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Pionic decays and saturation of current-algebra sum rules in a nonrelativistic expansion
of the quark shell model
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Pionic decays of hadrons are calculated using a PCAC (partial conservation of axial-vector current) prescription
and a quark shell model with quarks bound by a central potential, described by the Dirac equation. The Dirac
Hamiltonian and operators are expanded in u/c, the internal quark velocity. Then, one finds an exact saturation of
the current-algebra sum rules as defined in the SU(2) g SU(2) symmetry of Gilman-Harari and Weinberg up to order
U'/c'. The saturation is obtained without need of exotics, with the usual excitations of the ground state. The relation
with the P = oo approach is clarified. The corrections found with respect to previous quark models in L = 2 decays
are discussed. They do not solve the problem of SU(6)~ coupling signs. Finally, the whole Weinberg scheme of linear

SU(2) SU(2) symmetry is completed by the expression of the chiral-breaking part of the mass operator in „'.

I. INTRODUCTION

Although the quark model has enjoyed fair em-
pirical success in describing pionic decays, the
situation is not completely clear both on the em-
pirical side and mith respect to general principles.

Starting from the old o - k, coupling, ' the naive
quark model has evolved towards more refined
treatments: the Mitra and Ross recoil term
the somewhat equivalent Feynman-Kislinger-
Ravndal (FKR) model, ' the quark-pair-creation mod-
el.4 These refinements have been stimulated both by
general requirements like covariance and com-
positeness of the emitted pion, and by the empiri-
cal fact that the naive SU(6)~ vertex symmetry
is badly broken, a fact strongly emphasized by
Rosner and co-workers with their f-broken SU(6)~
symmetry. ' But explicit quark models are still
unsatisfactory in two respects:

(i) Coupling signs opposite to those of SU(6)~
are unambiguously predicted for any resonance
decay, in apparent contradiction with experiment
for the case of positive-parity excited baryons. '

(ii) The current-algebra principles are not ex-
plicitly included, and the eventual role of a PCAC
(partial conservation of axial-vector current)
prescription (as used for instance by FKR) is un-
clear. In particular, one would like to know if the
Adler-%eisberger sum rule is satisfied. This
requirement seems important because current
algebra has played a very large role in the dis-
cussion of pion emission.

On the other hand, in the P =~ approach, the
general principles of PCAC and current algebra
have been included from the start' and seem to
play a central role. Moreover, evolving from

purely phenomenological SU(3) SU(3) mixing
schemes, one generally believes that the Melosh
transformation allows a fully relativistic calcula-
tion of pion decays. ' And there has even been the
claim that the SU(6)~-like coupling signs of the
L = 2 band of baryons could then be naturally under-
stood. Homever, a general dramback of this
approach is that matrix elements are left unspeci-
fied for lack of a P=~ model of bound states suf-
ficiently easy to handle. '

Therefore, one would like to combine the good
features of naive quark models and P = ~ ap-
proaches. At the same time, one would like to
understand in a precise manner the connection
between P =0 and P = . One further hope, if
such an understanding is obtained, is to reconcile
naive quark models with SU(6) ~-like signs for
I =2 decays.

We mant to show that it is possible to include
PCAC and the Adler-Weisberger sum rule in the
I' =0 approach of the naive quark model. In fact,
by a suitable and very natural definition of the pion
coupling, the Adler-Weisberger (AW) sum rule,
as well as the whole Weinberg scheme of SU(2)
ISISU(2) linear symmetry'2 are satisfied in a
quark shell model with a fixed number of con-
stituents, order by order in a nonrelativistic ex-
pansion. In fact, this saturation of the AW sum
rule was suggested in a very interesting paper by
Donoghue and Wyler. But they could not give a
precise demonstration, for lack of a systematic
and coherent v/c expansion. This is a crucial
point. I et us recall that Brodsky and Primack
and Close and Osborne" were able, many years
ago, to demonstrate the saturation of much more
difficult sum rules for Compton scattering by such
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Let us first remark that there is no difficulty in
principle in including a PCAC prescription for
pion transitions in a potential approach. ' As
emphasized by steinberg, a quite general expres-
sion is

M(v+ &-P) = &P~n'A—
~

o')~„1 (2.1)

where A„ is the axial-vector current and n' is a
unit null vector n0 ——n = 1along the pion momen-
tum, which we choose to be in the direction of
Os: n„=n„=0. The usual P = expression cor-
responds to taking the axial-vector charge. In the
other frames, the operator will not reduce to a
charge. Its matrix elements are, however, per-
fectly calculable. But first let us define A and

the hadron state vector o.', p in a potential model.
One could believe that we have to know the whole

mechanism of SU(2) SU(2) symmetry breakdown,
or at least some phenomenological chiral quark-
pion Lagrangian. However, it is generally re-
cognized that the two main effects of symmetry
breakdown are the appearance of (i) a quark mass

a v/c expansion. However, the relevance of the
method to study the chiral-algebra sum rules was
not noticed. This may be due partly to the fact
that the solution for Compton sum rules was rather
complicated and partly to the fact that chiral sym-
metry was believed to involve urieasy features,
especially the phenomenon of spontaneous break-
down. In fact, we are able to show that the dem-
onstration of the AW rule does not really imply
the knowledge of a dynamical mechanisin for the
symmetry breakdown. Also, the choice of a quark
shell model (instead of two-body forces) enorm-
ously simplifies the v/c expansion, giving a very
transparent discussion at least to the order v /c .
We are also able to give the expressions to order
v /c and to demonstrate the saturation of this
order. The general demonstration, which implies
another method because the explicit expressions
become untractable, will be given in a forthcoming
paper. As a by-product of this work, the connec-
tion with the parallel work at P =~ (Ref. 16) be-
comes clear.

Of course, the pion decay amplitudes which are
found are somewhat different from the previous
expressions of naive quark models. However, we

find that the unpleasant prediction of signs opposite
to those of SU(6)~ for L = 2 remains unaffected by
the additional terms which appear in the new ex-
pressions to order v /c . The apparently opposite
conclusion of the P= approach is not confirmed
by a more careful discussion, which shows agree-
ment with the P =0 framework.

II. THE MODEL AND METHOD

m, and (ii) the pion as a Goldstone boson. Here
rn is of course the medium size "constituent quark
mass" and not the small "current" quark mass.
Anywa. y, we do not treat the question of explicit
chiral symmetry breaking and set m, =0 in ac-
cordance with Weinberg s developments. If we
adopt this Nambu-Jona I asino" picture, an ef-
fective pure quark I agrangian such as

L' ff =Vip@ —mR —g V,YON (2.2)

q @+in —y5q. (2.4)

In the Lagrangian (2.2), we have totally lost the
SU(2) g SU(2) symmetry, since the Goldstone boson
has been dropped out. However, me still have the
SU(2) g SU(2) current commutation relations,
such as

[AD, A0] =it,~+06'(x y) (2.6)

which come only from the canonical commutations
of fields and of the 7's algebra. Therefore, fol-
lowing the old argument of Gell-Mann, me may
expect to get the AW relation considered as a
sum rule. On the contrary, we do not claim
to calculate pion scattering amplitudes or to
get Tomazawa-steinberg soft-pion theorems;
they will come only indirectly from the use
of dispersion relations saturated by quark mod-
el resonances. There are still limitations
which we must recognize: We are not able to in-
clude internal pion loop corrections with the simple
Lagrangian (2.2), while they may be practically
important; there is ambiguity in treating pion tar-
gets, although it is not always unreasonable to
treat the pion as a normal bound state in SU(6)
quark models; finally there are the limitations

(where V,O, are various types of central potentials)
seems quite reasonable to describe the hadron states,
inasmuch as the Goldstone pion is not concerned.
This is precisely the case for pionic decays: the pion
will enter only through the formula (2.1), where
A, mill operate only on "normal" composite had-
ron states. In fact, A„will not be the full axial
current, but the one obtained by removing all the
pion pole contributions. Therefore, we do not
expect a conservation law e„A~ =0, which should
hold only for the full current. " It is precisely
necessary to have 8„A"0 in order to get the non-
zero pion transition amplitude from (2.1). In
fact, the canonical procedure gives

X„=qy„y —q (2.3)

for the infinitesimal chiral transformation defined
as
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coming from the use of a central potential, i.e. ,
a quark shell model.

I et us then discuss the phenomenological rel-
evance of the Lagrangian (2.2). A quark shell
model with a confining static potential of vector
or scalar type (0, =1 or y') is certainly relevant
to spectroscopy: in the nonrelativistic limit, it
gives the usual SU(6) spectroscopy. Moreover,
the use of the Dirac equation, initiated by Bogo-
lioubov, "has certain good features. " Of course,
in such a static model, we completely neglect the
motion of the recoiling hadron, while we treat
relativistically the quark internal velocities. It
may seem reasonable for baryon decays K" -Nm,
which are phenomenologically the most interest-
ing (first and second levels of the harmonic os-
cillator): the internal velocities are known to be
very large, ' while the recoil energy is sup-
pressed by the mass of the baryon. However, we
have at least to consider high-order corrections
(beyond v /c ) as being not very significant. Much
more serious is the lack of two-body forces.
First, the quark shell model by itself generates
spurious states such as a (56, 1 ) which have to be
included in the closure relation. Second, we can
not describe the saturation of color forces between
color singlets as was done, e.g. , in our model
however, multiquark states do not appear in our
closure relations, as will be seen. Finally, we
cannot account for the spin-spin forces which are
recognized to be the dominant spin-dependent
forces."

Let us now proceed to the v/c expansion. From
now on, we abandon the quantum field framework
and turn to the ordinary Dirac equation formalism.
The matrix elements of (2.1) will then be simply
the matrix elements of

(2.6)

between tensor products of solutions of the Dirac
equation in a central potential, where k is the pion
momentum (+ik. r for absorption). The sum runs
on quarks. We consider only hadrons with the
same number of constituents (in general 3q states).
The v/c expansion has then several converging
motivations:

(i) The natural starting basis of states is the
well-known SU(6) g O(3) basis. It is obtained in
the lowest nontrivial v/c order approximation of
the Hamiltonian of Dirac. %e would like to know
systematically how the states depart from this
simple basis in the higher approximations (con-
figuration mixing). At the same time, the
lowest-order approximation to the operator X,

&(i)o,(i),~ ~ (2.7)

has a very simple SU(6)I, I30(3) structure. How-

ever, it is not coherent to use

7'io, ie' ' (2.6)

H=cvp+mP+ V, (2.1O)

v= pvs+ vv, (2.11)

we perform v+ 1 successive F% transformations,

e =e "~
~ ~ ~ e&.S F F (2.12)

I et us recall that in this simple case I' is of the
order 2(m —1)+1 (F, first order, E, third
order, . . .), considering the potential of order
0(v'/c'). expS Bexp(-8) is then without odd terms
up to order m(v/c)"'2. We call this Hamiltonian

0„,2, its eigenfunctions y„, and we denote by H"',
p " each term of their expansion:

for the calculations of transitions between the
ground state and excited states, since e"' includes
corrections of order v/c and higher: k =E&
—E; =m0(v'/c'), while one neglects other terms
of the same order. Therefore, one would like to
know the various terms to be added, at each order
of expansion, to (2.7) and which introduce new

SU(6)~ gy 0(3) structures.
(ii) One wants to demonstrate sum rules, more

precisely sums over states of a fixed number of
constituents, avoiding exotics (like 3q+ qq). In
the expression (2.6), as well as in the Hamiltonian
[which comes into the second Weinberg sum rule
for linear SU(2) SU(2) symmetry], the space of
states includes the negative energies, so that we
would have to include them in the closure rela-
tions, ' this is equivalent to allowing for additional
pairs in the sum over states. To avoid this, one
has to separate out negative energy states, which
can be done by performing a Foldy-Wouthuysen
(FW) transformation order in v/c. Moreover,
the operator X is depending on the states k = Ez
—E& ——E~ —E . To use the closure, one must
eliminate this dependence. It may be done by
expanding e'~'=P„i k z /m! and replacing the k"
factors by commutators with H:

(P )
k 0

/
a) = (P ) [H, [H, [H, . . . [H, 0]. . . j] [ a) .

(2.9)

But the expansion of exp(iks) is once more a v/c
expansion: kz is, in general, of order v/c.

%'e will perform the nonrelativistic expansion in
the following way (from now on we drop the isospin
operators and indices, as well as the sum over
guarks, which have trivial effects). First, to get
a nonrelativistic expansion of the Hamiltonian (n
=2v)
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(2.13)

(2.14)

H" is in fact m, and y is the eigenfunction of

a"'=p'/2m+ V. (2.16)

H ' contains the well-known spin-orbit and Darwin
terms, as well as a correction to the kinetic en-

ergy

and the ground state l0) is l=0, j,=s,. There-
fore 0310)= 'I'& a«&p

I
o~l n) = 1 or 0. And of

course, the most usual cases correspond to at
least one of the states being the ground state.

Our final conclusion will be that if we are look-
ing for the expression of axial-vector currents
and their matrix elements up to order v /c, we
need only the expression of the first FW trans-
formation E~ po. ——p/2m, the usual nonrelativistic
Hamlltonlan H=p /2m+ V and ifs unperturbed
SU(6) wave functions. The order v /o is still
easy to handle.

+,[0(v, v, ) x p] .

In the new basis, the exact wave function is

@= q „+0((v/o)"'} .

(2.16)

III. PIONIC TRANSITIONS AND CHIRAL SUM RULES
UP TO ORDER v lc

A. Chiral sum rules

Using the first FW transformation exp', 1t 1s
trivial to get the pion absorption operator'.

In particular, the small components are of order
(v/c)" . This simplifies greatly the calculation
of X. To obtain the expansion of its transformed
expression X= Xexps X exp( —S), we have only to
expand exp(+8). In principle, we must stop at or-
der (v/c)", because the wave functions are known

to this order. But, moreover, we can drop all the

odd operators found in X, since the small com-
ponents are then of order (v/c)" at least It will
remain to apply (2.9). I et us denote the expan-
sion finally obtained:

X„=QX'&. (2.is)

In reality, the knowledge of X„does not imply
more than v FW transformations because I'„,q is
of order n+ 1 and moreover, in applying (2.9) to
the expansion of exp(ikz), we have to retain only
H=H„, because If„~z is of order n+ 1. For in-
stance, X2 will be given by the first FW trans-
formation, Eq ——Po.p/2m, which is exactly the
same as for free quarks. The potential appears
only through the expansion of exp(ikz) and the use
of (2.9). Since sum rules are demonstrated in the
operator form, we shall have to deal only with X„
as far as we look for sum rules.

On the contrary, it would seem that the knowl-

edge of matrix elements requires y
"' and there-

fore v+1 FW transformations. However, y
"

is needed only for the zero-order contributions to

&PlX. lo'&: &Plx"'l o.&, where X"'=-o,. Other-
wise, one needs only cp

" '. But if Q. or P is the

ground state l=0, p= —,', &ploal n) has a very simple
expression. In fact H„2 has always its solutions
of the factorized form (only spin-orbit coupling):

(2.19)

+ ——, (p'o —o.po o p)4m

whence, by expanding and reducing e'~',

X =-03,(0)

(3.1)

(3.2)

X(i ) &r P T
'm

X(2) pr 0's + p~o'z pp
2m 2 2m'

——@02 ' %~V .
'PP2

(3.3)

(3.4)

If one saturates the continuum integral by a set of
states, it is easy to rewrite it in the Weinberg
form:

[X', X ] = ig, P' . (3.6)

Here, g, 5, and. e, are isospin indices, X' de-
notes the matrix of the axial current g'A. ,' be-
tween the states. The usual AW sum rule cor-
responds to g=+, 5 =-, @=0. I is the isospin
operator. Of course, (3.6) is finally completely
independent of the particular basis of states. We
may therefore identify

(3.'I)

or in the case of g quarks, by additivity

X'=g X(i)Z'(i) . (3.s)

In fact, any commutator of additive quantities will
be itself additive, since the cross terms are
automatically eliminated. Therefore (3.6) can be
written in terms of (3.8),

The AW sum rule can be written

dsg„' -f,' , [o(w'p—) —o(w-p)) = 1 . (3.5)
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(s.9)

and the &W rule has finally the transparent form

the saturation is obtained with ordinary excita-
tions of the ground state —there are no exotics.

The second Weinberg sum rule

X =1. (s.lo) [[X', [X&, m ]]g.2 ——0 . (3.15)

One must emphasize that the X"s are additive
the X's are so (2.6) and because the FW trans-
formations on each quark are independent. This
is a specific property of the central potential
(shell model) and will not be true for two-body
forces. '4 "

I et us now express X' in terms of our X '"s:
Q (m„—m —mg2)X~ &Xy 8= 0, (s.16)

is trivially satisfied because of the additivity of
commutators and because the one-quark contrib-
ution to the left-hand side of (3.15) cannot of
course have an I=2 part: n'q-m q has I, =P or 1.
The saturation of (3.15) is also very simple. One

can rewrite it as

x = [x' '] +[x'0' x' &] + [x&&&]2

=1-pr /m +pr /m =1 . (3.11)

where one has set a=5=+to select the I=2 part.
Taking n and P to be the ground state, this simp-
lifies to

The generalized AW sum rule is identically sat-
isfied. I et us comment in more detail on this
saturation in the case of the ground-state matrix
element of (3.11). The first two terms represent

2.gw:

(3.12)g„=&olx
I

o).&olx
I

o&.

The second term comes from the v /c correc-
tions to g„'.

-a~ = -1+&pr'&/2m' (3.13)

which is exactly the expression found by Gell-
Mann. ' The corrections to g& are canceled in
(3.11) by the negative-parity state's contribution,
which is the third term:

&0
I
[x"'1'lo&=Z I«Ix"'I»l'. (s.14)

The y's are necessarily of negative parity. More-
over, in the case of an harmonic-oscillator
model, X' ' can only excite the first excited states
(56, 1 )(70, 1 ) [let us recall that spurious states
are necessarily present in a shell model; the (56, 1 ),
as commented in Ref. 24, represents spurious
motions of the center of mass]. This demonstra-
tion confirms the qualitative suggestions of Don-
oghue and Wyler. ' ' It must be emphasized that

my —mo X+ X+ =P. (3.17)

The saturation at the present order of approxima-
tion will be only by negative-parity states: y =0
does not contribute and, for excited positive-
parity states, X;„X„',will be order v'/c4. Fur-
thermore, in the harmonic-oscillator model, only
1~=1 states will be excited by X"' and, since
they are degenerate, one can factorize fply mo
whence

Xo,Xyo
——o . (s.16)

This result sheds no light on the abundantly dis-
cussed saturation of the mo sum rule for mesons.
For meson systems, one must replace 1 by 1'
states. Equation (3.18) is satisfied by a cancella-
tion between the &q, 2 and spurious 1=0, 6 = -1
states [these are once again the spurious states
of motion of the center of mass, with a "wrong"
G parity e(-1) ' ']. Therefore, we do not get a
physically significant saturation scheme, and we
cannot solve the difficulty encountered by Gilman
and Harari. ""More interesting is the expression
found for

(B,x v,v). o, .[Y(v v, ) x p],

v *v+3v, (vz xv„v),+3((3 x v v),((ziv, v(tz„xv ), —z,(5 vxp„).zz[(tz x'3 v)„v'J)
I4m'

(3.19)

One notes a strong spin dependence. Remember
that Weinberg has assumed that m4 is in fact
helicity independent. The argument was based on
the assumption of helicity independence of for-
ward inelastic I,=0 scattering. However, one

t

does not expect this assumption to hold in an ad-
ditive quark model. One also notices that m4
is nonzero because of the presence of the potential.
In a free-quark model, II would be chiral invariant
[in the sense of linear SU(2)(3) SU(2) symmetry).
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But one sees also that m4 is of order v /c .
Therefore,

ff(2& p2/2 + y

in its expression

Tio3i (3.22)

[X,a]., =X.,(E.-E ) . (3.21)

If the left-hand side was exactly O„one should have
X ~=0 for E, xE8. But (3.21) is still satisfied
with the left-hand side being of order v /c, X ~
= O(v/c), E —E8 =mO(v /c ). This is precisely
the situation we are finding.

As a conclusion, one must emphasize that SU(2)
SU(2) linear symmetry is not so good as SU(6)
symmetry. The Hamiltonian chiral symmetry
is broken by mO(v3/c ) terms, while SU(6) is
broken by mO(v /c ). There is a SU(2) SU(2)
mixing of states of order v/c, while SU(6) rep-
resentations are mixed only by v /c terms. This
is a consequence of a different behavior under
parity: SU(2) qySU(2) mixes parity, while SU(6)
conserves it. Of course the conclusion is physi-
cally significant only if the parameter v/c is
really small (Ref. 29).

B. Comparison with the P, =~ approach

The P = ~ approach is usually considered as the
best suited to study SU(2) SU(2) linear sym-
metry. The main reasons seem (i) the quark-
pair contributions are automatically eliminated,
and (ii) the pionic transition operator takes the
especially simple form of a charge. As to the
quark-pair contribution, the advantage is that
one quite generally demonstrates its disappear-
ance. It is especially transparent in the null plane
formalism. ' The pair contributions to charges
are affected by a 5(@+7'') for longitudinal-momen-
tum conservation, ' but this is necessarily zero
because q, g' &0. However, this quantum-field-
theoretic argument does not apply to our prob-
lem of quarks bound by a potential. In fact, the
null-plane formalism adapted to our problem has
been defined by Bell and Ruegg. In this forrn-
alism, the positivity condition no longer holds:
we have no kinematical bounds. Indeed, as will
be demonstrated in a forthcoming paper, the con-
tribution of bound quark pairs disappears only in
the nonrelativistic expansion: they give a con-
tribution which is nonanalytic in v/c.

As to the simplicity of the operator X, it is seen

is still chiral invariant to order n /c . This
could seem paradoxical, because chiral invariance
implies the absence of inelastic transitions, and

we have found on the other hand inelastic transi-
tions at order v/c and v /e . The paradox is solved

by considering more carefully the orders of mag-
nitude in the equation

qy ——e' '(1+p,/2m —p, '/Bm)yr„. (3.24)

This expression shows in particular that the e'~'

factor has been transferred to the wave functions
in the P = ~ frame. But there is also the non-
trivial factor involving the longitudinal momenta,
which is crucial for calculating inelastic trans-
itions.

It is to be noted that in all these discussions,
the v/c expansion appears once more as a natural
tool, apart from its general physical interest
which would come from an actual smallness of
v/c. The departure of states, in the constituent
basis, from a simple SU(6) structure, is con-
trolled by the successive v/c orders. And so is

which we obtain using the definitions of Bell and

Ruegg. %e have an operator acting w1thln a two-
component spin space with the very simple SU(6)
structure of the lowest-order approximation to
the I' =0 case (2.7). Moreover, there is no longer
the e'~' factor which led to much complication.
However, what is gained for the operator is lost
on the side of the wave functions, first, the wave
function of a state (of definite spin) does not have
a simple SU(2) SSU(2) content. It does not have
the simple factorized SU(6) 80(3) structure of the
P =0 wave functions. %e have shown this by a
direct boost from P =0 to P = ~. It is also pos-
sible to remain within the P = ~ framework.
Then, the crucial thing to satisfy is the angular
momentum condition. The explicit solution in
the free quark model has been given by Melosh
and has been further clarified. It has also
been discussed for interacting fields. ' Bell
and Ruegg give the discussion for our case of a
central potential. The conclusion is that in order
to recover a simple SU(6)~ behavior of states,
one must pass to a new basis, the so-called "con-
stituent basis, " where of course X takes a more
complicated form; one must perform a v/c ex-
pansion and one finds to order n /c:

2 2X„=crs+c, p,/m-f, o,/2m P,(r, -p, /2m .
(3.23)

It is to be emphasized, however, that the con-
stituent basis is not yet identical. to the usual
SU(6) basis of quark modelists. This is seen from
the difference between (3.23) and our expression
(3.4). We have a further potential dependent term.
One can show that our SU(6) basis and the Melosh
transformed basis of Bell and Ruegg are related
to order v /e by
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Z= (gr xpr), /2m (3.26)

only at first order At s.econd order in v/c, one
must include the p, dependence of the denominator
of the Melosh expression. The same conclusion
is drawn from our P = 0 expression (3.4).

C. Comparison with usual quark models
and phenomenology

Our model for pion coupling is nothing but the
pseudovector coupling, but with a consistent treat-
ment of internal velocity relativistic corrections.
According to (2.2), it is equivalent to the pseudo-
scalar coupling in the case of a vector binding
potential, but not in the case of a scalar potential.
We have now to compare with the standard quark
model of pion emission as proposed long ago by
Mitra and Ross. The FKR model is not essen-
tially different for our purpose, since it intro-
duces only a relativistic treatment of the overall
hadron motion, but still neglects the internal
velocity relativistic corrections beyond v/c order.
We write the Mitra and Ross operator (with an
irrelevant symmetrization of the recoil term):

(3.26)

it for the transition operator. And, finally, one
needs the v/c expansion to separate out quark pair
contributions. These motivations are fully par-
allel to the motivation of our FW approach.

As to the respective merits of the two ap-
proaches, one can conclude that the closure is
more easily performed in the P = ~ approach, be-
cause of the absence of the e'~' factor which in-
troduces a dependence on states at P =0. On the
other hand, the calculation of actual matrix ele-
ments is more easily done in our approach, where
the wave functions have a simpler structure, as
illustrated by the relation (3.24).

Last but not least, we have to formulate the fol-
lowing remark. There has been the claim" that
the P= ~ frame naturally yields signs opposite to
SU(6)~ for odd-L transitions to the ground state,
and SU(6)~-like signs for even-I states, as seems
to be wanted by experiment. The, claim was
based on the fact that, apparently, one was getting,
respectively, pure &L,=+1 and 4L, = 0 behavior
according to the parity of L, in the models.
The explicit quark-model expression (3.23) shows
that it is not true already at order v /c . one has
both ~L, =0 and aL, = +1 terms. And this is pre-
cisely the order responsible for L=2 to L =0
transitions. In fact, in terms of Ref. 40, the
Melosh transformation is exp(iZ), but Z can be
approximated by

To make a more transparent comparison with
(3.2)-(3.4), we retain only terms up to v2/c~ in
e' . W'e then get

-X=v — -P +z —or ~ VrV. (3.27)
0'z" pp 0'g' pg 1 ~

m ' m' m

We notice that X differs from (3.2)-(3.4) only in
the second order X'". Equation (3.27) lacks a
AL, = 0 contribution —pr'/2m' and the coefficient of

P,p~ is not the same.
Equation (3.27) is pure bL, =+ I save for the

zero-order o, and therefore signs opposite to those
of SU(6)~ automatically come out, for L = 2 to L= 0
decays as well as for L = 1 decays. One must
emphasize that our additionaL ~,= 0 contribution
at second order is not sufficiently large to change
the conclusion. We still find definite signs oppo-
site to SU(6)~ in L= 2 decays. In fact the calcula-
tion in a harmonic-oscill. ator model shows that

X(L= 0 L= 2) = (rr'v, + 3zrr o' )/2m'R'. (3.28)

Calculating for instance the transition P,3 AT,
we find a ratio R = (X=—', )/(X= —,')= —18/26, corres-
ponding to E/P = —96/84 in the notations of Ref. 9.
'Therefore, although it is possible to fit the coeffi-
cients of the direct and recoil terms in a purely
phenomenological approach, " and to get SU(6}~-
like signs in L= 2 decays, no explicit quark-model
calculation is able up to now to support such a fit.Iy5 47t remains a challenge to our under standing
of pion decays. Of course, one cannot trust too
much the model calculations, because there are so
many uncontrollable approximations involved. On
the other hand, experiment could be bLamed since,
in Nw decays, one finds contradictory indica-
tions. "

We recall that a similar negative conclusion was
found in our quark-pair-creation (QPC) model. "
It has not been possible, however, to include in a
natural manner in this model the relativistic cor-
rections considered in the present paper (Ref. 44).
Anyway, the QPC model in its present form has a
serious drawback: Although it yields a recoil
term which is of a reasonable order of magnitude
in all actual reactions, this recoil term, corres-
ponding to an effective emission operator

o (k, -p;), (3.29)

does not include the k/m factor which is implied
by the PCAC prescription. This drawback has
been emphasized in a recent paper by Mitra and
Hood. "

Returning now to the v/c term on which there is
agreement between all models of elementary emis-
sion

~
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(i) 0'g 'pz (3.30)
1Ã

one must look for experimental confrontation. It
induces the I = 1 decays. For mesons, one must
remember that the phenomenological discussion
of Buccella et at'."gives good results. It is
more difficult to draw a firm conclusion in the
baryon sector, because of the l.arge possible mix-
ings. We address the reader to the discussion of
Gilman, Kugler, and Meshkov' concerning the
hypothesis of a pure M. =+1 transition.

It is fair to emphasize that if v/c is not actually
small, the phenomenological relevance of the
whole approach becomes weak. Higher-order cor-
rections (v'/c' and v'/c') can be calculated, but
are not very significant in view of all other possi-
ble corrections. 'The main interest of these high-
er-order calculations is rather theoretical. : one
can still demonstrate the saturation of the AW
sum rule. We relegate the expressions and proof
to an appendix because there is nothing essentially
new to add to v'/c' order.

IV. CONCLUSION

We have shown that the rather naive, but pheno-
menologically very significant quark shell model
with a nonrelativistic expansion can realize the
Weinberg scheme of linear SU(2)8SU(2) symme-
try. In particul. ar, we have obtained the AW sum
rule up to order v'/c' as well as the expression
of m, '. This is done with standard methods of the
P = 0 frame, and shows that one can include in this
frame the good features of the P= approach. It
must be emphasized that all these results are ob-
tained in a model of massive quarks bound by a
potential and with approximate SU(6) symmetry:
We do not have to deal with the fundamental La-
grangian and its massless quarks; it appears only

very indirectly through the spontaneously genera-
ted quark mass and the PCAC prescription. 'The

old exact SU(2)SSU(2) symmetry has completely
disappeared. The new SU(2)SU(2) symmetry is
approximate in the same sense as the SU(6) sym-
metry: both are broken by higher-order terms of
the nonrelativistic expansion. 'There is, however,
a typical. difference between these two approxi-
mate symmetries of a massive-quark model:
They are not broken by terms of the same order
in v/c. In this scheme, one must be aware that
the "current" basis (the one where the X's are
diagonal) is actually a basis of massive valence
quarks: It is defined without reference to the
current masses. Finally, another striking con-
clusion is that the sum rules of SU(2)SSU(2) sym-
metry do not severely constrain the potential,
except for some very general conditions of differ-
entiability. "

APPENDIX: ADLER-WEISBERGER SUM RULE
AT ORDER v4/c4

The v'/c' order is still easy to handle, with the
expression of E2:

(A I)

There is no difficulty in demonstrating expl. icitly
the AW sum rule saturation. It is lengthy because
we have to reduce a large number of commutators
coming from the application of the formula (2.9).
A simple way of proceeding is to order the terms
according to the powers of V. We have got the
result, but it is not very enlightening to draw
pages of equations. Instead, we shall try to con-
vince the reader by the proof in a simple case,
where (i) the model is a harmonic oscillator one of
the vector type, and (ii) the target is the ground state.

What we have to demonstrate is the cancellation
of terms of order four:

«i (x'")'[ o)= &oi p,"'. —"(«)'
—2, [P,P„zV,V) iO)

without any particular hypothesis. The first term
is also evaluated without additional hypotheses.
In fact, as o, 0)= a

i
0),

(O [-o„X&'&]
i
0)=+2(OiX&' O).

X ' contains many commutators with H" coming
from the transformation of e'~ according to
(2.9), as well as some commutators with H~"

having the same origin. However, let 0 be any
operator:

(A4)

(o
i
[a&'&, o]

i
o)= o, (A5)

because
i
0) is an eigenfunction of H~". Therefore

we can drop all the terms containing such com-
mutators. We find also a simple cancellation be-
tween the terms containing commutators with

H ". Therefore, the final result is the one ob-
tained by retaining only the first term in the ex-
pansion of e'~-1. We get this straightforwardly,
because the average on the ground state will then

only involve the FW transformation of 0,:
E2 Eg Ej -Z2 (A6)

(0
i [—o„x"']+ [X"',X"'] + (X"')'

i
0)= 0. (A2)

i
0) is here the unperturbed ground state; since the

operator itself is already of order v'/c', we do
not have to consider perturbations of the wave
functions. (X"')' is very easily evaluated from
the expression (3.4). We get
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Then,

(0 X"'~0)=, —,(vector case).

(A7)
'The real complication is in the second term, be-
cause there the host of H" commutators cannot be
eliminated so easily. 'There, we have to make the
additional hypothesis of a harmonic-oscillator po-
tential. The exact expression of X"' is

(A8)

l.et us then calculate (0 [X ",X"']
~

0). In a,

harmonic-oscillator model, we can saturate the
products by the first excited states ~n),

(0 t
[X"',X"']

(
0)= 2 g(0 t

X'"
(
n) (n

(

X"'
(
0),

(AQ)

since X" can only excite these states from the
ground state. But in (n~Xt" ~0), we can substitute
any H"' commutator by a, multiplication by &o(k

= (d)

(A10)

and we return to a much simpler expression.
Moreover, we can redo the closure on ~n) and
then since X " is odd in pz, we have to retain only
the odd powers of p~ in X"' to get an even opera-
tor under pz -p~. 'The average of an odd opera-
tor will be zero. 'This makes it possible to drop a
number of terms in (A8) and finally we get very
straightforwardly

(0) [X"',X"']
)
0)= —(p'p '/m') .

Combining (All), (A7), and (A3) and calculating
them in the harmonic-oscillator model (every
term is reduced to a monomial of coordinates of
order 4), one gets (A2).
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