget line. The line
a-b-c-d represents a detonation with a larger jump in en-
tropy than the Jouget line. D is the major axis of the
hyperbola through ““1”” and the major axis of the hyper-
bola through 0.
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FIG. 6. Various detonation adiabats as a function of
the vacuum energy €. The curves have the same asymp-
totes but the major axis D increases with increasing e.

tangent line between the point (p;,x;) and the
point O on the detonation curve. The flux j is just
the number of baryons which are ignited per unit
time per unit area of the surface of the detonation
wave. For a fixed (nonzero) € one finds that this
quantity must be above a certain limiting value.
The forward front of the detonation wave is a
true shock wave in the unburnt fluid “1”. The
fluid is compressed and heated to a state represent-
ed by the point d (see Fig. 5) on.the shock adiabat
of fluid “1”. The chemical reaction begins in the
compressed gas and as the reaction proceeds, the
state of the gas is represented by a point which
moves down the chord da (the baryon flux is con-
stant). Heat is evolved, the fluid expands, and its
pressure decreases; this continues until the combus-
tion is complete and the whole heat of the reaction
has been evolved. The corresponding point on the
adiabat is ¢, which represents the final state of the
combustion products. (The lower point b at which
the chord ad intersects the detonation adiabat can-
not be reached if the reaction is exothermic.)
Thus, the detonation is represented by the part of
the detonation adiabat lying above the point O.
Since the tangent to either curve at a point (p,x)
is related to the speed of sound in the medium
corresponding to that point, one observes from the
above analysis and from Fig. 5 that (B; =v)

J

1 172
e2+;e1 —€

e +e+p;

g,=—1 e1+e+ e
iy U I
V3 |ey+1e—e

B,<PBs> » (3.10)

i.e., a detonation wave moves relative to the fluid
behind it with a velocity less than or equal to the
speed of sound in that fluid; the equality holds for
the point O which is referred to as the Jouget point.
The velocity of the detonation wave with respect to
fluid “1” is always supersonic (as can be seen from
Fig. 5):

Bi>Bsi - (3.11)

The velocity with which the detonation wave
moves with respect to the unburnt gas “1” (B,) is
referred to as the velocity of propagation of the de-
tonation wave. The difference B;—f3, is the veloci-
ty of the combustion products relative to the un-
burnt gas and is always positive.

From the analysis of the Poisson adiabats, the
curves of constant entropy, one can also conclude
that the entropy in fluid “2” is a minimum for the
case of the chord which traverses point 0. The
change in entropy from fluid “1” to fluid “2” is a
maximum for the same chord. For these reasons,
the Jouget point is a special point on the detona-
tion adiabat.

If the shock wave from the detonation is due to
the combustion process itself (and is not produced
by some external source), it has been argued that
the detonation must correspond to the Jouget
point.2 The velocity of the detonation wave rela-
tive to the combustion products just behind it (3,)
is exactly equal to the speed of sound while the
velocity relative to the unburnt fluid has its least
possible value. This hypothesis was first put for-
ward by Chapman and Jouget (see Ref. 2) and is
referred to as the Chapman-Jouget condition. One
case in which the hypothesis can be proven is for a
spherical detonation wave caused by the combus-
tion process. The Chapman-Jouget condition will
be presumed for the moment and justified at the
end of this section.

An alternative way to represent the results is to
plot the fluid velocities in the front and rear of the
shock wave directly as a function of €. If e is the
thermal energy, the explicit expressions for B; and
B, are (in the highly relativistic limit)

172

(3.12)

One can also compute the equation for 3; vs B, in the highly relativistic limit (p =e /3):
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_ (1/6B+3B)+[(1/6Bo+ 3B+ + Ta— 71

(3.13)

=

Using the Chapman-Jouget condition
B =PBs>=1/V'3, one finds

1/V3+(@+3a)?
= l+a

where a=e€/aT* measures the ratio of the vacu-
um energy to the thermal energy for the unburnt
fluid. Plots of B; vs B, for various values of a are

shown in Fig. 7. In the limit that €—0, the curves
approach the curve corresponding to a shock wave

(Fig. 4), as one expects. The Chapman-Jouget con-
dition fixes 8,=1/V'3, which, in the limit of e—0,
implies B;=1/V'3. This result shows that the lim-
it of a weak detonation wave is the same as the
limit of a weak shock wave, although from the
adiabat curves it can be seen that the limits are
from different directions. As € increases, the deto-
nation wave grows strong and, from the adiabat
curves, one can see that the detonation wave acts
less and less like a shock wave. From Fig. 7 one
observes that, with the Chapman-Jouget condition
imposed, B, increases as € increases and the veloci-
ty of the detonation wave with respect to the un-
burnt fluid becomes supersonic. The dependence
of B;—which is also the velocity of the detonation
wave front—on a is shown in Fig. 8(a). For T
strictly zero (a approaches infinity), Eq. (3.7b) is
impossible to satisfy because the left-hand side of
the equation is negative. Therefore, no equilibrium
front can even be established. The positive pres-
sure on the rear side of the detonation wave and

) (3.14)
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FIG. 7. [, vs 3, for a detonation wave as a function
of a=e/(e, internal), where, in the relativistic case, (e,
internal)=aT,*. The Jouget condition fixes B,=1/V3.
As a increases, ) approaches unity.

f

the negative pressure on the front side lead to a ra-
pidly accelerating detonation wave whose velocity
approaches the speed of light. If T is nonzero the
velocities of the fluids can always be adjusted to
find an equilibrium solution. In Fig. 8(b) is shown
T,/T;, the ratio of the temperature of the burnt
fluid to that of the unburnt fluid vs «a, as derived
from (3.7b). The ratio of temperatures is only
weakly dependent on « in the relativistic limit.

A case of particular interest is the spherical de-
tonation wave centered about the point where the
fluid is first ignited. In this case one can analyze
the fluid within the detonation wave (as well as
along the detonation front). It will be assumed
that the radius of the detonation wave is so large
that equilibrium has been achieved and the wave
front can be treated as (locally) planar. Since the
fluid must be at rest in front of the detonation
wave (by symmetry) the fluid velocity must de-
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1.0 T T T T T

(a)
09 4

08 _

B FRONT
1

07 -

| N S (S N S SN SR S |
0% 2 3 4 5 6 7 8 9 10

a =€ /e, (thermal)

Taurnt 7 TunsurnT VS @

TBURNT / TUNBURNT

TS ENENETETE BN AT A N SR

i 1 1 1 1 1 1
"0 10 20 30 40 50 60 70 E;O 910 100
a
FIG. 8. (a) B, vs a=€/(e; internal), where in the

highly relativistic case (e; internal )=aT* (b) T,/T,
vs a in the highly relativistic limit.
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crease from the detonation wave towards the
center. Because there is no distance parameter, the
flow must be able to be described in terms of the
ratio between the distance from the center of the
wave and the time #: £=r/t. The variable £ has
the units of velocity and represents the velocity of
a given point in the detonation wave profile. The
particles at the point described by & in the wave
profile move with a (different) velocity v. Near the
detonation front £=p; and at the center of the
wave £=0.

In order to describe the dynamics of the detona-
tion wave, the equations of motion are required for
the case of spherically symmetric flow. The rela-
tivistic version of the continuity condition is given
by (in units where ¢ =1)

d(ny)

o(nvy)  2(nvy)
=0. 3.1
ot + or A+ r (3.16
The equation of conservation of entropy is
do do
3 +v 3 =0, (3.17)

where o is the entropy per baryon. And Euler’s
equation is

v v 1
ot tv or wyz

d O

(T): v a3 (3.18)

The equations may be rewritten in terms of the
variable &:

—n—-(§—v)=v'+£—yzvv’(§—v) , (3.19a)
n §

(§—v)o'=0, (3.190b)
(E—vw'=—=(1—vE)p’, (3.190)

wy?
where primes indicate derivatives with respect to &.
By the first relation, £ cannot equal v without con-
tradiction. Therefore, the entropy relation implies
o' =0—entropy is conserved. Therefore,
p'=(dp/3e)se’ =v,%’, where v, is the speed of
sound (which is also a function of £). Equation
(3.19¢) therefore implies

(E=v) |, e
Vzl—ug v'=v,t (3.20)

By Egs. (2.3) and (2.4), the right-hand side of Eq.
(3.20) can be rewritten

=—. (3.21

Eq. (3.19a):

2
yzv—%——[l—ﬁv(g—v)] v'=% (3.22)

which is the central equation describing the veloci-
ty profile within the detonation wave. Unfor-
tunately, the equation is too difficult to integrate
analytically, but its important properties can be
discerned without much difficulty.

It is first useful to consider the conditions under
which the fluid velocity v is zero. For £~p3,
corresponding to a point in the wave profile near
the outer part of the wave, v is nonzero. As £ de-
creases, v decreases to zero and Inv tends to — oo.
Therefore, d (Inv /d& should be expected to go to
+ o. For small v, Eq. (3.22) implies

dinw 20’

dé  EE—v)

the left-hand side of the equation approaches infin-
ity for £=0 or £=v,. At the origin £=0, the fluid
is at rest by symmetry. There is a region between
£=0 and £=vj, inside the detonation wave for
which the fluid is at rest. [Equation (3.22) breaks
down in this region.] The sphere £=u; in fact
corresponds to a wave of profile velocity £=uv,(0)
where v,(0) is the velocity of sound for the fluid at
rest near the center of the detonation wave (since,
as noted before, v, is generally a function of §).

Near the point v =0 and £=v,(0), Eq. (3.24) can
be linearized to yield the velocity profile v(§):

) (3.23)

v%%’—=§’—v[l—v52(0)]

—[vs—uv5(0)] , (3.24)

where £ =£—v,(0). The quantity [v; —v,(0)] is a
function of &, or, alternatively, for small v, a func-
tion of v. The simplest assumption is that, for
small r, it is proportional to v. If it is a higher
power of v it can be ignored in the computation.
Equation (3.24) can be reexpressed in the form

vidi—g'——— —ag (apg=const) , (3.25)
v

which has solutions [by substituting §'=vf (v)]

&'=apln (vg=const) . (3.26)

The result shows that near the inner boundary
point v =0 (a) the curve v(£) has a horizontal
tangent, and (b) the first derivative of the profile is
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continuous but all higher derivatives are infinite.
Note also that for small v, Eq. (3.26) implies

E—v—v,=E&—v—[v;—0,(0)] (3.27a)

v_o]_l
v

which is positive. It will be shown that £ —v —uv;
cannot change sign anywhere in the region of flow
considered. Consider a point (if there is one)
where

=ag |In (3.27b)

_&—v _ 3.28
p= T vE =v;, v£0 (3.28)

for this value, the coefficient of v’ in Eq. (3.22) is
zero and so v’ must be infinite at such a point.
Using the equations above, the second derivative
can be shown to be finite at such a point:

v« —v/E . (3.29)

This means that £ as a function of v has a max-
imum at such a point. The function v (&) only is
physical for £ less than the value corresponding to
condition (3.28) and this, it will be shown, corre-
sponds to the outer boundary of the solution. If
p=v; only at the outer boundary and u > v, for
small v [see Eq. (3.27b) near the inner boundary],
Eq. (3.29) implies that

> U (3.30)

everywhere between the two boundaries. Evaluated
at the detonation wave front, the velocity u is just
the velocity of the fluid behind the front relative to
&, the profile velocity of the front itself. A surface
on which u > v, cannot be the front of a detonation
wave, by Eq. (3.10), however, so the outer boun-
dary of the region must correspond to the detona-
tion front. On this boundary, v falls from its max-
imum value discontinuously to zero and the veloci-
ty of the boundary relative to the gas is just equal
to the velocity of the front of the detonation-wave
profile—the local velocity of sound (see Fig. 9).
The detonation wave therefore must correspond to
the Jouget point.

The detonation wave has behind it, therefore, a
spherical similarity rarefaction wave in which the
velocity decreases monotonically at the inner
discontinuity to zero. The density and pressure
can be shown to decrease monotonically also (al-
though they do not decrease to zero) at the inner
boundary and then are constant within that radius.
The fluid within the inner boundary is therefore at

rest with respect to the unburnt fluid and at finite
temperature, pressure, and density. The width of
the “slim” layer between the inner and outer boun-
daries generally grows as a fraction of time since
the velocity of sound in the inner fluid (= speed of
inner boundary) is less than the velocity of sound
near the fluid front (= velocity of the detonation
wave front). (In the extreme relativistic limit the
slim thickness remains roughly constant.) The
volume of inner fluid grows like [v,(0)¢]°.

IV. BUBBLES GROWTH IN FALSE VACUUM
DECAY

False vacuum decay refers to a phenomenon in
field theory in which a system is trapped in a me-
tastable phase and must decay through barrier
penetration into the stable phase. As stated in the
Introduction, Coleman has analyzed the decay pro-
cess for a system that is truly a vacuum and at
zero temperature using the semiclassical approxi-
mation. He derived a picture of the decay process
that is like the classical description of a first-order
phase transition of which the process he studied is
the quantum analog.

According to Coleman’s results, the decay occurs
through the nucleation of numerous bubbles in the
metastable system inside of which is the stable
phase. If the bubbles that are nucleated are above
a certain critical size, they begin to grow, accelerat-
ing very rapidly. For his solution in a vacuum at
zero temperature, Coleman was able to explicitly
show that the space-time path of a point on the
bubble wall follows a hyperbolic world line in
which it continually accelerates, rapidly approach-
ing the light cone. The force for accelerating the
wall comes directly from the process of converting

VELOCITY

o WEAK

DETONATION {
DISCONTINUITY FRONT

FIG. 9. Velocity profile as a function of £=r /¢ for a
detonation wave.
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the metastable phase to the stable one.

From the discussion of a detonation wave in Sec.
III it is strongly suggested that the growth of a
bubble at fixed temperature should be very similar
to the growth of a spherical detonation wave.

Both the spherical detonation wave and the bubble
begin at rest and begin to accelerate due to greater
pressure inside than outside. In both cases, the ac-
celeration of the front is due to the energy derived
from converting outside “fluid” into inside “fluid.”
In the case of the bubble the physics inside the
bubble may be different from the physics outside
(symmetries may be broken for example), just as in
the case of the detonation wave the chemistry of
the unburnt fluid is different from the chemistry
of the burnt fluid. The acceleration of the fronts
continues until the pressure on the outside of the
fronts becomes great enough to just counterbalance
the pressure on the inside. If the fronts move any
faster, they are slowed by the pressure on the out-
side; if they move any slower, they are speeded up
by the pressure on the inside. The equilibrium
front is therefore established.

For a finite-temperature effective potential V'(¢)
that has a local (false) minimum at ¢, and a global
(true) minimum at ¢, € is given (approximately)
by V(¢g)—V(d;). When the bubble is first pro-
duced, the value of the field far from the center of
the bubble is near ¢; in the center of the bubble
the value of the field is ¢y, where ¢g < dy <P,
(where we choose ¢, to be greater than ¢). As the
bubble grows, the value of the field inside the bub-
ble approaches ¢; and remains near that value.
The analogy of the bubble to the spherical detona-
tion wave should be appropriate when this approxi-
mate “equilibrium” condition is reached.

The analogy should be valid provided that parti-
cles outside the bubble wall interact strongly with
the bubble wall. For a bubble in a scalar field
theory, the bubble wall consists of a coherent sup-
position of scalar particles. Scalar excitations of
the false phase must interact with the walls to pro-
duce excitations of the true phase. Fields that cou-
ple strongly to scalar particles (such as gauge me-
sons) should also interact strongly with the scalar
particles in the bubble wall. In such cases, the
detonation-wave analysis should be useful.

There is generally no conservation law or con-
tinuity condition since scalar excitations are gen-
erally produced as the wall passes. Nevertheless,
the energy and momentum conservation laws [Egs.
(3.7a) and (3.7b)] are still valid. Therefore Egs.
(3.13) and (3.14) are still applicable, and Figs. 7

and 8 can still be utilized. For decay in the pres-
ence of conserved charges, the adiabat condition
Eq. (3.8) should be applied in addition.

It is pleasing to note that, in the limit of zero
temperature [see Eq. (3.14) for a— o] the results
for the detonation wave match up nicely with the
results that Coleman found. As discussed in Sec.
III, in the limit 7' —O0 the pressure on the outside
of the front is negative definite and an equilibrium
front can never be achieved; the wave front ac-
celerates rapidly forever, approaching the speed of
light. For any finite temperature, however, the
fluid velocities can be adjusted so that there exists
an equilibrium front.

Assuming the analogy between the bubble and
the detonation wave is correct, the results of Sec. -
III for B, vs B, can be used to give the bubble-wall
velocity as a function of the temperature [using
Eq. (3.14)] when the temperature inside and outside
the bubble is much greater than the scale of
masses. Depending on the temperature, the veloci-
ty of the bubble wall can vary between ¢ /V'3 in
the limit of high temperatures and c as the tem-
perature approaches zero. Also, unlike the case at
zero temperature, bubbles at finite temperature
would be expected to leave behind the bubble wall
some small fraction of the bubble energy which is
at rest with respect to the bubble wall at some
fixed temperature.

If the transition is from a metastable symmetric
phase to a stable symmetry-breaking phase, then
some gauge mesons can gain a large mass in travel-
ing from the outside to the inside of the bubble. It
is interesting to consider what happens if such me-
sons dominate the energy density of the bubble in-
terior so that the interior fluid must be treated as a
nonrelativistic fluid. In this case, all equations of
the previous section hold except

e2=§T23, p2=0 . (4.1)
In this case, solving the same equations one finds
B+ B +3(1+a) a—7)]'

_ 42)
‘ 2(1+a)

The velocity 3, must equal the speed of sound in
the (nonrelativistic) fluid “2”, Bs,. The solution
for velocity fB; is only valid, though, for B, > B;,
where f3; is the velocity of sound in the outside re-
lativistic fluid. In general, B;; > fB;,, so Eq. (4.2) is
only valid for a> 5. For a< %, the pressure of
the unburnt fluid is greater than the pressure of
the burnt fluid and the bubble collapses. (The
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pressure inside the bubble is reduced because most
of the energy of the transition is stored in the mass
of the gauge mesons.) As a— «, ) approaches
unity, as before. The result is surprising because,
for a <% at fixed T, such a system can produce no
growing bubble even though €>0. (As the system
supercools, bubbles only appear after a > %.)

The opposite case, where the metastable phase is
symmetry breaking and the stable phase is symme-
try preserving, is also interesting. In this case, the
results of Sec. III are correct except that

e;=aTy’, p;=0, 4.3)

where the unburnt fluid outside the bubble is treat-
ed as nonrelativistic. In this case, 8, can be shown
to be

V3/24(5 +4a+4a")' 2
Bi= — , (4.4)
2(14-a)
where @=¢€/aT,’> (a different form but with the
same interpretation as before) and f3, for the rela-
tivistic interior fluid has been assumed to be 1/V/3.
In this case there is a valid equilibrium for all &:

§<31<1 for0 <@ < oo . 4.5)

The pressure exterior to the bubble is reduced due
to the mass of the gauge mesons so that the equili-
brium velocity of the bubble is greater than if the
outside fluid were relativistic.

Of course, the energy density and pressure have
contributions from both the massless and massive
excitations. These results in extreme limits only
serve to show the range of possible behaviors for
the bubble.

The results stated in the last paragraphs are in
opposition to the conventional assumptions that
have been used in analyzing first-order phase tran-
sitions in the early Universe. First, it is assumed
that once the bubbles are produced, they grow at
the speed of light. Since the region outside the
bubbles is expanding due to effects of general rela-
tivity, it is important to know the speed of growth
of the bubbles to know if they can grow large
enough for them to coalesce before the regions out-
side them grow too large. Under the cosmological
conditions, as the outside regions expand, their
temperature also decreases; the environment is
therefore more complicated than was assumed in
Sec. III. As the temperature on the outside drops,
the bubble-detonation velocity increases until T,
becomes negligible and the bubble velocity ap-

proaches the speed of light. Depending on the de-
tails of a field-theoretic model, however, the tem-
perature may have to drop many orders of magni-
tude before the effects of finite temperature be-
come negligible. Therefore, modifications in the
rate of completion of first-order transitions should
be considered.

In cases where the transition is completed, the
bubbles grow more slowly than the speed of light
before they coalesce. Unlike the conventional as-
sumptions, the bubbles are not spacelike separated
before the walls meet. In particular, massless
gauge mesons can be transmitted from one bubble
to another, possibly conveying information as to
the orientation of the Higgs fields in isospin space.
Such “communication” could lead to increased
correlations in phase transitions to states of broken
symmetry. Such a process could reduce, for exam-
ple, the number of monopoles produced in cosmo-
logical first-order phase transitions.

Perhaps more importantly, one must reconsider
cases in which the transition is never completed be-
cause the rate of growth of the outside regions is
more rapid than the bubble nucleation rate and
bubble growth rate combined. Such “inflationary”
scenarios have been typically depicted”!® as being
unphysical because the bubbles never coalesce; as
they grow, it is conventionally assumed that all the
energy from the conversion along the bubble front
is stored in the wall. The Universe cannot exist on
the inside of a bubble because the inside is cold
and empty, it is said.!! However, until the tem-
perature on the outside grows to be very small, the
bubbles grow as stable detonation waves which, as
discussed at the end of Sec. III, do leave behind a
small fraction of the energy density inside the bub-
ble. For a bubble of the size of our present
Universe and for conversion energies typical of
current grand unified models, the total energy
from conversion is a fantastic sum—many, many
orders of magnitude greater than that found in our
observable Universe. If a small fraction of that en-
ergy is left behind at rest with respect to the bub-
ble wall and in thermal equilibrium, it may be
enough to account for the entropy found in the ob-
servable Universe.

V. CONCLUSIONS

The main purpose of this paper was to extend
previously known results on relativistic shock
waves to the case of relativistic detonation waves.
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Perhaps some direct application of these ideas to
combustion processes in cosmology will be possi-
ble.

The main motivation for the paper was to gain
an understanding as to how bubbles nucleated in
first-order phase transitions at high temperatures
may grow. The application to cosmological
scenarios has been only briefly discussed and has
been intentionally indefinite because the results are
highly model dependent. A more complete treat-
ment of the cosmological application is being
presently studied. The basic message, however, is
that conventional assumptions about bubble growth
at zero temperature should be modified in accor-
dance with the analysis of Sec. III. The results
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may be important in cosmological scenarios in
which there are an insufficient number of bubbles
to percolate the Universe. The results should also
be equally applicable to the case where monopoles,
rather than bubbles, serve as the nucleation sites
for mediating the first-order phase transition.!?
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