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We study the divergent integrals that occur in all post-Newtonian (PN) treatments of
radiation reaction in slow-motion, gravitationally bound systems in general relativity.
The PN methods implicitly assume that the near-zone metric has a valid asymptotic ex-

pansion in powers of the small velocity parameter e, We first show explicitly (for the
gauge to be used here) that a PN-approximation method leads to a divergent integral at'

4-PN order. This divergence arises from the second iteration. Matching arguments are
then used to calculate a near-zone tecum of O(in@) larger than 4-PN order. On the basis
of this calculation and several previous model problems, we argue that the PN diver-

gences signify the breakdown of the PN power-series assumptions, rather than a break-
down of the near and wave zones. Our results suggest that the PN calculations in fact
give correct answers at least up to the orders at which divergences appear. The nonana-

lytic term of O(inc} beyond 4-PN order arises in the near zone via matching to the
wave-zone expansion when we include terms of O(e') beyond linearized order. We also
solve the wave-zone equations at O(e ) beyond linearized order and analyze the inner ex-

pansion of the solutions. Matching gives rise to a nonanalytic term in the wave zone at
O(e"in@), i.e., at O(e in@} beyond linearized order. A straining technique is used in the
wave-zone expansion to give a sufficiently accurate approximation to the null surfaces
near past and future null infinity. The lowest-order strained solution at first appears to
contribute a large, anomalous, time-odd piece to the reaction potential. However, after
analyzing the contribution of higher-order wave-zone terms, we obtain agreement with

the Burke reaction potential. Our results thus strongly support the usual quadrupole for-
mula.

I. INTRODUCTION

At present, no general-relativistic perturbation
calculations with rigorous error estimates' exist for
the gravitational radiation damping forces acting
on a binary system such as PSR 1913+ 16. Such
estimates may well be beyond the reach of current
perturbation methods. One does not yet even have
a proof that the approximate solutions obtained are
uniformly valid asymptotic expansions; such
proofs are rarely attainable. The best available
guess for the error of a p-term asymptotic expan-
sion is usually the size of the (p + 1)st term. If the
(p + 1)st term is divergent, one can have very little

confidence in the accuracy of the p-term expan-
sion.

No divergent integrals have occurred up to the
orders so far studied in the matching approaches
to slow-motion radiation damping. Burke first
applied matched asymptotic expansions to calcu-
late the mechanical energy lost from gravitational-
ly bound system containing bodies with weak inter-
nal gravity. Burke's calculation utilized a weak-
field, slow-motion expansion in the near zone to-
gether with a weak-field (but not slow-motion) ex-
pansion in the wave zone. Kates later refined this
calculation by adding a third type of matching
zone to describe a body with strong internal gravi-
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ty, such as in PSR 1913+16.
On the other hand, the post-Newtonian (PN) ex-

pansion methods for deriving radiation reaction
all contain apparently divergent integrals, as first
pointed out by Ehlers et al. Ehlers' and Ker-
lick" modified the Anderson-Decanio method to
postpone its apparent divergences until 3-PN order.
Recently, it has been found by Schutz' and by
Breuer and Rudolph' that at least some of these
divergences disappear if one performs angular in-
tegrations first. However, examination of Kerlick's
second iteration' shows that a nonvanishing diver-
gent integral occurs at 4-PN order.

Because of these divergences, one cannot yet re-
gard the PN calculations and their descendents'
as self-consistent derivations of the radiation reac-
tion on a slow-motion system. Nevertheless, since
none of the known approximation methods (includ-
ing matching) comes with rigorous error estimates,
it is desirable to have several independent deriva-
tions' of the quadrupole formula. To this end, we
present evidence that, up to the order in which the
divergent integrals appear, the results of the PN
methods are in fact valid. Furthermore, these
divergences appear to arise from attempts to ex-
pand terms which are nonanalytic in the slow-
motion expansion parameter as a power series in
this parameter.

In order to test the hypothesis' that nonana-
lytic terms might be responsible for the PN infini-
ties, Kates and Kegeles ' (paper I) studied the
simpler problem of a slowly varying, radiating
scalar field on a Schwarzschild background. (In
the present problem, the static monopole part of
the gravitational field wi11 also be represented by a
Schwarzschild background. ) In the monopole radi-
ation problem of paper I, an expansion method
analogous to the PN approach was shown to pro-
duce divergent integrals at 0(e ), where e is the
slow-motion parameter. Matching was then used
to show that finite, nonanalytic terms at 0 (e in@)
in the near zone precisely replace these divergent
integrals. Lower-order terms were found to agree
with their counterparts from the P¹xpansion
method.

Our treatment of the gravitational problem
proceeds similarly. In Sec. II, we make use of
Thorne's analysis and reduce our problem to the
familiar Zerilli equation for perturbations of a
Schwarzschild background. In Sec. III, we show
that a PN treatment of the Zerilli equation leads to
a divergent integral in the second iteration at 4-PN
order. This divergence is "real" in the sense that it

remains even after angular integration. In Sec. IV
we compute a term of 0(inc) larger than 4-PN ord-
er in the near-zone expansion. This term arises
from matching to the 0 (e ) part of the wave-zone
expansion whose inner expansion contains a term
proportional to in@. It replaces the divergent term
of 4-PN order found in Sec. III.

The eave-zone equations to be treated here re-

quire a refinement of the usual expansion about
flat space: if one expresses the lowest-order radia-
tion in terms of the Minkowskian retarded variable
9 flgt =t r, one encounters in the next order terms
proportional to lnr/r. Since for sufficiently large r
these terms become larger than the lowest-order

terms, the resulting expansion is not uniform in r.
To avoid such nonuniformities, we introduce a
strained null retarded variable u =t —r~, where r~

is the Schwarzschild "tortoise coordinate. " As in

paper I, the use of the strained variable r~ must be
accompanied by the remaining corrections of
0 (M) smaller than the linear approximation; oth-

erwise, spurious time-odd terms larger than the
Burke reaction term arise. The cancellation of
such spurious terms in higher order is shown in

Sec. V.
Although the infinity found here arises from

only the second iteration, the third iteration is also
of interest because it too contributes to the lowest-
order radiation reaction. Moreover, it is always
possible that still higher-order terms in the wave-

zone expansion might contribute logarithmic terms
of 4-PN or even lower near-zone order, due to the
interplay between powers of r and e in matching.
For these two reasons, we investigate the 0 (e")
part of the wave-zone expansion in the Appendix.
(This order corresponds to the third iteration. ) By
means of a matching argument, we find a nonana-

lytic term of 0 (e"1ne), or 0 (e in@) beyond linear-
ized order in the wave-zone expansion. However,
any possible nonanalytic terms arising from match-
ing in this term are at most 0(inc)~11/2-PN.

II. REDUCTION OF PROBLEM TO ANALYSIS
OF THE ZERILLI EQUATION

We consider a system satisfying the following
slow-motion assumptions: Let l be a typical length
scale for the sources and TD a typical time scale
for the motion (i.e., orbital period). At distances
of order To, time and spatial derivatives scale with

TD. At distances of order I, time derivatives still

scale with TD, while spatial derivatives scale with l.
The dimensionless parameter e ~& 1 is defined as
I/TD and represents a typical velocity. All coordi-
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nates and dimensional parameters such as the mass
M are assumed to be expressed in the appropriate
units of To. We assume that the system is gravita-
tionally bound. Therefore, M=0(e ), and a typi-
cal near-zone Newtonian potential Uo is of 0(e ).

Thorne derived slow-motion radiation reaction
for gravitationally bound systems using the
Regge-Wheeler metric decomposition and gauge.
His approximate metric takes the form

ao 1 ao 1g- 1+v(t,r)+g g A 0 (t, r)Y (8,$) dt 1+—A(t, r) g—g ~z (t, r)Y'(B,y) dr2
1=1 m= —1 1=1 m= —1

ao 1 ao 1

(t, r)Y (8,$) (dB +sin Bdp )+2 g g 4
~ (t,r)Y (8,$) dtdr

1=2 m= —1 1=1 m= —1

g-(1 2M/r)dt —(1 2M/—r) 'd—r2 r(dB +sin—Bdg2)

+g[(1 2M/r)dt +—(1 2M/r) 'dr —]P o~(t, r)Y (8,$)+r gM' (t,r)Y (8,$} (dB +sin Bdg )

ao 1 ao 1

+2 g g g ho~(t, r)@~g(8,$) dtdx" +2 g g g h) (t, r)@ „(B,y) dry" g =8 y
A=8, $ 1=1 m= —1 A=8,$ 1=2 m= —1

where the 7' are scalar and the 4 z are vector spherical harmonics. The Newtonian metric functions
v(t, r) and A(t, r) represent the static, monopole part of the metric; they are 0 (M) =0 (e } in the wave zone
and 0 (e ) in the near zone. (The coupling between wave-zone and near-zone orders is given in Fig. 1 of
Thorne's paper. ) The metric functions A o, A ~, etc. contain the linearized radiation. Let us suppose that
quadrupole radiation of even parity is dominant in our system —the usual case. Our slow-motion assump-
tions then imply that the quadrupole radiation is of 0 (e ) in the wave zone.
We will depart from Thorne by keeping all terms in v(t, r) and k(t, r) up to 0(M 0)=0(e6). We will

also keep terms in the wave-zone expansion of Mo, A &, etc. up to 0(M ) beyond the linearized orders kept
by Thorne. [For the quadrupole case, our treatment thus covers not only the usual 0(e ), but also 0(e ) and
0(e") in the wave zone. ] These higher order, post -linear terms-are responsible for the PN divergences and for
the nonanalytic near zone o-rders that we will later encounter via matching. The most convenient way of
keeping these post-linear terms is to write our metric expansion in the form of (even-parity) perturbations 5

on a Schwarzschild background,

l, m l, m

+2 gA I~(t, r) Y~(8,$) dt dr, l+1,
l, m

where we treat M =0(e ) as a small parameter and keep terms up to 0(M ) in all quantities. For the
L =2, even-parity perturbations of interest, the metric (2.2) becomes

g-(1 2M/r)dt —(1 2M/r—) 'dr r(d8—+sin 8dg )—
+[(1 2M/r)dt +(—1 2M/r) 'dr ]8—(t,r;M)Y~

+(2dtdr)A &(t,r;M)Y~+r (d8 +sinzBdpz)A"(t, r;M)Y

(2.2)

(2.3)

where we have dropped the I,m subscripts on A, A 1, and A .
Let us suppose further that the Regge-Wheeler functions 4, 4 1, and A can be expressed as sums over

components varying nearly harmonically with time,

A =pe '"'H(r;oo, M), (2.4a)

A, =pe '"'H)(r;to, M), (2.4b)

Pi =pe '"'K(r;co,M) . (2.4c)
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(2 5)

[If the frequencies vary only over a damping time —O(TO/e )—the frequency derivatives will not enter at
the orders considered here. ]

To the approximation considered, the sourceless Einstein field equations for the functions H, K, and H&

are equivalent to the single I =2 Zerilli equation

d E
dr

+ [co —V(r; e)]K=0,

r*=r+2M ln(r —2M),

V( ) (1 2M~ )
24r +24Mr +36M r+18M

r (2r+3M)

(2.6)

(2.7)

K (r)=gK+R,
H i (r) =co(hK +kR ),

(2.8)

(2.9)

for a function K(r;co,M), together with the follow-

ing equations relating the metrics to E:
occurs in the deDonder gauge, as noted above.

We assume that the material sources are con-
tained with some radius ro O(e).——We therefore
consider the l =2 Zerilli equation (2.5) with a com-
pact source term to represent the matter

H(r) = (2r +3M) '(aK+bH ) ),
R ( r) =dK!d—r*= (1 2M lr)d—K/dr,

g(r)= 6r +6Mr+6M
r (2r+3M)
2r +6Mr+—3M

( r —2M)(2r +3M)
' 2

k(r)—=
r —2M

co r +M(r —3M)
a r=2r

r —2M

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15}

+ [co —V(r;e)]K
dr*

=compact source terms . (3.1)

For convenience, we first define

(3.2)

Collecting fiat-space terms on the left, one can ex-
press Eq. (3.1}as

3Mb(r):ivor + . —
1QPr

(2.16)
where

(3.3)

3E dEk=
r dr

(2.17)

provided one keeps the terms of O(1), 0 (M), and
O(M ) in Eq. (2.5).

To O(1) in M, Eqs. (2.8}—(2.16) simplify to

S(r) =compact source terms

+M 4r ' +6r ' —26r
r~ d

+O(M ) . (3.4)
H=K —co rK,

Hi ———Iso K+r
dr

(2.18)

(2.19)
Making use of the Helmholz Green's function, one
can rewrite Eq. (3.3) as

S(r)e'"i" "i I' (O', P')

III. DIVERGENT INTEGRALS IN PN EXPANSION
AT 4-PN ORDER

In this section, we show for the Regge-Wheeler

gauge that a PN expansion leads to divergent in-

tegrals at 4-PN order. This 4-PN divergence also

(3.5)

Expressing the Green's function in the integrand of
Eq. (3.5) in terms of spherical harmonics and in-

tegrating over O', P', one has

P =—1 CO S(r')hz (cor')r' dr' jq(d'or)+ S(r'j)q(d'or')r' dr' hz '(d'or)
r &r' T

(3 6)
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where

3l 31+——
X

(3.7)

jq(x) —= 3 1 . 3 cosxslnx—
X X

(3.8}

Xj2(x}- +,x « 1
15

(3.9)

(3.10)

are spherical Bessel functions.
Since M =O(e } and S =O(M), one seeks P as an expansion,

A A A
4-o0+i0+ ' ' '

where each ~P is obtained from 0$ through ~ iP by formal substitution of Eq. (3.10) into Eq. (3.6). Each
iteration therefore introduces a correction of 0 (M) smaller than the preceding one.

Assume that the source generates a first iterate

Og=chz" (cur) .

The second iterate iP is then given by

i/=I(+I&,
I& —— iso — Si(r'j)2(d'or')r' dr' h'2" (d'or)

r (r'
r

I —= iso— ,Si(r')j2(cur')r'dr hq" (cor)r)r
where S(r) =Si (r) is defined by

(3.11)

(3.12)

(3.13)

(3.14)

4 4 4 3

Si(r):Mce'~" — + 14
r r

18co~ 12ico 12+ 6 +M(compact source corrections) .
r4 r5 r6 (3.15)

The PN slow-motion assumption now consists of
treating d'or' as if it were a small quantity and ex-
panding the integrands of Eqs (3.13) and (3.14) in
powers of d'or'. It is then assumed that one may in-
tegrate the resulting expansion term by term.
(Note that the assumption cur' « 1 is actually
violated at the upper limit. ) The r' & r integrals are
finite and lead to no complications. However, for
r'& r, one obtains

—36 15m 6m
I& =lcocj2(cor) 6 + & +r'6 2r'4 r'2

The PN-order of this divergence can be comput-
ed as follows: The second iterate iP is of
O(M)=O(e ) smaller than OP. From Eqs. (3.2)
and (2.8) —(2.16) or (2.17)—(2.19), one sees that in

—3the near zone, the r part of OP corresponds to
terms of Newtonian order in the metric functions
H and E of Eq. (2.3). The divergent integral of
Eq. (3.16) multiplies j i(cur}, which goes as r for
small r; this factor of r implies a factor of e in
the near zone, making e in all. Therefore, the
divergence (3.16) of the second iterate iP occurs at
O(e ) beyond Newtonian order —that is, at 4-PN
order in the metric functions 0 and E.

2lco 6—4' lnr'
Sr' + 0 ~ ~

(3.16)

IV. LOWEST-ORDER "STRAINED" WAVE-ZONE
SOLUTION OF THE ZERILLI EQUATION;

MATCHING TO NEAR ZONE

The fifth term in Eq. (3.16) diverges logarithmical-
ly.

In the wave zone, it is convenient to work with a
quantity g(r;co, M) defined from J by
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K =Q(ro)g(r;co, M)e'""*, (4.1)
pected r ' behavior at large r, .

The small-r expansion of K (to order unity in M)

where r~ is the "tortoise coordinate" of Eq. (2.6),
and where Q is an amplitude to be discussed below;

f obeys the equation

2M d f 2M . 1$
dr r dr

1s

+O(M) .

4 ' iso'r'

2 8 15

(4.7)

12 3M
r r2

—3M
From Eqs. (2.8)—(2.16), the metric functions H
and E become, to this order,

Qe2 3R —3— e2c02R —1+ e4~4R

+O(M )=0. (4.2)

+ , ie —eR + . . +O(M), (48)

K-Qe 3R +—e co R '+ —e coR

This decomposition facilitates the application of
outgoing-wave boundary conditions based on ap-
proximately Schwarzschild null surfaces. %'e re-

quire that

li- gb„r
n=0

(4.3)

The outgoing-wave condition (4.3) and the condi-
tion that the wave-zone and near-zone expansions
match order by order determine the two constants

appearing at each order in E.
We expand P in the form

p-fo+Mg, +M2$2+ (4.4)

The wave-zone expansion for K is strained in the

sense that even the lowest-order approximation to
K contains the implicit M dependence of r'=r
+2M ln(r —2M) in the exponential e'~" .

The equation for lijo is obtained by keeping the
terms «O (1) in Eq. (4.2) with (4.4) substituted for

+ , ie co R—+ +O(M), (4.9)

where we have rewritten H and K in terms of a
near-zone variable R =r le Q(co) .is determined as

in Thorne by matching out the quadrupole part
of the Newtonian potential, which goes as
e 8 =e r for large R. Thus,

Q(~)=O(e') . (4.10)

The first time-odd term in H goes as R and

matches into the Regge-Wheeler version of the
familiar Burke reaction potential. Note that the
Burke resistive potential is of order e in H and K,

5
or —,-PN order.

IV. WAVE-ZONE SOLUTION TO 0 (M) BEYOND
LINEARIZED ORDER; NONANALYTIC TERM

IN NEAR-ZONE EXPANSION FOUND BY
MATCHING

d 4o . d4o 6
+2ico ——

lito ——0 .
dr dr r~

(4.5)

The equation for g& is obtained from the term of
order M in Eqs. (4.2) and (4.4):

Equation (4.5) has outgoing solutions of the form

Po A(3r 3icor ——' —c—o ) . (4.6) =6(2r +3icor +2' r ) . (5.1)

We absorb the constant A into the amplitude Q(co)
without loss of generality.

The corresponding solutions for H, H~, and K
were obtained directly by Thorne. These solu-

tions can also be obtained from Eqs. (4.1), (4.6),
and (2.17)—(2.19). The Regge-Wheeler gauge has
an apparent large-r divergence which can be re-

moved by a gauge transformation given in Ref. 25.
The resulting gauge-transformed fields have the ex-

+C+(3r 3icor '
co )— —

+C (3r 2+3icor ' —co2), (5.2)

The most general solution to this equation is of the
ofIIl

13
t/f1=2r + 2 leo r cor—

+2i o3e '"'Ei ( 2i cur )(3r 2+—3i o3r ' ro2)—
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where EI(z) is the exponential integral

E, (z) —= J t 'e -'dt—. (5.3)
E&(z)-z 'e ' gp!(—z) ~, z —+no

p=0
(5.4)

The term involving the exponential integral in Eq.
(5.2) represents backscatter off the Schwarzschild
curvature because of the factor e

To evaluate the constants appearing in Eq. (5.2),
we will need the large- and small-z expansions of
EI (z):

( —zEI(z)- —y—ln(z) —g, , z~O (5.5)

where y= Euler constant. The constant C van-

ishes by virtue of Eqs. (4.1), (4.3), and (5.5).
The smaller-r expansion of E including terms of

0 (M) beyond linearized orders is now given by

K =ge'"" ($0+Ml(|I+ ), (5.6)

iver+ 3 CO CO I' lCO t'

I2 2 8 15

+M 6ico +iso lnr+ r lnr —„co r —lnr+. . . +O(M ), (5.7)

r

Me'"' l(, -M —+ +65,——C+ +— + +66,——C+
2 ico 17 3l 7 co lco 17 3l

p' I" 2 co 2 f' 6 2 co

~ 5 2—6ico iso lnr —— lnr —„co r ln—r+ +O(M ),lnr, 3 jco p 2 6 3 2

I'
(5.8)

3 CO CO 7 lCO f&-Q —+ + + +.
p2 2 8 15

I r

+M —+2 lco 17 3l 7 co lcO 17 3l+62 ——C+ +— + +66——C+
P I' 2 co 2 P 6 2 co 15

co'r31nr+ . - .

+O(M). ~ (5.9)

b, —:—y+ —1n(2'�) .
2

(5.10)

Let us consider the terms proportional to M in Eq.
(5.9) that grow most rapidly with 1lr: the Mr
term can be shown to match to the larger-r expan-
sion of the 1-PN part of the near-zone expansion
of E. The terms of O(Mr ) in Eq. (5.9) must

3
match to the —,-PN part of the near-zone expan-
sion, which can be shown to vanish for the systems
under consideration (see Fig. 1 of Thorne ). Set-
ting the coefficient of Mr equal to zero gives

lnre'"" $0- +.M 6ico +
p

2
(5.13)

odd term in Eq. (5.9) corresponds to the Burke re-
action potential (as derived by Thorne ). This re-
sult rectifies an apparent paradox mentioned in
Sec. I: Consider Eq. (5.7), which represents the
linearized quadrupole radiation corrected for red-
shift. In the near zone, the time-odd term

~+ ———ia, (5.11)

17 17Ta=co —, +2 —y+ —ln(2')
2

(5.12)

It is important to observe that the leading time-

e'"" 00-
lCO'r3

~ ~ 0 + + 0 ~ ~

15

3
in (5.7) is of O(lne) larger than —,-PN order,

whereas the Burke reaction potential

(5.14)
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(5.15)

in Eq. (5.9): Using Eqs. (2.17)—(2.19) for the
metric functions and expressing the result in terms
of a near-zone variable 8 =r/e, one obtains

8-. . . ——,QMe inc(co R )+2 (5.16)

K- ——,QMe inc(co R )+ . (5.17)

Since Q =0(e ) and M =0(e ), one therefore
needs to consider a term of 0(e' In') in the near-
zone expansions of H and E:

(5.18)

(5.19)

The terms in question are 0(e In@) larger than
Newtonian order, or 0(inc) larger than 4-PN ord-
er.

Substitution of expansions (5.18) and (5.19) with
(2.3) and (2.4) and (2.6) into the Einstein field
equations shows that H~z and Kzz satisfy the
l =2 radial part of Laplace's equation

6 H =0XA (5.20)

d 6 E =0.
dr r

(5.21)

The near-zone solutions of Eqs. (5.20) and (5.21)
that match Eqs. (5.16) and (5.17) and are non-
singular at the origin are

8 QM
+NA +NA 88

(5.22)

where the quantity in parentheses is 0(1).

IV. CONCLUSIONS

Our calculation has achieved three results. First,
we have found that the Burke radiation reaction
potential of Eqs. (4.8) and (4.9) is still the leading
( 2-PN) time-odd term in the near zone, despite the

is only of —-PN order. However, the inclusion of

g& in K cancels the logarithmic contributions at
0(e in@), 0(e in@},0(E in@}, [An analogous
result was found in Eq. (33) of paper I.]

Recall now the divergent integral of Sec. III at
4-PN order. The inevitability of this PN diver-
gence can now be understood by the presence of
the term

K-Q[ +M( ~ ——„co r lnr+ )]
4

3
apparently larger ( —,-PN~lne) time-odd term of Eq.
(5.13). This spurious time-odd term arose from the
implict M dependence of r* in the exponential
e'"" in our lowest-order strained solution [given
by Eqs. (4.1) (4.4) and (4.6)] for K. [The straining
had enabled us to write an accurate outgoing-wave
condition in the convenient form (4.3) and to avoid
nonuniformities at large r that would have oc-
curred in an expansion about flat space. ] We ob-
serve also that the cancellations of the sequence of
time-odd logarithmic terms in Eqs. (5.7)—(5.9)
were inevitable, because these time-odd terms could
not have been matched to the near-zone expansion.

Our second goal has been to show that the post-
Newtonian divergent integrals at 4-PN order
represent a missing "nonanalytic" term of 0(inc)
larger than 4-PN order. In Sec. III, we showed
that a PN expansion gives a divergent integral at
4-PN order in the Regge-Wheeler gauge, just as
one finds in Kerlick's" work in the deoonder
gauge. In Sec. V. [Eqs. (5.15)—(5.22)], we found
a near-zone term of 0(e' 1ne) in the quadrupole
metric functions H and K, i.e., 0 (in@) larger than
4-PN order.

Since our nonanalytic near-zone metric terms are
time-even, they would occur with any combination
of (what we call) "incoming" and "outgoing" radi-
ation. The presence of these terms is therefore in-
dependent of the question of whether the system
satisfies a condition for the absence of incoming
radiation at past null infinity. (We have not shown
in this paper that such a condition is satisfied up
to the orders considered. ) For the same reason,
these terms have no secular effects on the mechani-
cal energy of the sources, and any periodic effects
are far too small to generate measureable conse-
quences.

In the Appendix, we solve the wave-zone equa-
tions at 0(M ) beyond linearized order. Via
matching arguments, we find a nonanalytic term in
the toave zone exp-ansion at 0(e"inc), or 0(e inc)
beyond linearized order. One can show that any
possible nonanalytic contributions to the near zone
from this part of the wave-zone expansion are
0 (c'3lne}, or 0(inc) larger than —,-PN order,
which is much smaller than our results from Sec.
V. However, it is conceivable that still higher-
order wave-zone terms might generate nonanalytic
contributions larger than those found here.

The combined results of paper I and the present
paper may shed some light on previous discus-
sions concerning the use of linearized equations
in general relativity. Although relegating all non-
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flat terms to the right-hand side of the wave-zone
field equations appears formally justifled, the in-

tegrated effect of Schwarzschild curvature is im-

portant as one approaches past or future null infin-
ity. For this reason, we strained the linearized ap-
proximation by correcting the null surfaces, as in
Ref. 24 However, to avoid spurious time-odd
terms in the near zone, one must include also
post-linear corrections (gi, ) to the appropriate
order in M/wavelength. Note that both the cancel-

lation of spurious time-odd terms and the loga-

rithmic time-even term depended on significant
contributions from the "backscatter" terms of Eq.
(5.2). Thus, although the radiation reaction one

derives using a linearized approximation in the
wave zone seems to give correct answers, one needs

to look at the higher orders to make sure that these

answers remain correct.
The results of this paper, paper I, and Refs. 17-

20 suggest that nonanalytic behavior in the small

parameter is a generic feature of radiation from

slow-motion sources on curved backgrounds and

may even be a generic feature of radiation from
most nonlinear systems. The assumption of
analyticity in the small parameter in such problems
is likely to cause perplexing divergences.

In the present case, our finding of a nonanalytic
term at O(lne) ~4-PN order suggests strongly that
the results of the post-Newtonian calcula-
tions ' ' are in fact correct —except for their
divergent integrals. However, we leave it to future
work to verify that the lower-order terms not treat-
ed here do in fact agree with their counterparts
from the post-Newtonian calculations.
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APPENDIX: NONANALYTIC TERMS ARISING FROM 0(M ) BEYOND LINEARIZED ORDER
IN WAVE ZONE

The equation for it2,

+2lco
dr dr

where

6
2 1(2=S2 (Al)

261S2=, r ivor ( , —+a 248')+co—r —(,—+18a—848') —ice r (32+12a+968')

+co r (8+56$')+16ico r 'I' (A2)

and

W'=e '"'[Ei( 2icor)]— (A3)

is obtained from the terms of order M when Eq. (4.4) is substituted in Eq. (4.2). Variation of parameters
yields the general solution

4 3

—2l SOS—( —12' r 2+12ico r '+4' )I [Ei( 2icos)]d—s
S

m Ei( 2icos)—
(24co r +24ic—o r ' 8' )e- ds

T S

+D+(3r 3icor '
co )+D (3r—+3i—cur ' —co ) . (A4)
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Integrals of the form
00

It = s 'e '"'Et( —2icps)ds,
T

Iz =— s 'Et( 2icos)ds,
r

in Eq. (A4) have large- and small-r expansions

I~-r +. . . , r —+00
—1

Iz-e '""r '+E, ( 2ic—pr)+, r

It 51—nr —,—ln r —g, (!nr+b )
z

" (2icor)

PP'

(2icpr) +
+ +Pt

, p(p+m)p!m!

(A5)

(A6)

(A7)

(A9)

(A10)

+ (3D+ +constants) r + . ]

+0(M ) . (Al 1)

The term. going as r should match the 2-PN
near-zone metric. (However, we have not verified
this matching explicitly. ) The constant D+ in the

(2i cpr )c'Iz- —, ln r —g +Pz, r~0,
p=i

where Pt and Pz are constants whose explicit
values will not be needed here, and where 6 was
defined in Eq. (5.10).

Applying the outgoing radiation condition (4.3)
to the larger-r expansion of Eq. (A4), we find that
D must vanish. We then obtain the following
small-r expansion for the 0(M ) part of E:

2 261 4 214 2 —2E-. +M [—z8
r +» car lnr

term going as r is in principle determined by
matching to the 3-PN metric, just as the constant
C+ was determined in Eq. (5.11) by matching to
the —,-PN metric. (Fortunately, the precise value
of D+ does not enter the remainder of our argu-
ment. ) The 0(M ) part of E is then in principle
fully determined.

The term going as r In r in Eq. (A11) appears
to demand near-zone metric corrections in H and
E at (lne) ~ 3-PN order. Now, if there exist
0 (eslne) terms in H and E, they must be solutions
of Eqs. (5.20) and (5.21) that are regular at the ori-
gin. However, from Eqs. (2.17)—(2.19), one can
show that these 0 (e lne) near-zone corrections to
H and E would be proportional to R, and thus
matching appears to be impossible.

However, by adding a homogeneous outgoing
solution of the form (4.6) to the wave-zone expan-
sion (4A) at 0 (e"inc), we can resolve the apparent
matching conflict. The wave-zone expansion (4.4)
is thus modified to

f-pp+Mpt+M pz —M ( „co1ne)+0(Mz) .
(A12)

The total near-zone contribution from E at
0 (@slue) now vanishes.

The lowest order in which Eqs. (A12) and (A4)
can now contribute to the near-zone expansion is at
0 (e' lne), because any such contibution must
match to a homogeneous near-zone solution regu-
lar at the origin, and such a term in K would have
to have the r dependence r .
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