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We present a nonsingular model of cosmogenesis in which the Universe arises as a re-
sult of quantum-mechanical barrier penetration. The Universe is described throughout its
evolution by a Friedmann-Robertson-Walker (FRW) metric, and the matter distribution
by a perfect fluid, whose equation of state is chosen so as to allow the tunneling to occur.
Cosmic evolution proceeds in three stages; an initial static spacetime configuration tunnels
into a “fireball” state in which particle creation occurs. As the fireball expands, particle
creation ends, and the Universe enters the “post-big-bang” epoch of adiabatic expansion.
We find that within the context of the FRW ansatz, only a spatially closed universe may
originate in this manner. Implications of this creation scheme and possible generaliza-
tions are discussed. As a by-product of this investigation we find that the evolution of
the Universe is described by a Gell-Mann— Low equation with the 3 function specified by

the equation of state.

I. INTRODUCTION

How did the Universe begin? Present data are
consistent with, and in fact form a strong body of
evidence in support of, the “standard” big-bang
model. The Universe was once at enormous tem-
perature, an expanding fireball of quarks, leptons,
and gluons. But where did that come from? Ex-
trapolating the standard model backwards in time
leads to a singular solution of the Einstein equa-
tions; indeed these equations predict that singulari-
ties are inevitable under a very general and physi-
cally reasonable choice of initial conditions.! In
that case, answering such a question is not possible
within the current framework of physics. But can
the Universe begin with a nonsingular (although
obviously extremely violent) event?

One possibility is that the Universe “bounces”;
terms in the effective gravitational action induced
by quantum effects reverse the collapse.? If the
matter density is sufficient to close such a
universe, the question of origin need not arise; in
certain models these universes have always existed,
eternally expanding and contracting. In this paper
we will explore another possibility, one in which
the Universe originated as a tunneling event from a
classically stable, static spacetime configuration.
The big bang is analogous to a single radioactive
decay, on a huge scale.

Speculations on the quantum origin of the
Universe began with a paper by Tryon,’ who sug-
gested that the Universe might be a vacuum fluc-
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tuation; it began as nothing at all. If this is so
then the net quantum numbers of the Universe
must be zero. The total electric charge of the
Universe is consistent with zero. The fact that to-
tal baryon number is not zero is not so troubling
today, as the “grand unified” field theories of
strong, weak, and electromagnetic interactions im-
ply proton instability. In addition, Tryon adopts
the view that total energy must be strictly con-
served in the creation process. Therefore a
universe which originated as a vacuum fluctuation
must have zero total energy. He presented a sim-
ple “semi-Newtonian” argument, in which the po-
sitive mass-energy of the galaxies is balanced by
their negative gravitational potential, to within a
factor of order unity. Thus the quantum numbers
of the Universe could be the same as those of the
vacuum (at very early times), and the vacuum-
fluctuation picture appears plausible. In a fully re-
lativistic model, however, Tryon’s argument fails.
Total energy may only be rigorously defined in
asymptotically flat spacetimes. In such spacetimes
the energy of the gravitational field itself is posi-
tive semidefinite, and the only spacetime with zero
total energy is flat and empty everywhere.* Tryon
went on to present a generally relativistic argument
due to Bergmann, indicating that any closed
universe has zero energy; hence his main predic-
tion, based purely on energy conservation, is that
we live in a closed universe. But for arbitrary
non-asymptotically flat geometries, open or closed,
total energy is not well defined. In addition, any
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homogeneous, isotropic, nonempty universe cannot
be asymptotically flat. Total-energy considerations
are therefore irrelevant for creating a universe of
this type from the vacuum; only absolutely con-
served charges must globally add to zero, a condi-
tion which is automatic in spatially closed
geometries.

Brout, Englert, and Gunzig® have further
developed the idea of the vacuum origin of the
Universe. According to their view, the Universe is
initiated by some local quantum fluctuation of the
spacetime metric. Varying metrics are well known
to result in particle creation.® This creation of
matter causes a further change in the metric, and a
cooperative process is set up. During this fireball
stage of particle creation, characterized phenomen-
ologically by negative pressure, the Universe is an
open de Sitter spacetime which will develop a
singularity, a future event horizon, within a finite
proper time. Before this horizon is reached, how-
ever, the authors postulate that the cooperative
process stops, and particle creation ends. Then be-
gins the second stage of the Universe’s evolution,
adiabatic free expansion with positive pressure, the
usual post-big-bang expansion. The authors exam-
ine in detail the particle creation mechanism and
the joining of the fireball and big-bang stages, but
the origin of the first quantum fluctuation is not
examined.

We will address the question of vacuum cosmo-
gony. Clearly this was a very violent event. If we
examine well-understood physical processes and
ask what are some of the most violent, then ra-
dioactive decay comes immediately to mind. Ima-
gine an oppositely charged pair of particles, bound
by a short-range attractive nuclear potential. This
state is classically stable. Increase the strength of
the nuclear force; the binding energy increases, and
the total energy can become zero. The bound state
becomes degenerate with the vacuum. There is a
finite probability for the particles to quantum
mechanically tunnel through the barrier and
separate. Massive, expanding matter has been
“created” from the vacuum.

In analogy to this decay process we assume that
the Universe began as a classically stable, static
configuration of spacetime. We examine the con-
ditions for the existence of a finite tunneling am-
plitude between this initial state and a fireball state
with subsequent adiabatic expansion. Our princi-
pal assumptions are that during its entire evolution
the Universe may be described by a homogeneous,
isotropic, Robertson-Walker metric, and matter
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treated phenomenologically as a perfect fluid. In
addition, we assume the Hilbert-Einstein action, al-
though this assumption can be altered without
changing our conclusions dramatically. Finally,
we allow ourselves the freedom of choosing an
equation of state for matter (analogous to picking
the potential in the nuclear decay problem) so that
the tunneling process is possible.

The tunneling amplitude between initial and fi-
nal states may be expressed as a Feynman path in-
tegral over metrics. In order that the path integral
have well-behaved convergence properties, we
analytically continue the initial and final metrics to
the Euclidean section; i.e., we Wick rotate to ima-
ginary times, and integrate over all metrics with
Euclidean signature [ + + + +]. The path in-
tegral may then be evaluated semiclassically. We
discuss later the problem of the lack of positivity
of the Euclidean Hilbert-Einstein action.

The Robertson-Walker ansatz describes a space-
time containing a three-dimensional spacelike hy-
persurface of homogeneity; for any fixed value of
the global Gaussian time coordinate ¢, the three-
spaces are locally isotropic and homogeneous.
They are either open or closed, and for a particular
choice of coordinates the three-space topology may
be parametrized by the values —1, 0, + 1 of an
integer k. We find a finite tunneling amplitude ex-
ists only for those spaces with finite three-volume
on the Euclidean section. There are two such
spaces, the closed spherical universe characterized
by Kk =+1, A>0 (A is the cosmological constant),
and the de Sitter universe, kK =0, A>0. Although
k =0 in the de Sitter case, corresponding to an in-
finite three-space, the Euclidean section is an .S 4
of radius (3/A)'/2, and is compact.” The noncom-
pact spaces have infinite volume, and this implies
an infinite action and vanishing tunneling ampli-
tude. Loosely speaking, infinite energy is required
to transform the metric everywhere on an open
space.

II. THE FRIEDMANN-ROBERTSON-WALKER
ANSATZ AND THE FIELD EQUATIONS

The most general line element describing a
homogeneous, isotropic spacetime is of
Friedmann-Robertson-Walker (FRW) form, and
may be written .

ds’=—cXt)dt’ +a¥t)do? ,
Bijdx idxj
(14 5K8;xx/)?

(1)
dazzhijdxidxj=
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with Lorentzian signature [g,,]=[—++ +].
Here a(t) is the cosmic expansion factor, c(2), in-
serted for convenience, represents the scale of time
translations, and can always be transformed to 1
by a rescaling of the timelike coordinate, and h;; is
the metric on the three-dimensional spacelike sur-
face of homogeneity. K is a constant curvature
parameter. The Riemann tensor on the spacelike
surface is given by

BRIy =—K (Skhj—8ihy) ; )

thus K parametrizes the intrinsic curvature of the
three-space, which is hyperbolic, flat, or spherical
as K <0, K =0, or K >0. With a suitable choice
of spacelike coordinates, the metric (1) may be cast
in the form

kK ~Y(dX*+sinh®X dQ?), k=—1
do*= {dX*+X%dQ?% k=0 3)
kK ~NdX*+sin’XdQ?), k=1,

where k=K /|K |, and dQ*=d6* +sin’0d¢>.
The three-valued integer k now classifies the
three-space topology. For the cases where the in-
trinsic three-curvature is nonvanishing we follow
the convention of rescaling the expansion factor
through a(t)— | K | /%a(t). Only the spherical
three-space (k =1) is of finite extent, with volume
V3=2mK ~3/2. We note at this point that the
Weyl tensor C,,y, evaluated on an FRW spacetime
vanishes; these spacetimes are conformally flat.
Suitable coodinate transformations can always be
found such that the FRW metrics with k = —1,0
and Lorentzian signature [ — + + + ], or the

k =0,1 metrics with Euclidean signature

[+ + + +] can be put in the form

ds?’=Q0X+dt”? +dx") , 4)

where Q is a function of (#24kx'?), and the signa-
ture of the flat line element in (4) is that of the
metric being transformed.

The total action is given by

S =Sg+Su ,

3V,

_ . . ¢ 5.
SG=———-fdtc Uaa*+a%i+c%ak —<aa
K ¢

Su=V; [ dica’ea),

So=—— [ d*xvV"g(R +2A), ®)
2k

SM=fd4x1/—_gYM;

S¢ is the gravitational contribution, S), that of
matter, and k>=8xG with G the Newton-
Cavendish constant. A cosmological constant A
has been introduced for generality. The vanishing
of the metric variation of the action yields the Ein-
stein field equations,

Guv"‘g‘wA: _Ke;w ’

B , (6
G;w=R/,w - 'z'gpr ’

where the matter stress tensor 0, is formally de-
fined by :

8Sy=—7 [ d*xvV—g6,.88" . €

The Einstein equations (6) are satisfied by the
FRW ansatz, provided the most general, homo-
geneous, isotropic form is used for the matter
stress tensor, that of a perfect fluid,

euvz[e(t)"'p(t)]Uva'Fg”vp (t) ’ (8)

where €(t) is the energy density of the fluid, p (1)
the pressure, and U, the four-velocity. In addi-
tion, the “energy” equation

2

T ©)
and the continuity equation

(a’€)=—p(a®), (10)

must be satisfied; the dot denotes d /dt. The latter
equation may be rewritten as

adE = 3etp), (n
and thus implies that € depends on ¢ only through
the expansion factor a (). The matter Lagrangian
density appearing in (5) is chosen by the require-
ment that the variation of the total action with
respect to ¢ (which may then be evaluated at

¢ =1), yield the Einstein energy equation (9). Us-
ing the FRW ansatz, we find

cZa3A

3 2
(12)
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where f d*x (—g)'?=V;ca?, and V; is formally
infinite for the open spaces.

A second field equation follows from the varia-
tion of the action (12) with respect to a(z) if we as-
sume the continuity equation (11) for the variation
of e(a) with respect to a:

. 2
a

2=+
a

_—.——-Kp . (13)

a
a

This equation has only the pressure on the matter
side; the continuity equation can be thought of as a
definition of the pressure in terms of de/da. But
(13) may also be obtained by taking the time
derivative of (9), and employing (10), and thus is
not independent. Alternately, of course, the con-
tinuity equation follows from the two field equa-
tions.

There are, however, three unknown functions ap-
pearing in these equations, a (¢), €(a), and p, and a
third, independent, equation is required for their
solution. This is the matter equation of state,
which we write in the form

p=ple). (14)

Equations (9), (10), and (the yet unspecified) (14)
completely describe an FRW cosmological model.

III. THE GELL-MANN—LOW EQUATION,
THE EQUATION OF STATE,
AND TUNNELING

Determining the state of the FRW universe at
any time now proceeds in two steps. The equation
of state p =p (€) is specified, and the continuity
equation (11) solved for e(a); this result is then in-
serted into the field equation (9), yielding the ex-
pansion factor a (2).

It is interesting to note that the simple scaling
and conformal properties of FRW spacetimes be-
come manifest through a renormalization-
group —type equation. Defining a Callan-Syman-
zik B function,?

Ble)=—3[e+ple)], (15)

and integrating the continuity equation (11) yields
the Gell-Mann — Low equation’

ea) dz
_fEO 3 (16)

a

Qg

In

where €y=¢€(ay), and a, is the scale factor at some
reference time t,, which may be conveniently

chosen to be the present. Thus €(a) plays the role
of the running coupling constant, and the expan-
sion factor a (¢) that of the momentum scale at
which the coupling constant is evaluated. With
this correspondence, the evolution of the Universe
may be described in the language of the renormali-
zation group. Suppose that €) <€, the critical
density as determined from the field equations.
[This is the density required to ensure that the rate
of expansion vanishes asymptotically, and is found
by setting the “total energy” k equal to zero in Eq.
(9); in the absence of a cosmological constant, €, =
3H?/87G, where H =a /a is the Hubble constant.]
Then the scale factor increases without limit, and
in the asymptotic region a— 0. Specifying the
equation of state directly determines the B func-
tion. For the late universe, the energy density is
small (we are in the “weak-coupling” regime); par-
ticle creation has long since ceased, and the Uni-
verse is undergoing adiabatic expansion. Particle
creation implies that (ea®)'>0, or, through the
continuity equation, negative pressure. Pressure in
the late universe is therefore positive semidefinite,
and in the region of small €, B is negative. The
usual equations of state for the late universe satisfy
p(0)=0; thus B(0)=0. The point €=0 is an
“ultraviolet-stable fixed point”, we reside at present
within its domain of attraction, and the Universe is
asymptotically free. This is just an unfamiliar way
of stating that for an open universe the expansion
is unbounded, and the energy density and pressure
attenuate to zero. As an example, consider the
equation of state

p(e)=-§e; (17

¥=0,1 correspond to a matter- or radiation-
dominated late universe, respectively. The asymp-
totic energy density obtained from the Gell-
Mann—Low equation (16) is

34y
o
ela)=¢y |— R (18)

and vanishes as @ — .

If €y > €., the Einstein equation (9) ensures that
the scale factor satisfies a (¢) < ap,y; it is bounded
from above. Although the Gell-Mann —Low equa-
tion still applies, its solution in the region a > ap,,
has no physical significance.

The energy density of the early universe is of
course quite large, corresponding to the strong-
coupling regime of the 8 function, and little is
known about the equation of state. We will simply
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assume here an equation which allows the universe
to originate as a tunneling event from a static
geometry. Ultimately one would like to derive this
equation from a fundamental theory; we do not ad-
dress this problem here.

In the usual manner we interpret the equation of
motion (9), with A=0, as that of a classical parti-
cle of twice unit mass moving in a potential

V(a)=;3k;a2€(a) (19)
with total energy —k; i.e.,
a4+ Via)=—k . (20)

The classically allowed region satisfies

k +V(a) <0, while in the unphysical tunneling re-
gion k + ¥V (a)>0. In the asymptotic region (late
times), for a matter- or radiation-dominated
universe,

34y

; (21)

K 2 ao
| 4 - = -
(a)a_bm 3 €0t [ p
for a () small (early times) we assume the potential
shown in Fig. 1. This potential has been chosen
such that

i g =0. (22)

In order to ensure this static pretunneling configu-
ration, the presence of a constant positive (nega-
tive) energy density is required in the case k =1
(k=-—1).
The continuity equation, together with Eq. (19),

imply

dv

—=a(3p +e€); 23)

da (3p +€) (
we use this relation and its derivative to study the
qualitative features of the equation of state which

V(a) A

-

FIG. 1. The potential at early times. The solid, dot-
ted, and broken lines denote the potential for the
k =—1, 0, 1 universes, respectively.
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leads to our potential. For simplicity we analyze
the case k =O0; there are no qualitative differences
for nonvanishing k. The potential is shown in Fig.
2(a), the equation of state in Fig. 2(b). The initial
static state occurs at A; this state tunnels quantum
mechanically through region I. The Universe is
created at B; here V =e=0, while dV /da <0. The
pressure is therefore negative, implying particle
creation, which continues throughout region II.
Region III represents the post-big-bang stage; here
the pressure is again positive, particle creation has
ended, and the Universe is expanding.

This equation of state defines a B function
which, when continued to complex arguments,
possesses a series of square-root branch points

V(a)

> 3

@
H

H
+ Yo

(a)

ple)

Unphysical <«—| — Physical

(b)

FIG. 2. (a) The potential for k =0. (b) The equation
of state.
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corresponding to the extrema of the potential V(a). 2
The analytic structure of the inverse 8 function is
depicted in Fig. 3; it is a multisheeted function
with branch points and a pole at the origin.

We have nothing to say as to whether such
equations of state are physically reasonable, or
indeed if the phenomenology of a perfect fluid can
be continued to a state of such high density and
pressure. No doubt quantum processes play an im-
portant role in this regime, and it is not clear if the
phenomenological approach we use can include FIG. 3. Singularity structure of the inverse S func-
them even approximately. tion in the complex z plane.

IV. CALCULATION OF THE TUNNELING AMPLITUDE

The tunneling amplitude is obtained by a semiclassical evaluation of the Euclidean path integral
T=N [ [dg,]exp( —[SE(8,)+Si{Egu)]} - (24)

S& and S§ are the gravitational and matter contributions to the total Euclidean action, respectively; N is a
normalization factor. The metric is expanded around the FRW form and terms up to second order in the
variation are retained in the action. Then, to leading order in #, the tunneling amplitude is given by

I'=Aexp{ —[Sk(a,k,€)—Sg(a,k,0)]} , (25)

where A is a determinantal factor, Sz(a,k,€) is the total Euclidean action evaluated in the FRW ansatz, and
SEg(a,k,0) is the Euclidean FRW vacuum action. For the FRW ansatz the continuation to the Euclidean
section is ac_complished by the replacement t— —ix,. The Euclidean action Sy is then given by

Sg=S&+S ,

3
Sg=iV3 fdxo aa’z—\t-aza”—ak+M , (26)
K 3

S£=V3 fdea3E(a) s

where a prime denotes d /dx,. The second derivative a" appearing in S& is removed by a partial integra-
tion, and the Euclidean equation of motion

2
(a’)2+a—3A=k+V(a) 27)
is used to eliminate a’. By performing the change of variables dx,=da /a’ the simple formula
3V, ey A 172
- 2 _
Sp=—"r fa12 da® |V (@)+k - 28)

obtains. The integration is over the unphysical region, where the integrand is real.

The Euclidean action is proportional to V3, the volume of the spacelike sections. Thus a finite action
configuration exists only for finite ¥;; the three-space must be closed. For the compact space k =1,
V3 =217, and we have (for the case A=0)

6m> o’ ]
p falzdaz{[V(a)+l]V2—1}. (29)
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If we approximate the potential in the tunneling
region by a square-well potential of height ¥, be-
tween a; and @, [A and B in Fig. 2(a)], then

—61?

K

Sp—S2= A (Vo+112—1], (30)

2 is a measure of the width of

where A’=a,?—aq,
the potential barrier.

For the FRW universe, we find the Euclidean
action is negative definite, even after vacuum sub-
traction. This is a well-known problem in gravita-
tional theory; in general, the Euclidean action is
not positive-definite, even for real positive-definite
metrics. To remedy this situation, Hawking sug-
gests'” that in evaluating the path integral the in-
tegration be split into two parts. The space of all
positive-definite metrics on the manifold in ques-
tion is divided into conformal equivalence classes.
In each class one picks the metric that satisfies the
Einstein equations, integrates over each of these
solutions, and then over the conformal factor .
In order to render the path integral convergent the
allowed conformal factors must be restricted; the
integration is carried out only over € of the form
1+i&, & real. This prescription is a redefinition of
the gravitational path integral, chosen to provide
proper convergence properties. When applied in
the case of the pure gravitational action evaluated
on an FRW spacetime, Hawking’s prescription re-
sults in a positive-definite quantity. That this is so
is easily shown. Recall that the Euclidean FRW
metric can be written as g,w=ﬂz(r)8,w, where §,,,
is diagonal [1111], and 7*=x,x*. This yields for
the Hilbert-Einstein action

E_ —6m 302 .

S¢= . fd'r'r Q% (31)
here the overdot denotes differentiation with
respect to 7. For conformal factors of the form
1+i€&, we find

E_ 6m 352
s§=== [drrE>0. (32)

However, this simple behavior does rot obtain in
the presence of a matter distribution characterized
by a stress tensor whose trace is nonvanishing, i.e.,
when the matter action is not conformally invari-
ant. Unfortunately, this situation is the one we are
dealing with in our simple model. The perfect-
fluid matter action (in an FRW spacetime) can be
written

Sg=2m* [ drrate, (33)

and depends upon the conformal factor algebraical-
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ly; letting Q=14-i£ does not result in a simple
change of sign.

The lack of positivity of the gravitational action
reflects the fact that there is no consistent general-
ly relativistic definition of energy for spaces satis-
fying arbitrary boundary conditions. This is a fun-
damental problem in the path-integral approach to
quantum gravity, and must be resolved before a
complete and unambiguous calculation of the tun-
neling amplitude (indeed of any quantum gravita-
tional transition probability) is possible. We be-
lieve, however, that when a complete path-integral
quantization scheme for gravity-matter systems is
developed, our principle conclusion, that only a
compact universe may originate via tunneling, will
stand.

The only other finite-action FRW solution is a
A >0 de Sitter spacetime; its Euclidean section is
an S*, with finite three-volume. To see this, note
that the Euclidean de Sitter line element can be
written
-1

ds’= dr?

1—%r2 ]dtz—}— ‘1———{;—#

+r¥dQ?; (34)

a rescaling of the form r—7 =(A/3)"/?r casts the
three-space section in the form

dr?

do’=—— +7dQ*. (35)

In spherical polar coordinates, the FRW three-
space metric becomes

do? +r2dQ?; (36)

- 1—kr?

the correspondence is clear, the de Sitter three-
space can be cast in a k =1 form. This is due to
the fact that only the four-space curvature is a
coordinate invariant.

V. DISCUSSION AND CONCLUSIONS

A principal conclusion of our investigation is
that only a spatially compact universe can ori-
ginate as a quantum tunneling event. We find this
conclusion somewhat disappointing, as we had
hoped that the Universe could have originated
from flat empty space, a configuration that truly
corresponds to nothing at all. Unfortunately this
possibility seems to be ruled out by the positive-
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energy theorem,* which requires flat, empty space-
time to be absolutely stable; it is the lowest-energy
state. Any deviation from such a geometry must
be paid for by a corresponding increase in the ac-
tion, and changing the action over an infinite
volume costs infinite energy.

The initial state of our Universe has a compact
k =1 geometry, and the question arises: Where
did that come from? This is a question we cannot
answer. However, a desirable feature of such a
compact space is that all total charges associated
with conserved currents must vanish for topologi-
cal reasons, a feature we would ordinarily associate
with a “vacuum.”

An interesting interpretation of the bounce solu-
tions for the early Universe emerges from our
work. The bounce solutions are possible providing
we add R? terms to the Hilbert-Einstein action. In
fact in the conformally flat FRW geometries the
most general modification is just the squared scalar
curvature; the squares of the Riemann and Ricci
tensors may be expressed in terms of R?, up to a
total divergence. We may view the bouncing
universe as a classical particle hitting a potential
barrier and bouncing off, remaining in the classi-
cally allowed energy region. The barrier, however,
may be of finite height and width, with a classical-
ly stable, static state existing on the other side. If
a finite tunneling amplitude exists between these
classical states, the static state may be the true ini-
tial state of the Universe. We have examined this
interpretation of the bounce solutions, and have
found that a constant energy density is required in
order that this initial state be static.

What is the Euclidean vacuum action for gravi-
ty? Gibbons and Hawking® suggest

-1 4
=5 [, d%VE R +24)

1 3
+- [ VAR +C, (37)

where the first integral is over the manifold M.
The second is over its boundary oM, A is the Eu-
clidean metric induced on this boundary, and K is
the trace of the second fundamental form of the
boundary. C is a constant term which depends
only on A, and not on the values of g on the interi-
or of M. (As we find the first term in the action
finite only for closed spaces, we have not discussed
the surface term, since it vanishes identically in
such spaces.) Hawking argues that for flat space
R =A=0, and the first term vanishes. The con-

stant C is chosen by the requirement that the flat-
space vacuum action vanish; thus

c=—1 [axVRK®, (38)
K

where K° is the trace of the second fundamental
form embedded in flat space. However, it is not
completely clear that the first term does indeed
vanish. Consider approaching a flat-space configu-
ration through a sequence of spaces of constant
curvature, where R = —4A, and let A—0. For
these spaces f d4x(g)1/2~l/A2, and

_—4
T kA’

with 4 a numerical constant. As A—0, this ex-
pression is unbounded from below by a multiplica-
tive (rather than additive) infinity. The fact that
the vacuum action is poorly defined in general re-
lativity creates a problem for our computation of
the tunneling amplitude. It is not clear that a
completely satisfactory estimate of the tunneling
amplitude can be given until the problem of defin-
ing the action is resolved.

A possible extension of this work is to consider
departures from the FRW geometries. One could
then entertain the idea that the tunneling event be-
gan locally rather than over the whole spacetime.
Local creation seems desirable from the standpoint
of resolving the horizon problem.

There have been suggestions,'! along the line of
the Kaluza-Klein five-dimensional theory and its
generalization to non-Abelian gauge theories, that
internal symmetries are manifestations of compact
higher-dimensional manifolds with a radius of cur-
vature on the order of the Planck length. Conceiv-
ably these intriguing ideas can be integrated into
our picture of cosmogenesis. What we envision is
that the Universe began as a compact manifold of
dimension N >4. A four-dimensional subspace of
this manifold then tunnels into the fireball config-
uration, leaving the remainder as the observed
internal symmetries. While highly speculative, we
believe this idea is worth pursuing.

(39)
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