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A method based on a modified eigenchannel formalism is proposed for discovering bro-
ken symmetries from experimental coupled-channel scattering data. The method suggests
that the low-energy I =% S-wave mN-1N coupled-channel system and the low-energy

I =1 D-wave pp-nA** coupled-channel system may have broken partial-wave symmetries.

It has long been known that the eigenchannel
formalism! is convenient for describing coupled-
channel scattering if the scattering system has an
exact internal symmetry. In this paper, we propose
a method by which a modified eigenchannel for-
malism can be used to discover either broken inter-
nal symmetries or broken partial-wave symmetries,
defined below, from experimental scattering data.
Furthermore, to illustrate the possibilities of this
method, we investigate briefly mN-nN, pp-nA™* T,
and 7m-KK coupled-channel scattering in specific
partial waves. Our investigation suggests that bro-
kenl partial-wave symmetries may exist in the 1
=+ S-wave 7N-7N system and in the I =1 D-
wave pp-nAtt system.

First, consider scattering of two coupled states
|a) and | b) which have degenerate thresholds
and which have scattering described by the usual
coupled-channel partial-wave .¥ matrix
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where §, and §, are the phase shifts and 7 is the
absorption parameter. The eigenchannel formalism
for the same partial-wave scattering process has a
diagonal . matrix .#“ and eigenstates |a) and

| B) such that
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where U is the rotation matrix

COse sine

—sine cose @)

In Egs. (2) and (4), the eigenphase shifts 8, and 5g
and the mixing angle € are given by

8a,p= 7 {84 +8; +arc cos[ cos(8, —8,)]1} , (5)
€= arctan[(1—9%)!2/nsin(8,~8,)] .  (6)

In general, the mixing angle € for each partial
wave depends on the scattering energy. However,
the following two types of symmetries wherein the
mixing angles are constant may occur:

Type A (exact internal symmetry): If the degen-
erate threshold system has an exact internal sym-
metry such that |a) and |B) are eigenstates of a
symmetry operator, then the mixing angle € is con-
stant and equal for all partial waves (cose and sine
are then Clebsch-Gordan coefficients).

Type B (exact partial-wave symmetry): If the de-
generate threshold system has what we henceforth
call an exact partial-wave symmetry,’ then the
mixing angle € is constant for at least one partial
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wave (different partial waves could have different
constant mixing angles).

Hence, whether a degenerate threshold system has
an exact symmetry of either type may be deter-
mined from experimental scattering data by calcu-
lating the partial-wave mixing angles € from Eq.
(6); a constant value of € signals the presence of an
exact symmetry.

Second, consider scattering of two coupled states
|a) and | b) which have nondegenerate thresholds
because the system has a broken symmetry. The
formalism of Egs. (1) to (6) still applies above both
thresholds. However, the mixing angle € will not,
in general, be constant because the symmetry is
broken; indeed, € is expected to have substantial
energy dependence due to kinematical factors in
the ¥ matrix. Hence, searching for the presence
of a broken symmetry in a nondegenerate threshold
system by calculating € from experimental scatter-
ing data and Eq. (6) may not yield an unambiguous
signal even if the system does, in fact, possess a
broken symmetry. Therefore, we propose that the
presence of some broken symmetries may be sig-
nalled not by € but, rather, by another constant

mixing angle & which diagonalizes not the ¥ ma-
]
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In general, the mixing angle £ is a function of
energy; however, some systems may have broken
symmetries such that the symmetry breaking oc-
curs predominantly through the kinematical fac-
tors p(s) and C(s) of Eq. (7) so that £ is a con-
stant. To discover such broken symmetries from
experimental scattering data, we propose a method
consisting of the following recipe. First, determine
the partial-wave K-matrix elements from the exper-
imental scattering data. Second, use Eq. (11) to
calculate the mixing angle £ for each partial wave.
Third, check whether £ is a constant. If £ is a
constant for at least one partial wave, a broken
partial-wave symmetry has been discovered. If £ is
the same constant for all partial waves, a broken
internal symmetry has been discovered.

trix but, rather, a related matrix obtained from the
< matrix by removing kinematical factors known
to depend strongly on the masses of the scattered
particles., Our proposal may be expected to be
valid if the symmetry is broken predominantly by
masses rather than by coupling constants.

One way to remove kinematical factors from the
 matrix is to use a K matrix where

& =142ip(s)2K (s)[1—C(s)K (5)]'p(s)!/?
¥)

in the notation of Refs. 3 and 4. In Eq. (7), K(s)
is the K matrix which is real and symmetric, C(s)
is a diagonal matrix whose nonzero elements are
Chew-Mandelstam functions, and p(s) is a diagonal
matrix whose nonzero elements are (2k /s'/2)2L +1
where L is the orbital angular momentum, s 172 45
the center-of-mass energy, and k is the three-
momentum of each channel. The K matrix may be
diagonalized with a rotation matrix ¥, analogous
to U, such that
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and, conversely,
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K-matrix elements are usually extracted from ex-

perimental scattering data by first choosing the ele-
ments K;; to consist of polynomials and/or poles
in the variable s, and then fitting parameters in the
K;; to reproduce the experimental data. This pro-
cedure is often beset with difficulties due to a lack
of reliable experimental data. Nevertheless, we
describe below a modest investigation of the fol-
lowing three types of K-matrix fits: the first con-
sists of only poles in 7N-nN scattering, the second
consists of only polynomials in pp-n At + scatter-
ing, and the third consists of a constant plus poles
in 7rm-KK scattering.

To study the possibilities of our proposed
method in a nontrivial case, we considered low-
energy I =—;* S-wave coupled-channel wN-nN
scattering. In this system, the two thresholds are
far apart, so that the kinematical factors p(&) and
C(s) are significantly different, the resonance
N (1535) couples almost exclusively® to 7N and
7N, so that using only two coupled channels is
valid at low energies, and the resonance N (1650)
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couples primarily to #N. We can fit well the ex-
perimental 7N —mN phase shift §, and absorption
parameter 7) of Ref. 6 from the 7N threshold to
the energy s'/=1.8 GeV with the K-matrix pole
parametrization

Kij=8:8;/ (Mo’ —s)+fif; /(Mg*—s) (12)

and the approximate nonrelativistic Chew-
Mandelstam function C(s)=~ip~ik. The numeri-
cal values for this fit are M,=1.700 GeV,
Mp=1.535 GeV, g, =0.608 GeV'/%, g,=0.284
GeV!”2) £,=0.390 GeV!/2, and f,=—0.836
GeV'/2. Equation (11) can be used to show that
these numerical values correspond to the constant
value £=25°. Therefore, this fit suggests that
there may be a broken partial-wave symmetry in
the low-energy I =% S-wave mN-nN system. We
consider these results to be only suggestive because
the experimental nN —nN scattering phase shift is
not available and because we are using the 7N
channel to mimic the effects of other channels
which couple more strongly than N at the
higher-energy resonance N (1650).

In Ref. 4, the K-matrix polynomial parametriza-
tion

Kij=a;+bys +c;s° (13)

where a, b, and c are parameters to be fitted to ex-
perimental data, is used for J°=2% and JP=3—
coupled-channel dibaryon pp-nA*+ scattering;
eight numerical fits are presented. Equation (11)
can be used to show that
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for solution 2 of Ref. 4 for the J*=2% dibaryon
system, so that —35° <& < —25° for all energies
above the nA™ ™ threshold. Equation (14) shows
that a small change in the parameters would result
in the constant value §= %arc tan(—2)=—31.7".
This result suggests that a broken partial-wave
symmetry may exist in the I =1 D-wave pp-nA*T+
system. It should be noted, however, that the fit
of Ref. 4 is for a rather small energy range.

In Refs. 7 and 8 the K matrix for the I=0 S-
wave 7m-KK coupled-channel system is param-
etrized with a constant plus three poles. Equation
(11) or Eq. (9) can be used to show that none of
the four solutions of Ref. 7 nor the solution of
Ref. 8 is consistent with £ being constant.’

Finally, we note that if £ is not a constant for
two coupled channels, then among the possibilities
are the following: (1) The system does not possess
a broken symmetry. (2) The system has a broken
symmetry, but the breaking of the symmetry does
not occur predominantly through the kinematical
factors p(s) and C(s). (3) The two-channel system
is part of a larger system consisting of three or
more channels, and the larger system has a broken
symmetry.

We thank P. Estabrooks for providing us _with
the parameters of her K-matrix fit to 7m-KK
scattering.
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