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The soliton bag model of Friedberg and Lee is investigated. We study in detail the nu-

merical solution of the mean-field limit of the model and develop quantum corrections to

this approximation. Both the MIT and SLAC bags are recovered as limiting cases of the

model. The surface bag excitations coupled to quark-antiquark excitations and their rela-

tion to the virtual-meson cloud as we11 as other aspects of the model are discussed.

I. INTRODUCTION

Static bag models have' had remarkable suc-
cess in describing hadronic structure and spectro-
scopy. Extensions of the pure quark-QCD bag to
include meson degrees of freedom have led to a
quantitative description of the pion cloud and
pion-nucleon scattering. ' The latter models are
called "hybrid" or "cloudy" bag models, since the
mesons (at least the pious} are treated as elementa-

ry particles, and are not structured from quarks.
A description of hadron-hadron interactions re-

quires more than bag statics. As a particular ex-

ample, consider the N-N interaction. The static
energy of six-quark bags has been calculated as a
function of a shape, or N-N separation, parameter. '
Qualitative understanding of the N Npotential -was

obtained. However, in order to calculate scattering
or bound-state quantities, it is usually necessary to
insert the "potential" into a Schrodinger, Dirac, or
Lippmann-Schwinger equation. This requires a
knowledge of the mass parameter which enters in
the kinetic-energy term.

Static bag models cannot yield the kinetic mass
parameter because they are not associated with a
complete Hamiltonian. There exist an expression
for the energy, a differential equation, and a boun-

dary condition, but no Hamiltonian.
Experience with atomic and nuclear composite

systems presents many prescriptions for calculating
the kinetic mass parameter or for calculating
dynamics by bypassing the mass-parameter ap-
proach, when a complete Hamiltonian is known.

Friedberg and Lee' have proposed a model
based on a complete Lagrangian or Hamiltonian
formulation of the problem, and which therefore
admits dynamical solutions of structure and
scattering problems. The model contains only a

few adjustable parameters, but is extremely rich in

the variety of problems it can address.
The heart of the Friedberg-Lee model is the non-

topological soliton, or o., field. ' ' This is a
phenomenological representation of the quantum
excitations of the self-interacting gluon field. It is
a scalar field. The energy of a uniform system as
a function of the o field strength has two minima,

one at zero and a second, deeper minimum at a
large finite value identified as the vacuum value.
In the absence of quarks, the normal state of the 0
field is at the vacuum value. In the presence of
quarks, the o. field finds a minimum in the vicinity
of zero; the quarks dig a hole in the vacuum. This
is the origin of confinement in the model.

Section III contains a description of the soliton
model. ' In addition to quarks and solitons, the
model also contains vector gluons, Higgs fields,
and counterterms. Since the soliton field can be
viewed as a representation of certain gluon excita-
tions, the model is in fact overcoinplete. Problems
of double-counting, however, will not arise until we
include multiple-gluon excitations in our calcula-
tions.

The calculational program which emerges has a
strong parallel with that of the Bohr-Mottleson
unified model' of nuclear structure. The soliton
field plays the role of a collective, shell-model po-
tential. The quarks are well described as indepen-

dent particles confined by the scalar soliton poten-
tial. One can have excitations of the quarks from
their positive-energy states and from their nega-
tive-energy states (antiquark excitation). The soli-

ton bag can also be excited in a manner that is

quite analogous to surface excitations of nuclei.
These excitations obtain quite naturally in the soli-
ton bag model in contrast to other bag-model for-
mulations. The observations of such excitations

25 1951 1982 The American Physical Society



R. GOLDFLAM AND L. WILETS 25

should provide a test of the soliton model. The
full Hamiltonian contains terms which couple
quark and surface excitations. These perturbations
can be handled by fairly standard techniques. '

The quark-antiquark excitations can be interpreted
as the near meson cloud surrounding a hadron.

In this paper we study the quark-soliton system
in the mean-field approximation. ' Of the four
parameters in the model, one is fixed by the nu-
cleon size. Extended studies are made on two fam-
ilies of parameters; each family freezes one other
parameter. Certain limiting cases of the parame-
ters. lead to the MIT (volume) bag or to a surface
bag. The mean-field approximation determines the
quark and surface excitation spectra, from which
further correction can be calculated. The discus-
sion of some of these corrections can be found in
Secs. IV and V. The results of our calculations are
presented in Sec. VI.

The soliton model has been studied variationally

by Huang and Stump, ' '"' and the relationship of
their work to ours is discussed in Sec. IV.

in yg=g,
where P—:Pa and n is the outward normal to the
surface. This is equivalent to the Dirac equation
for quarks bound in a scalar potential which is fin-
ite inside the cavity and infinite outside. It should
be noted that the sharp boundary alone does not
confine quarks since the quark energy decreases as
the cavity radius increases. In order to obtain con-
finement it is necessary to include volume and/or
surface energy terms. This introduces into the
theory two adjustable parameters, which are related
to the magnitude of volume and surface energy
contributions to the bag energy.

The bag models have been successful in the
description of the mass spectra, magnetic mo-
ments, and other physical properties of hadrons. '

The more sophisticated versions of these models
include explicit quark-pion coupling, ' nonspheri-

cal boundary conditions, corrections to include
center-of-mass motion' ' and QCD effects.

II. STATIC BAG MODEL

Since the development of quantum chromo-
dynamics (QCD), it has been generally accepted
that hadrons (nucleus, mesons) are color-singlet
states formed from interacting quarks and gluons.
The mathematical structure and some physical
consequences of non-Abelian gauge theories, of
which QCD is the prototype, are qualitatively un-

derstood. However, to date no completely satisfac-
tory explanation for the existence of color confine-
ment has been given. '

In order to obtain an understanding of hadronic
properties, various models of color confinement
have been developed. Of these, the most successful
have been the bag models. ' ' The basic idea in
these models is the confinement of quarks (and
gluons) in a cavity of a finite size (the bag). This
cavity is ususally taken to be spherically sym-
metric. "

Inside the bag the quarks are assumed to satify
the bound-state Dirac equation

(a p+mP)/=ed,

III. SOLITON BAG MODEL

In spite of their successes, the static bag models

discussed in the preceding section are necessarily
limited in scope because of their noncovariant,
non-Hamiltonian formulation. These models can-
not be expected to yield an adequate description of
hadronic collisions, NX annihilation, and many
other dynamical phenomena for which QCD ana-
lyses are usually limited to lowest order in gluon
exchange. Thus it is desirable to develop alterna-
tive bag formulations which can be described by a
complete Hamiltonian and are manifestly covari-
ant. ' ' ' One such formalism is the soliton bag
model proposed recently by Friedberg and Lee. ' *"
We now briefly outline this model and its pertinent
features below.

In the soliton bag model, the QCD theory is ap-
proximated by an effective Lagrangian density

jprjk gag+ , (n. —
~

V'o
~

) ——U(br)

+W'(P, 6, iP ) +counterterms,

where 0. is a color-singlet scalar field, ~ is the

conjugate momentum, and

where g is the quark wave function. The quark
mass is usually taken to be zero except for the
strange and charmed quarks.

At the bag surface, the quark wave function sa-

.isfies the boundary condition'

U(o )=—oz+ —o s+ o~+p,3 & 4
2 6 24

H= J d x [fta pf+ —,(ir 2+
~

Vo
~

)

+U(o)+ggoP] .

(4a)
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I8 For the scalar field, we write

l4—

l2—

~ lOt
b

p/0, o

O=O

0'=Op+0 ) ~

(9)

(10)

where

where op is a c-number field. It is convenient to
work in the rest frame of the scalar field oo. In
this frame, op(r) is time independent. To lowest
order in oi, fk(r), and op(r) satisfy the coupled
differential equations

(cc'P+g13oo)Vk ~k4k

Voo—+U'(crp)= —g g'pkpgk,
k

—0.2 0 0.2 0.4 0.6 0.8 l.0 l.2

FIG. 1. Soliton self-energy U{0) as a function of o
for three different sets of parameters. Units on the vert-
ical and horizontal axes are arbitrary.

In (3), ~'(p, G,1() is the remainder of the effective

Lagrangian containing the Higgs fields P and the
vector-gluon field G. The detailed discussion of
this term has been given in Ref. 10.

In this paper, we omit W', which reduces the
number of free parameter to four, namely a, b, c,
and g. The quartic form (4) is the most general re-
normalizable form for the scalar-field self-energy
and has the shape illustrated in Fig. 1. The mini-
ma in the curves correspond to 0 =0 and

o„= [ b+(b ——ac)'r —]2c

(a minus sign before the radical yields the local
maximum). As in Ref. 10, we take b & 0 (which is
no restriction) and b & —,ac. The constant p is
taken such that U(o„)—:0, i.e.,

a 2 b 3 c 4
&u + 0'u + 0'u

(cc' p+gPcro)fo=eofo

—V'oo+ U'«o) = Ng 4''o— (12)

where N is the number of hadronic constituents;
for a baryon N =3 and for a meson N =2. The
total energy of the quark —scalar-field system in
the approximation given by (11) and (12) is

Fo=Neo+ f [—i I Vool +U(oo)]d r

U'(o'p) =dU(crp)/dcrp .

The sum in (10) is over the occupied quark states
minus the hole states.

Only the "valence" quark states are needed in
solving these equations self-consistently. However,
we use Eq. (9) to define a complete set of basis
states [ fk j in which to expand the quark field
operator g. In deriving these equations we have
omitted contributions from vacuum polarization.
Below we shall assume that these have already
been accounted for by the appropriate renormaliza-
tion of the constants a, b, c, and g. In the follow-

ing, Eqs. (9) and (10) will be referred to as the
mean-field approximation (MFA). '

In the ground state, the three valence quarks in
the baryon can be in the same space state (e.g.,
k =0). Thus (9) and (10) may be written as

:—Pep+8'~ . (13)
We note that in this form the model is colorless
and flavor independent; we must put in color and
flavor "by hand. " This feature is present in all
current bag models of hadrons.

We can expand the operator f as follows:

ijj= g ckgk(r),
k

where [ gk I is an arbitrary, complete orthonormal
set of Dirac spinor functions and the ck are fer-
mion annihilation operators.

Equation (13) can be rewritten in a different
form with the aid of Eqs. (9)—(12). Rafelski' has
shown that

g'p ——f d x a(cr cr„)+——(o —o, )

(13')

Since the form (13') is based upon the assumption
that Eqs. (9)—(12) are satisfied exactly, the use of
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(13) and (13') for comparison in computing 8'p call
be used to test the accuracy of the computations.

Equations (11)—(13) are already in a form rem-
iniscent of the standard bag models, where Op ls a
step function, viz. ,

O.
p ———m/g, r &R,

OO=CT~~ 00,

The structure of (11) and (12) already indicates
certain physical features of the present model.
First we note that in the absence of quarles, the
solution of (12) ls 0'p=o'„constant in position, and
the energy of the system is zero. However, where

gQPp is not negligible, opQcr„. Qualitatively, op
in this region can be made small and negative by a
proper choice of a, b, c, and g. Thus quarks will

be confined to a small region of space where the
scalar field is small. Outside the region of confine-
ment, the quarks have the mass =go„, which is
presumably a large number. We note that this
does not yield absolute confinement for finite o,
Since in construction of bag models we do not ex-

pect to be able to describe high-energy processes,
this feature of the soliton model is not particularly
troublesome. Furthermore, the limit of large go.„
can be carried out after the completion of the cal-
culations, thus ensuring that no spurious results
occur due to discontinuities of the bag surface as is
the case in the MIT bag model.

It should be pointed out that within the approxi-
mation (9)—(13) one is not limited to the quartic
form (7) for U(cr). For example, an interesting
(and numerically highly stable) form is

U(cr)=Ce " (-1+Ao+Boi), (14)

IV. CORRECTIONS DUE TO ~i

Inclusion of only o.p, the c-number part of the
soliton field, has led to what is essentially a mean-
field approximation (MFA). Deviations from this
approximation are generated by o~. The MFA al-
ready contains important nonlinear effects. If ef-
fects due to o i are not great, the separation will be
a useful one. We will utilize the MFA to generate
a representation in terms of which the corrections
can be calculated.

The Hamiltonian (without the terms due to
Higgs fields, vector gluons, and counterterms) can
be written

where A, 8, C are adjustable constants. This form

of the scalar-field self-energy is similar in shape to
the quartic form for small o. It yields absolute

confinement for quarks. However, in contrast to
the quartic form (4), the full field theory with
U(o ) given by (14) is not renormalizable. Thus we
should not attempt to compute quantum correc-
tions and other higher-order effects for this model.
On the other hand, the form (14) can be used in
Eqs. (8)—(12) to obtain (a) a basic idea about the
behavior of a confined system and (b) a basis set to
generate higher-order corrections in another, renor-
malizable theory. In this paper, however, we do
not consider this form further.

H = W', + y~k[~bkbk+dk"k)1

+ f d &
2 ~mi + I

~o)
I

+U"(op)cri ]

where (0
I PP I

0) =Xgpgp. We have introduced
the particle operators bk =a~ for ek & 0 and
dk—=ck., where k=(s.,m, e), k=( —ic, —m, —e) so
that

(bkrtk+dkWg) .
k (ekgo)

The bk and dk are particle and antiparticle annihi-
lation operators.

We can also expand o i in terms of an arbitrary,

I

complete set of functions, e.g., I sj ), as

o., = g (2coJ )
'~ (aj +aj.)si,

J

Lri
——i g (pij/2)'~ (aj —aj )sJ,

J

(17a)

(17b)

where the a& and aj are the usual Bose annihilation
and creation operators. The index j is the collec-
tion of quantum numbers needed to describe the
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II= 8'~0+ g ek(bkbk+dkdk)
k

with

+ gcoj(aiaf+ , )+H-'
I

(19)

H'= r g —X ppLT

+ + 0'p CTi + (Ti . ( 0)
C 3 C 4

The t fk J and t sj I define a basis in terms of
which corrections due to H' can be calculated.
This is very analogous to the weak particle-surface
coupling representation of the Bohr-Mottelson uni-

fied model. " The representation states and spectra
are relatively easy to solve for once the self-con-
sistent oo(r} has been obtained. Numerous approx-
imation methods are available for handling H',
such as perturbation theory or matrix diagonaliza-
tion in a finite basis. Note that the nonlinear
terins (Oi and Oi } are not an essential complica-
tion.

There are alternative basis sets available which
could also be useful. One could, for example, solve
static equations of the form (9) and (10) but where,
e.g., the o'0 field is constrained to contain deforma-
tion, such as would be appropriate for bag colli-
sions or oscillations. The dynamics could then be
included by generator coordinate or other tech-
niques.

A variety of methods is being explored, and will

be reported subsequently. The goal of such calcu-
lations is a description of such phenomena as the
following.

(a) The meson cloud surrounding the nucleon

bag. We expect this to appear as o oscillations as-
associated with qq excitations.

(b) The dynamics of bag collisions. Various au-
thors have calculated the statics of bag collisions
(for MIT-type bags), but the effective-mass param-
eter must also be determined.

(c) Normal-mode oscillations of the bag, leading
to decay. By studying unstable oscillations, one

eigenstates sJ-.

The sj and coj. can be fixed by requiring the si to
satisfy the eigenvalue equation

f —~'+U"(oo(r)) —co ]s,(r)=0.
Now the Hamiltonian can be written

may extract partial widths for decay to other
modes.

(d) Hadron form factors.
(e) Hadron spectra.
(f) Properties of deformed bags.
The present model predicts a new type of hadron

excitation, namely o excitation, in addition to
quark excitations. These excitations are strongly
coupIed to each other due to the presence of the
coupling term gofer in the Hamiltonian as had
been observed previously by Rebbi' who studied
surface bag deformations in the MIT bag model.
Of the four parameters of the theory one can be
fixed by the nucleon size. There are more than
enough data available to fix the other three and
test the model experimentally (although the data

may be insensitive to one or two combinations of
parameters).

The computational procedure outlined in Secs.
III and IV is but one.possible route to solving the
problem. An alternative method of solution has
been discussed by Huang and Stump' '"' who used
variational techniques. Their variational wave
function is written as the product of soliton and
quark wave functions (uncoupled representation).
The fermion wave function is quite arbitrary, but
the soliton wave function is written as an expan-
sion about a reference c-number field O.o. The vari-
ational procedure is combined with the projection
operator techniques to obtain a state with zero to-
tal momentum. Renormalization of U(0 ) is car-
ried out for the specific choice of the variational
ansatz. The choice of a stepfunction for oo(r)
yields renormalized values of a,b, c +oo and the-
valence quarks satisfy Eq. (1). In order to (possi-
bly) obtain finite values of a,b, c after renormaliza-
tion, the choice of era must include a finite surface
thickness, a case not considered in Ref. 10(b) be-

cause of complications arising in the renormaliza-
tion procedure. Thus the variational calculation
does not allow a simple investigation of the model
parameter dependence.

In the present approach, renormalization is as-
sumed a priori at each step of the calculation.
Thus the parameters of U(0 ) as used in the MFA
are renormalized parameters. When quantum
corrections to the MFA are included for a finite
number of modes, one may be calculating pieces of
renormalization terms. Thus at each level one
must be prepared to readjust U(cr), which is
phenomenological anyway. This is similar, in spir-
it, to the quantization of the MIT bag proposed by
Rebbi. '
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V. OTHER CORRECTIONS

Several other corrections not included in our dis-
cussion in Sec. IV are expected to be important.
The first is due to the flavor dependence of the
quark mass. This requires the inclusion of a mass
term m/1/ in the Lagrangian and, in zeroth order,
leads to a modification of Eq. (9) in the form

[a.p+P(goo+re)]gk ekgk—— (21)

and the placing of the appropriate flavor labels on
the quark fields. Evidently, based on the experi-
ence with other bag models, this dependence is re-

quired to reproduce hadron mass spectra, in partic-
ular for the strange baryons and mesons.

Another important correction is due to the pres-
ence of vector gluons. In order to understand this
correction, a detailed understanding of gluon-
soliton interaction is needed. Furthermore, since
the soliton field simulates the major nonlinearity of
QCD, one must make sure that no double-counting
occurs. The authors in Ref. 10 suggest that we
write

W(G, o ) =——,(1 o lcr, )—G„',G'

merical solutions of (11) and (12). We define the
functions u, u related to fo for the case a =—1

(&in) by

(23)

where o is the Pauli matrix and X~ =(0) or (i).
From here on we drop the subscripts 0 on 1(to, eo,
and cro E.quations (11) and (12) reduce, for the
spherically symmetric solutions, to the form

dQ = —(e+gcr)U,
dr

dU 2=—u+(e —ger)u,
dr r

z (ro )—U'(o )=Ãg(u —u ) .1 d
r dr

The normalization condition then reads

(24a)

(24b)

(25)

(26)4nf(u +. u )r dr=1 .

The authors of Ref. 10(a) did not obtain a self-

consistent solution of Eqs. (24) —(28) but approxi-
mated the scalar field in (25) by

——,h Lr2(1 cr /o „)G—qGq, (22) o=- — (u —U )
a

(27)

where the covariant derivative is

Gq, =B~G'„B„Gq—+af,», G„G', (22a)

and h is the gluon-soliton coupling constant. The
a,b,c are the color indices and 6 is the vector-
gluon field which is assumed to interact with the
quarks as

VI. NUMERICAL RESULTS

In order to establish the validity of the proposed
model, we study in detail the properties of the nu-

A,, are the generators of the color SU(3) group, f,b,
are the SU(3) structure functions, and a is the
QCD coupling constant.

If we neglect the nonlinear, non-abelian part of
the gluon equations [cf., Eq. (22)], the resultant

theory is quite analogous to electromagnetics in
media. This has been the approach of bag re-
searchers, who utilize the smallness of the QCD
coupling constant at short distances. To this order
there is no problem of double-counting the di-

agrams included in the o. confinement field.

and made some other approximations in their solu-
tions. Equations obtained from (24) with the ap-
proximation (27) have been solved numerically by
Rafelski. '

The soliton can be visualized as a gas bubble im-
mersed in a liquid medium. The parameter p can
then be interpreted as the gas pressure. The situa-
tion in which the bubble is filled uniformly with
the quark gas is representative of the MIT bag. In
the SLAC bag the quarks are concentrated on the
bubble surface, a picture apparently not supported
by the experimental nucleon properties. The above
visualization can be used to determine the thermo-
dynamic properties of the quark gas in the bubble
(i.e., the nucleon). '

We choose a length scale (see Appendix A) in
such a way that the quantity

&r~'&=4ir J (u'+u')r'dr (28)

is (0.83 fm), the mean-square charge radius of the
proton. Once the scale is chosen, there are only
three free parameters. %e have studied mostly two
families of parameters. These are the p~O+ and
the a=0 cases. Each choice fixes one other pa-
rameter and it is sufficient to label our results by
the values of the coupling constant g and the con-
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TABLE I. Variation of bag properties with increasing parameters for the @~0+ bag for
two values of g.

E'p gw igv 6'i —6p

1.2X 104

2X 10'
4X10'
SX10'

1.40
1.62
1.66
1.71

2.54
2.37
2.32
2.28

0.79
0.98
1.)2
1.05

8.6
8.9

10.0
10.9

4.08
3.27
3.23
3.07

1.2X 104

2X10'
4X 10'
8 X10'

1.23
1.27
1.25
1.34

2.65
2.62
2.60
2.58

g =200
0.58
0.65
0.67
0.73

6.4
7.5

6.88
5.28
4.99
4.41

TABLE II. Variation of the bag parameters as a function of g for several values of c
(p ~0+ bag).

6'p ga tv Pq

15
40
90

200

1.69
1.40
1.30
123

c =1.22X10
9.4 2.31
8.6 2.54

10.8 2.61
6.4 2.65

1.03
0.79
0.68
0.58

volume

surface

15
40
90

200
400

1.85
1.62
1.39
1.27
1.23

c =2X 10'
9.6
8.9
8.3
7.5

2.18
2.37
2.54

2.62
2.65

1.13
0.98
0.79

0.65
0.59

volume

surface

15
40
90

200
400

1.91
1.66
1.44
1.29
1.24

c =4X10

10.0
2.14
2.32
2.50
2.61
2.65

1.16
1.02
0.84
0.67
0.60

volume

surface

15
40
90

200
400

2.09
1.71
1.54
1.34
1.25

c =8X10
9.0

10.9
1.99
2.28
2.42
2.58
2.64

1.22
1.05
0.92
0.73
0.62

volume

surface

MIT
SLAC

Experiment

2.20
2.65
2.79

1.09
0.57
1.25

volume
surface
volume
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FIG. 2. Quark density u —U' versus radius for
g =1S, 90, and 200, p~0+.

O
0

stant c, since these do not scale with length. We
compute the values co=a(is i~2), @i=a(2si~2), and

the bag energy, which for the spherical solution is

I

PJ 05

x IO4

O'=Ne+4ir f dr r U(rr)+—
00 1 .de

0 2 dp'

2

(29)

'o 0.4 0,8
R (fm)

I

1.2
I

l.6

FIG. 4. Quark density u2 —U versus radius for
c=8X10' and 1.2X10 and g=90 and 200, p —+0+

We also calculate the proton magnetic moment

Sm
Pp=P 3 p

f QUdT, (30)

and the (axial-vector)/(vector) coupling-constant
ratio

g„/gi. = r (u ——,U )dr .2(br
p

Since in the present form the model is flavor in-
dependent, the charge radius of the neutron in this
model ls

(r„')=0,
and the neutron magnetic moment is

2
Pn= —3Pp ~

(32)

(33)

l.5

l.O—

P 05—

O 0—
c = I.px I

I

l.2
-0.5-

0.8
(fm}

FIG. 3. The soliton field cr versus radius for
c=1.2X10 and 8X105,p~0+.

I.

l.6

as given by the SU(6) algebra. Corrections to these
relations arise only when @CD effects are included.

Our results for the two families (p~O+ and
a =0) are summarized in four tables. In all tables

the units fi=c =1 are used; lengths are measured
in fm.

We consider first the case p~O+, corresponding
to the relationship among the constants b =3ac.
This is the limiting case for stability of solutions
for which a —+„„0„&0;for p &0, the asymptotic
solution is 0—+, 0. In Table I we list the bag
properties as a function of the parameter c for two
values of the coupling constant g. The variation of
bag properties with the coupling constant for
several values of c is given in Table II. Several
features emerge from these calculations. First, we
note that an increase of the coupling constant pro-
duces a continuous change from a volume quark
distribution for small g to a surface quark distribu-
tion for large g. This change is illustrated in Fig.
2 where we plot the quark charge density u —U

for three values of g. It should be noted that the
shape of the soliton field does not change signifi-
cantly with g for given c.

The variations of the soliton field and the quark
charge density as a function of the radius with in-
creasing c are plotted in Figs. 3 and 4. We see
that the transition of the soliton field from its inte-
rior to its exterior values becomes more abrupt for
large c. This is illustrated in Fig. 3 and the change
in the shape of o(r) is quite marked. When c in-

creases, with a fixed value of g, the quark charge
distribution u —U changes, albeit rather slowly
from surface to volume. This is illustrated in Fig.
4 for g =90 and g =200. The change from volume

to surface quark charge density is also evident in
the variations of the values of the magnetic mo-
ment p~ and g~/gv. We find that for a given g
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where r;„ is the location of the minimum. The
eigenmode energy [see Eqs. (18) and (19)] is

co„i= (2n + 1)Q+ I(1+1)
~min

0 0- + U" (Oo), „.
min

(35}

—I.O
0

I

0.4
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l

l.2 l.6

FIG. 5. The soliton "mass" U"(cr) versus radius for
two values of c, p~0+.

1 d U"«o(&))
"min

(34)

the magnetic moment varies with increasing c from
2.65'~, the SLAC-bag limit, to 2.20pz, the MIT-
bag limit, where ps is the Bohr magneton of the
proton. Similarly, gz /gi varies form 0.56 for
small c to 1.10 for large c. This variation is not
very marked for the extreme values of g (i.e., 15
and 400) through the range of the parameter c con-
sidered, but is quite evident for all other values of
g'.

Another interesting quantity is the soliton effec-
tive mass U"(o) as a function of r. As seen from
the analysis of Sec. IV this function determines the
nature of the expansion basis I sj J. We give the
variation of U"{0(r)}with c in Fig. 5 for the cou-

pling constant g =90. It is evident that the solu-
tions for sj [Eq. (18)] are essentially localized at
the position of the dip in U"(cr), with the localiza-
tion becoming more pronounced as c increases.
Thus the low-soliton quantum excitations are con-
fined to the bag surface, much as ripples on the
surface of a bubble.

If we approximate the dip in U" by a parabola,
the equivalent harmonic-oscillator frequency for
Eq. (18) is

where we have replaced the index j by the set
(nlm); for spherical pro, oij. is independent of m. In
Table III we give the values of U"(cro) at the
minimum, 0 and cooo for several values of c,g. We
see that oooo is positive (indicating stability of the
MFA solution); and oooo-2 GeV. This is
moderately large. 0 is generally much larger than
co, so that excitations of well states will lie very

high. We speculate that multiple surface excita-
tions, corresponding to ~0~, nearly equally spaced
in energy, should be experimentally observable.
Evidently, the value of oooo depends on the values

of the parameters and measurements of these exci-
tations could provide a test of the model. Indeed
such types of excitation exist in the nuclear liquid

drop model, and here represent the simplest exam-

ple of a collective bag excitation.
The other family of parameters we consider is

characterized by a =0; U(0 ) has an inflection point
at 0 =0, and only one minimum (see Fig. 1}. We
vary b, c,g subject to the bag size constraint. Our
numerical results for this family are summarized
in Table IV. We again find that as g increases, the
character of the bag changes from volume confine-
ment to surface confinement. Similarly, increasing
c leads to a sharpening of the interior-exterior tran-
sition in the soliton field, as in the p~0+ case.
An example of the a =0 solution is given in Fig. 6,
where we plot u —v, o, and U"(o) as functions
of r. An interesting result of the a =0 calculations
is that the bag energy is significantly smaller than
for the p —+0+ case. For g=30, the volume type
confinement bag, the bag energy is —1400 MeV,
about 300 MeV higher than the average mass of

TABLE III. The soliton effective-mass parameters and eigenmode energy (p —+0+ bag).

r I
Umin r;„(fm)

2X10'
4X10'
8X10
2X 10'
4X 10'
8 X 10'

40 —335
—624

—1135
—323
—478

—1091

422
752

1222
421
621

1350

9.3
11.3
9.3
9.9

11.9
16.1

1.06
1.06
1.05
1.00
1.00
1.03
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TABLE IV. Bag properties with a =0 as a function of g and c.

&o ga ~gv

104

2X104

4X10'

15
40
90

200
400

15
40
90

200
400

15
40
90

200
400

1.63
1.34
1.27
1.23
1.22

1.69
1.36
1.26
1.16
1.21

1.79
1.38
1.27
1.23
1.28

7.71
6.81
6.41
5.63
5.65

7.63
6.83
6.30
5.75
5.86

7.58
6.78
6.24
5.98
5.36

2.36
2.59
2.64
2.66
2.67

2.30
2.57
2.64
2.66
2.66

2.24
2.55
2.63
2.66
2.66

0.976
0.702
0.605
0.574
0.560

1.03
0.729
0.610
0.582
0.566

1.08
0.761
0.627
0.580
0.565

2.00
4.75
6.66
9.32

19.0

1.72
4.51
6.61
8.57

12.32

1.35
4.26
5.95
8.00

10.64

the (nph) combination and very close to the cen-
troid of the 56-piet, 1316 MeV. The p —+0+ bag
gives the mass of 1800 MeV, about 400 MeV
higher than the a =0 bag for comparable values of
g and c. On the other hand, in the a =0 bag the
ratio o.„/o;„„„„is somewhat smaller than in the
@~0+ case, indicating somewhat weaker confine-
ment.

We have not been able to find a set of parame-
ters which gives a bag energy roughly equal to that
of the proton. In fact, the quark contribution
alone gives No=1 GeV, just as for the MIT bag.
Since this contribution is controlled by the bag size
and the soliton contribution is always positive, we
cannot reproduce the proton mass without consid-
ering additional corrections to energy or assuming
a size for the bag which is much greater than the
experimental nucleon form factors seem to sug-

gest. " Our analysis however indicates that the

I.5

t.0—
D

05—J3
0

I

Ull { )g

U -V

I
'

I

a=0, g=40, c=2X)0

0—

V Q-0.5. I I I

0 0.4 0 8 l.2
R (fm)

FIG. 6. The a=0 bag results. Note the magnitude of
o(r) for small r as compared to the @~0+ case in Fig.
3.

model can give the correct relative position of the
X' resonance, roughly 600 MeV above the proton.
Also, as shown in Ref. 10 the soliton model yields
the correct mass formula for a number of particles
in lowest order in a.

VII. SUMMARY AND CONCLUSIONS

We have investigated the soliton bag model of
Ref. 10. This model is explicitly covariant and
does not contain an explicit statement of sharp,
nondynamical bag boundary. The mean-field ap-
proximation to the model has been solved numeri-
cally over a range of model parameters. The re-
sults indicate a great flexibility in the choice of bag
parameters. We find that these values cannot be
fixed by the nucleon size and magnetic moment,
the value of gq /gi, and the position of the first
excited state, although the effects of the parameter
changes on the nucleon properties are readily
predictable. This suggests that the variation of
these parameters may be used to obtain correctly
other more complicated hadron properties. For ex-
ample, we may attempt to fix these parameters
from the investigation of nucleon-nucleon scatter-
ing, pion-nucleon interaction, etc. In the future,
this model should be useful to study center-of-mass
corrections, quantum effects, and corrections due
to gluon degrees of freedom. These studies are
particularly important since the soliton model
reduces to the standard bag models in certain lim-
its, yet does not contain explicitly any discontinu-
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ous bag boundaries, thus allowing an independent
test of various, often intuitive, results obtained pre-
viously (e.g., those related to the bag formation
dynamics). Work along these lines is under way
and will be reported in future publications.

such that our results are of the same form with all
quantities replaced by their careted counterparts.
This leads to the scaling of energy, viz. ,

(A9)
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APPENDIX A: SCALING PROPERTIES
OF THE (MFA) SOLUTION

The solutions to Eqs. (11) and (12) have several

interesting scaling properties which allow us to go
from one given solution to another by changing the
length scale, the number of hadronic constitutents,
etc. Below we outline some of these properties and

discuss their consequences.

The magnetic moment'scales in the same way as
length, i.e.,

P =p/A, , (Al 1)

a =N/N (A13)

and the various quantities in the theory scale as

a=a, (A14)

and the value of g& /g& is scale invariant. We note
that this scaling does not change the ratio crp/cT„,
but affects the values of the effective quark mass
go. inside and outside the bag.

2. Quark-number scaling

An alternative scaling allows us to change the
number of hadronic constituents. Let us write

cr=acr . (A12)

In order to preserve the form of the original equa-
tions when N is replaced by N we must take

1. Length scaling b =ab, (A15)

Length scaling is particularly useful if we wish
to normalize our results to a bag of given radius.
Let us write

(A 1)

c=ac. (A16)

The bag energy does not scale simply and the con-
tributions due to the quarks and the cr field must
be considered separately. Let

where A, is a dimensionless scale constant. In order
to preserve normalization, the quark wave function
is

e'=e' +No.

Then

(A17)

Q=A, Q

v"=X'"v,

and the 0 field becomes

0 =Ao

(A2)

(A3)

(A4)

S'~=S'~/a = (A18)

(A19)

Inserting (Al) —(A4) into our original equations we
find new parameters

If S'~ & &Ne, this scaling suggests that the meson

mass is approximately —, of the baryon mass, as
borne out by calculations.

a=i, a,
b=ib,
c=c,
8=8 s

(A6)

(A7)

(A8)

APPENDIX B: NUMERICAL METHODS

The coupled differential equations for a quark in
the ~= —I state are
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QQ =(6+ga}U,
r

dU 2=—+(e—ga)u,
dr r

(81)

~(n+1) ~(n)

u "(R)[U'"'(R +0) u—"(R—0)]

f '"
r2dr[(u("))2+(U(n))2]

0

and that for the soliton field in spherical symmetry
1S

1 (ra )+ U'(a )+gI)I(u U)—=0. -(82)
r gr2

Equations (81) and (82}were solved alternately un-

til consistency was obtained using the methods
described below. Each successive solution of (81)
and (82) is termed "a cycle."

For a given (approximate) a, an iterative eigen-
value solving scheme was invoked to find u, t), and
e. Let the nth-iteration results be denoted by u'"',
u'"', and e("). We replace e by e'"' in (81) and in-
tegrate by Runge-Kutta techniques from the inside
[u'"'(0) is arbitrary, U'"'(0) =0] to some matching
radius R. The equations are also integrated from
the outside [u'"'(R,„)and U'"'(R,„)are small
numbers] to the same matching radius. The u'"'
and U'"' are renormalized so that u'"' is continuous
at R. Then

(84}

We employ the following iterative method. Let
a"(r ) be the nth approximation to the solution of
(82) for fixed u and u. Set

(n+1) r (n)+ (~n+i)

To first order in y'"+'), y'"+" satisfies the linear
inhomogeneous equation

The convergence is rapid once one is in the vicinity
of the true solution. Even if e(") is not close, the
RHS of (83}gives the correct sign of the correc-
tion. One can use the sign of the correction to re-

peatedly halve the distance between bounds until
the numerical correction is valid. Iteration is con-
tinued until the change in e is less than the desired
tolerance. (The method was extended to excited
states by requiring a spe:ified number of modes. }
The quark wave function is normalized to unity
before entering the soliton solver.

Equation (82) is nonlinear and inhomogeneous,
subject to the boundary conditions

(0)=0, a(Rm, „}=a„.
8r

py'"+"+U"(a")y'"+"= (ra'"') —r U'(a(n) }—r+g(u —() )
r 2

subject to the boundary conditions
y(0) =y(Rm, „)=0. Equation (86) can be solved by
a variety of standard methods. We used the
Numerov method, reducing the differential equa-
tion to a tridiagonal matrix equation and inverting.
The iteration procedure is continued until Jy dr is
less than the required tolerance.

It frequently happens that convergence to self-
consistency (after a quark-soliton cycle) is slow or
is not achieved; sometimes cycles oscillate alter-
nately between two forms. This is remedied by
insertion of a convergence factor f which leads to

I

the redefinition of the (i +1) cycle:

a(i+1)~fa(i+1)+(1 f}a(i) . —(87)

We find that f=0.5 results in fairly rapid conver-
gence in nearly all cases. To start the cycle, the
first guess for a is chosen to be a suitable Wood-
Saxon form. This is fed into the quark eignevalue
solver, which yields the first cycle for u, u. The
subsequent cycles are then fully determined. The
speed of convergence depends crucially on the
quality of the first guess. A good guess can result
in convergence in five cycles or less.
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