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The weak electric form factor g2 is calculated in the nonrelativistic quark model

(NRQM) and the MIT bag model for weak b,S =1 semileptonic transitions. The bag-

model result is g2/gi ——0.30 with the NRQM result roughly twice this. Other weak tran-

sition form factors are tabulated, including expected SU(3)-breaking effects.

Analysis of semileptonic hyperon decays remains
of interest in studying the weak interaction' and
determining Kobayashi-Maskawa (KM) mixing an-

gles. The Hamiltonian for semileptonic decay is
given by

Httj = Jgl +H.c. ,
G

2

where G —= 10 /mz is the usual weak coupling
constant,

4 =4.1'x(1+r5)tt';+ tt„l't (1+l's)4;

is the lepton current, and

13.=Eiiuf 3(1+75)d +K12u lg(1+&'s)s

is the hadronic current. Here K,J are elements of
the KM matrix, which in the usual notation are

given by

Kii =cosOi,

E&z ——sinO& cosO3 .

(4)

The matrix element of the hadronic current be-

tween spin- —,'states is conventionally written as

(~p2 l
JX

l ~p, ) =+ju(p2) fl(q )'X3.—t cr3.„q"fz(q')+tf3(q )qt,mi+m2 mi+m2

1+ gl(q )l as t — ~~„q"Xs+tq~ g (q')) tt (p, ),mi+m2 mi+m2

where q =p
&

—p2. Here fi and g &
are the conven-

tional vector and axial-vector form factors, f3 and

g3 are the induced scalar and pseudoscalar form
factors, and f2 and g2 are the weak magnetism and
electric form factors, respectively. Via T invari-
ance all form factors are relatively real. Fits to
hyperon decay generally assume exact SU(3) sym-
metry for f&, g&, and f2 while g3 is determined via
PCAC (partial conservation of axial-vector current)
and g2, and f3 are set equal to zero. The vanish-

ing of f3 and g~ is a consequence of the invariance
of uyx(1+ps)d under the G-parity operation

for transitions between common members of an

isotropic multiplet, for example,

nappe ve~ - ~" e ve ~

Similarly for transitions between common members
of a V-spin multiplet, for example,

X ~ne v„= —+X e v, ,

invariance of uyt„(1+y5)s under G',

G PC l7Tv2

imposes g2 f3 ——0. Finally, for tran—s—itions involv-

ing more than one I-spin or V-spin multiplet, for
example,

A +pe v„" ~Ye v, ,
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SU(3) symmetry plus G, G' invariance yields

f3=g2=o
Of course, SU(3) and G' invariance are rather

badly broken symmetries in the real world. In the
case of f3, however, this assumption is not prob-
lematic, since even if f3+0 the spacetime depen-
dence on ql requires any dependence on f3 in de-

cay spectra to be of order

Pl

El(ml+m2)
(6)

where mI and EI are the final-charged-lepton mass
and energy, respectively. However, spectral depen-
dence on g2 is of order

g2

a surprisingly large value. Also, early experimental
work involving measurements of the correlation be-
tween nuclear spin and electron momentum deter-
mined a large value of g2 in nuclear 13 decay:

= —8. (9)

More recent work has cast considerable doubt on
these preliminary results. ' Nevertheless, it is of
interest to know just how large g2 is, especially in
view of the high-statistics experiment on
P—+pe z currently being analyzed.

Although all g2's would be zero in an SU(3)-
invariant world, the real world involves broken

SU(3)/SU(2) symmetry and thus we do not expect
strict zero values for weak electricity. Since G in-

variance involves SU(2) symmetry while G' invari-

ance involves SU(3) symmetry, we expect

g2 PPZ~ Plp —10 —10, n ~pe v,
f2 m~+mp

(10)

g2 Nl p —Alp —10 ', A~pe v,
my+a

where we have scaled the weak electricity form

m&+m2

and can make measurable changes in the analysis
of semileptonic decays. In fact, several years ago
Garcia made an extensive analysis of the then ex-
isting data for A~pe 7, and concluded that the
best fit could be obtained for

f2-1.6, A~pe V, ,

our crude estimate yields

~
g2 ~

& 0.03, n ~pe

g2I &03 A~pe v

(12)

Thus gq can be neglected in analysis of neutron P
decay but may be relevant in hS =1 semileptonic
hyperon decays.

Obviously, one can do better than these simple
estimates. There has been previous work on this
question by Pritchett and Deshpande' in terms of
a dispersive analysis. However, their work. in-
volved sums over many differing intermediate
states and their result, while consistent with Eq.
(12), involves considerable uncertainty.

We believe that a reasonable and reliable esti-
mate of this effect can be provided by the quark
model. Both of the coupling constants f2 and g2
are related to pieces of the quark wave function
which determine magnetic moments. In order to
display the relevant physics most simply, we will
first calculate the results in the nonrelativistic
quark model, ' and then provide a more reliable
calculation in the MIT bag model. '

In the multipole expansion of a polar vector
current, the electric dipole term vanishes by parity
and the first nonzero term is the magnetic mo-
ment'

p= —, Jd x rXV(x),

where V is the spatial component of the vector
current. Upon taking the matrix element for a
normalized nonrelativistic quark wave function
(M& is the quark mass)'

(13)

g;(p) = ((I(p)

go p
2M,

*

and using the vector current

Vf,'(x) =g; (x)PQJ (x )

one obtains the result

1 1 1
P J +

l J
0 ))

(15)

(16)

factor in terms of the weak magnetism form factor
since they have similar forms. Since'

f2=3.7, nappe v, ,
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In the case M; =MJ this is just the usual magnetic
moment

P ll 2M' tl
l

(17)

where the quark charge must be appended if one is
considering the electromagnetic current. The ma-
trix element of this quark operator is to be iden-
tifed with the total magnetic moment, which can
be found from the nonrelativistic reduction of Eq.
(5) to be

which is the usual nonrelativistic result.
In the multipole expansion of an axial-vector

current, it is the "magnetic" moment which van-
ishes by parity and the "electric dipole" which
remains,

d= i —f d xrA (x),

where A' is the time component of the axial-vector
current. Again using the nonrelativisitic quark
wave function, one obtains from the axial-vector
current

(p;, )= — + fI+1 1 1 f2
2 2m1 2m2 m1+m2

1 1 1+ ~;.),
2 2M' 2M*

1 j

X20X &
~Pj =4 1")'A'i

the result

1 1 1
d

2M*
J l

(23)

(24)

where X1 2 are the two-component Pauli spinors for
the external states and ( o;~ ) is the matrix element
of the spin operator connecting quarks i and j, be-

tween appropriate baryon states
~

B):
(19)

For normalization, one can calculate the magnetic
moment of the proton

The electric dipole moment measures the difference
of the initial and final quark moments, whereas the
magnetic moment measures the sum. Again this
must be identified with the total dipole moment,
which can be found from the nonrelativistic reduc-
tion of the axial-vector term in Eq. (5), with the
result

1~p= P~~ ~ sos~ P~~
l =Q, d

(20) 1 1(d; )=—
2 2m

1 8'2
gl+ X20X&

2m1 m1+m2
Using SU(6) wave functions for the proton and
M„'=Md ——M", one finds (g,.Q;o';;) =1 and

therefore
1 1 1

2M'J l

(25)

or

fI+f2 1 279
2Mp 2M* 2Mp

MpM~ = =330 MeV,
2.79

(21)

As expected, g2 vanishes in the SU(3) limit.
In the above, the nonrelativistic quark model

was used only for illustration. The results in gen-
eral are

1 1 1 f2+ fj+
2 2m 1 2m2 m1+m2

L

1 1 1 g2
Rl+2 2m 2 2m1 m 1 +m2

B2T —, dx rxJ, B1 f =p,

82, &
—I, d xzAO B1,&

(26)

where
~
B,s ) represent quark-model states for the

parent and daughter baryons. These can also be
derived simply from the wave-packet formalism of
Donoghue and Johnson, ' as shown in the Appen-
dix.

We now proceed to calculate the required matrix
elements in a more realistic model. The MIT bag

I

model has relativistic quarks with the wave func-
tion

iu (r)X
(2&)

Here
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u =Nj o(pr),

l= —N
E —m

E+m

' 1/2

ji(pr»

(29)

1=f d x g (x)P(x)= f d x(u +l ) .

For the strangeness-changing current the
magnetic-moment operator has matrix elements

p, = —,
' f d'xr(u„l, +u, l„)(o' )

(30)

(31)

where the matrix element has been evaluated and
the result is the SU(6) Clebsch Gordan coefficient
for g~, called g &

' ' above. We remind the reader
of the bag-model calculation of gi (Ref. 19),

g&= B2, T d xA3 B)y

=f d x(ugu, —
3 l„lg)(cr„, )

=g,"' ' f d x(u„u, ——,l„l,), (32)

where the integral is less than unity and renormal-
izes the SU(6) result down to reasonable values (i.e,
for AS=0, g~

' ' ——
3 gj 3 &0.7=1.2, see Ref.

18). The "electric dipole" moment can be calculat-
ed in a similar fashion:

p is an eigenvalue of the bag boundary-condition
equation (if m =0, p =2.0428/R), and N is chosen
such that

There is a very interesting universality feature to
the above results, which is also present in the non-

relativistic quark model. If the wave-function

overlaps do not depend much on the external

states, which is generally true, then the total mag-
netic moment, the total ES =1 electric dipole mo-

ment and gi (hence also g2) all transform under

SU(3) in an identical fashion. If one parametrizes
the transformation properties by the usual d and f
coefficients, this means that the calculated ratio

2
using SU(6) wave functions is d/f = —, for all

three. In fact, since in practice the d/f ratio for

gi deviates slightly from —, , this universality can

be generalized to state that g~ and g2 and the total
transition magnetic moment all transform in the
same way (i.e., with the same d/f ratio} when

studying AS =1 processes. The restriction to
AS =1 processes is important, as g2 vanishes for
M =0, while g~ and the total moment undergo a
shift in overall scale due to SU(3) breaking when

transforming from ES =0 to ES =1. Neverthe-

less the use of SU(3) parametrizations among the
AS =1 processes should be reliable.

In practice p~ and pE do not vary much from
state to state as long as one is dealing with AS =1
transitions. A bag-model calculation, using the
parameters of Ref. 8, yields

p~ -——0.86,

(35)

pE ——0.094 .

For comparison, the nonrelativistic quark model
yields

(33) 1 1

M„M,*
M„*

2
—:0.8,

In order to reduce uncertainties we may normalize
these results to the proton's total magnetic mo-
ment:

f d'x r(u„l, +u, l„)

f d x r(2uglg )

(36)

PE ——
1 1

Mge M, 2
=-0.2

if we use M„*/M,' ——,. Solving for g2/gi, we find

SU(6):g1 cpm ~

(34}

SU(6)
g&

T

M) M2
(mi+m2)p~pE ——

2 1

f d3xr(u„l, —u, l„)
d =Ppg& f de r(2u„l„)

m)+m2
2PPzp

M) Mp

4 M, M,
(37)

SU(6)
I pPE

where we have utilized the experimental g& in neu-
tron P decay to determine gi ' '/gi ——5/3&(1.25.
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As the masses do not vary greatly, gz/gi will be
nearly a universal constant. We shall quote its
value in A P decay, where the bag model predicts

"=-0.30
g&

while the nonrelativistic quark model yields"=-0.73. (39)

The same can be done for fz..
SU(6)Jz g& g&

fi ft
Plz Pl i

(mi+mp)pppM ——
2 Pl i fPlz

(40)

In this case fqlf i (or even fzlg &
) is not universal

as gi If, varies considerably from transition to
transition.

In order to provide a benchmark for future ex-

perimental comparisons, we tabulate the bag-model
values of f„fz,gi, gz for various transitions in
Table I. In doing so, we have included SU(3)
breaking in fi and gi due to wave-function
mismatches between strange and nonstrange quarks
(a renormalization factor which is calculated to be
0.97 for fi and 1.08 for gi when b,S =1), as first
noted in Ref. 20.

The results of SU(3) breaking in the quark-
model calculations of fi, fz, and g& are not new,
although we do not know of any place where they
are treated in a unified manner, and the universali-

ty of the SU(3) behavior of p, gi, and gz appears
not to have been noted. The calculation of gz in
the quark model is new, and we expect a nonzero

gz, contrary to common usage. This can be impor-
tant, as experimental values of coupling constants
extracted from the energy distributions often show
strong correlations with gz. The sign of the
quark-model result is quite clear, gz )0. The mag-
nitude depends on a cancellation of matrix ele-
ments and is somewhat more sensitive to model-
dependent features. However, the bag-model value

gz/g i
——0.30 appears quite reasonable.

¹teadded in proof. A calculation of gq using
broken SU(6) [B.H. Kellet, Phys. Rev. D 10, 2269
(1974)] has been pointed out to us. Kellet's results
are similar to ours, except for his surprisingly large

gz in bS =0 neutron P decay.

We would like to thank D. Jensen and M. Kreisler
for stimulating conversations. This work was sup-
ported in part by the National Science Foundation.

TABLE 1. Form factors as predicted by the quark model for semileptonic baryon decay. Here aD =1)l(D+F) [ex-
act SQ(6) predicts aD ——] g„=1.25 is the axial-vector coupling in neutron p decay, and q r =0 97, 'A =—1 0g

pE-0.094, and p~-—0.86 are various SU(3)-breaking factors discussed in the text.

Reaction gi g2

nappe v,
X+~Ae+v,

~Ae v,

X ~Xe v,
X ~X+e v,

~pe vq

A~pe v,

X ~pe v,

X ~ne v,

~Ae v,

:--~r'e -v,

:-'~r+e -v,

&2
—V'2

—1

—( —, )''gv
1

Y/ V

gV

1~ gV

IV

3 7gi fi—
4.55g| —1.00f|
4.55g i

—1.00f 1

4.69g i fi—
4 69gi —f|
5 21gi -fi

4.05pMgi —1 01f|
4 20pMgi 1 03f|

4 20pMg& 1 o3fi
4 g0pMgi —1 01f1

4 95pMg| —1 00f|

4 95pMgi 100fi—

gw

g. {-', )'"~D

g~( —, )' &D

gg &2(1—nD )

—g& &2{1—nD)
—g~ (1—2uD )

—gz( —, ) q~(1 ——,&D)1/2 2

1—gg gg {1—2aD)v2
—gg qg (1—20.'D )

g~ {—,)'"q~ {1——,&D)

1
gA ~—QA

—0.03g]

—0.03g]

(4.05pE —0.09)g]

(4.20pE —0.12)g ]

(4.20pE —0. 12)g i

(4.80pE —0.08)g]

{4.95pE —0.05)g]

(4.95pE —0.05)g]
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APPENDIX

Equations (26} and (27) can be derived using the
wave-packet formalism of Donoghue and John-
son. ' A quark-model state is in general not a
momentum eigenstate but can be described by a su-

perposition of such states:

iB,s) =f d p Xg(—p) i
B(p),A, ), (Al)

where Xq(p) is the wave packet for constructing the
localized quark state. For simplicity at low p, X~

and

f d'p —
i X(p) i

'(2m )'= 1 . (A3)

For most quark states (p )/M2 is small, and
standard results are obtained by neglecting it. To
calculate magnetic moments one studies

may be taken to be X~(p) =5s~X(p). The normali-
zations are

(B,s'
i
B,s )=5„,

(8 (p'), A,
'

~

8 (p), A, ) =5$$ —(2~)'5'(p —p'),
(A2)

p;= B',s' 'r —, rgV; B,s

I j'k
=f d'r d'p d'p', —X'(p')X(p) r, (B'(p'),s'

~
Vk(x)

~
8(p),s)

m 3
m' &r)k 2&kB'=f d'rd'p d'p'—, X'(p')X(p) " rju(p') f,yI, i—

m)+m2

Noting that (for p/M « 1)

u(p)e'~' . (A4)

V t. f2~kA gq. -, t - 1 1 1u(p') fiyk u(p)e"'=—(X, oX, X V')k f~ — +m)+m2 2 2m( 2m2

1
+f2

m&+m2
(As}

we have, upon integration by parts,

1 1+
2m'

1
pt =Xs'&tXs f1 2 2m

+f2 f d r f d p'd pX*(p')X(p)e'~
m)+m2

=XsoiXs fi
2 2

+
2

+f22 2m) 2m2

1

m)+m2 (A6)

as promised.
In a corresponding way we can obtain Eq. (27). We note that

d;= B's' —i d xrAO x Bs

i f d'r f d'p—', d'p X*(p')X—(p)r;u(p') g~y0y5 —i o~'y5 u(p)e"" .
m~+m2

Since

u(p } glyOy5 —l g2~0vV y5 u(p)e" '= iXs ~X—s ~ gglm)+m2 2m 2

1

2m&
+

m)+m2
&q ~ r

an integration by parts yields

d,.=Xt,g,.X, —gt — + f d r f d pd p'X'(p')X(p)e" ~
2 2m2 2m

&
m &+m2

1 1
=&s'~r&s

2 2m 2

1 g2

2m 1 m1+m2
(A9)

which is the desired result.
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mp mp+
2 mp mA

=1.61, A —+p .
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