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High-energy electrons from bound-muon decay
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Expressions for the electron spectrum from bound-muon decay which exist in the
literature are very complex. The aim of this paper is to gain some insight into these for-
mulas. This becomes possible when the Dirac equation is used to derive %'ronskian-type
relations between electron and muon wave functions. We also show how a trivial modifi-
cation of the formulas accounts for the nuclear-recoil effect to a very good approxima-
tion. We present numerical results to aid order-of-magnitude estimates of the bound-

muon-decay contribution to the background in pe conversion experiments. We find that
the electron spectrum seems insensitive to deviations of the weak-interaction parameters
from standard values.

The aim of this paper is to study how the high-

energy end of the electron spectrum from bound-
muon decay depends on various weak-interaction
parameters. This is of interest because bound-
muon decay is an important source of background
in experiments setting limits on neutrinoless p-to-e
conversion rates in nuclei. The other important
contribution to the background for pe conversion
experiments is from radiative pion and muon cap-
ture followed by internal or external conversion of
the photon. The latter process has been discussed

by Primakoff, ' Hanni, and others. The electron
spectrum from bound-muon decay has been dis-
cussed by Hanggi et al. and by Herzog and Ald-
er.4 They present formulas which are very useful
to calculate the electron spectrum for any value of
the electron energy. To gain some insight into the
rather formidable formulas, I expand the spectrum
about its end point in powers of 5, where

5=Ema. —Ee .

(Note that only the high-energy end of the electron
spectrum is of interest for the pe conversion exper-
iment. ) I show how the results of Refs. 3 and 4
can be understood very simply for electron energies
close to the end point. I also discuss the validity
of their procedure for approximating the nuclear-
recoil energy.

In the calculation of the high-energy end of the
spectrum the effect of the nuclear-recoil energy on
the neutrino phase space plays an important role.
For a given electron energy the nuclear-recoil ener-

gy is not constant. It also depends on the neutrino
momenta, and this complicates the integration over

N(E, )dE, =CE, (5)1m') dE, ,

5i E~ E, E,——/2Mg——. (3)

The expression above comes from neglecting the
variation of the weak-interaction matrix element
with energy. The integration over the neutrino
momenta then gives the factor of 5& . Because of
the reduction in the phase space available to the
neutrinos (due to nuclear recoil), 51 is a more ap-
propiate expansion parameter than the 5 of Eq. (1).

Hinggi et al. and Herzog and Alder have calcu-
lated the spectrum taking the nuclear-recoil energy
exactly into account but assuming a point-charge
Schrodinger wave function for the muon and
neglecting the effect of the electrostatic potential
on the electron. In what follows, this approxima-
tion will be called the Born approximation. Refer-
ence 3 gives the ratio of the spectrum with recoil
to the spectrum without recoil in the above limit,

these (unobserved) momenta. This difficulty does
not arise if the nuclear-recoil energy is approximat-
ed to be constant, i.e.,

(2)

where E, is the electron energy and Mz is the
mass of the recoiling nucleus. The uncertainty
thus introduced into the recoil energy is of order
5 lM&. This should not affect the spectrmn signi-
f|cantly since the recoil energy itself is very small.
With this approximation for the nuclear-recoil en-

ergy the leading term for the electron spectrum
takes the form
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which they call the recoil factor A (E, ). The ex-

pression for A(E, ) is very complicated. However,
the nuclear-recoil effect is important only for high
electron energies, and Eqs. (2) and (3) should take
the recoil effect into account quite well. To test
this, we note that these equations predict A(E, ) to
be

[mq —8g E, /—(2M') E,]-
A(E, )=-

(mq 8, —E,)—
where 8, =Z a mz/2 and m& is the muon mass.
Table I compares the calculations of Ref. 3 with
the prediction of Eq. (4) for a few elements and a
few electron energies. It is seen that the agreement
is very good. To summarize, the formula of Ref. 3
for A(E, ) does not make an expansion around the
end point, and hence includes all terms in 5. Also,
the dependence of the nuclear-recoil energy on the
neutrino momenta is not neglected. Equation (4),
on the other hand, is based on the approximations
implicit in Eqs. (2) and (3). The good agreement
in Table I seems to indicate that Eq. (2) is a good
approximation for the nuclear rex:oil, and the other
effects included in calculations of Hanggi et al. are
not important. '

In the calculation of the electron spectrum using
exact wave functions, Refs. 3 and 4 neglige:t the
nuclear-recoil energy. However, the approximation
of Eq. (2), which reproduced Hinggi's recoil fac-
tor so well, can be included in their formulas by
merely changing the limits of the neutrino integra-
tions. With this modification, the constant C ap-
pearing in Eq. (3) can be evaluated with the help of
the expressions in the paper by Herzog and Alder.
Such a procedure is not exactly the same as ex-

panding their expressions in a Taylor series about

the end point. The difference is that Eq. (3) al-
ready contains the nuclear-recoil-energy effect and
should not be multiplied by recoil correction fac-
tors. The weak-interaction Lagrangian that I use
0

el ipvpl vq,
RI

2

where I;=yx(1 —y5), 1, y5, and o~„ for i =(V A—),
S, I', and T, respectively. In terms of the above
coupling constants the expression for C is

'm '
l4 8i

3m(2n. )

where 85 are expressions involving the lepton wave
functions (interference terms between the different
currents are absent as long as the neutrinos are not
detected). Unlike in Ref. 3, I do not divide the
spectrum by the free-muon decay rate Tab.le II
gives the expressions for 8& in terms of the follow-
ing:

Pk = f gkg"«

m= ffkg"«,
rk = Igkf"« *

Sk —— ~ r.
g& and f" are the top and bottom components of
the muon wave function and gk and fi', are the
electron wave functions with energy E„total angu-

1
lar momentum (k ——,), and parity (—1)" '. The
conventions regarding the Dirac equation and nor-
malization can be found in the Appendix. As
mentioned before, the electron spectrum has been
evaluated in a closed form in the Born limit, i.e.,

TABLE I. Predictions of Eq. (4) for Hanggi s recoil factor A (E,).

A from Hanggi's
thesis A from Eq. (4)

180
190
200
170
18S
200
180
190
200

0.904
0.828
0.563
0.964
0.924
0.698
0.970
0.939
0.6S3

0.900
0.826
0.571
0.961
0.922
0.702
0.969
0.938
0.659
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TABLE II. Expressions for 8& defined in Eq. (6). p, q, r, and s are defined in Eq. (7).

B'5 Column 2 in
Born limit

Leading term of
Born expression
from Ref. 4

(V —A)

S,P

16 2 s~ 22

pi + + r2
5 3 3

1

5 (p~ —s~)2

[SrP+ (3p ~ +s ~
)~]

2'(Zam„)'
5[E,~+(Zam„) ]4

2 (Zam„)'
5[E,'+ (Zam„)2]4

3 y 2~(Zam„)'

5[E, +(Zam„) ]

2'(Zam„)'
5[E,2+ (Zam„)2]

24(Zam„)'

5[E, +(Zam„) ]

3 )& 2'(Zam„)
5[E, +(Zam„) ]

when g&=2r(Zam&) ~ exp ( Zam—&r), f& ——0,
gk=rj~k, ~(E,r), and fk=rJk(E r). One can check
the correctness of Eq. (6) by seeing if the entries of
Table II reduce in the appropriate limit to the
leading term in a Taylor series expansion of the
Born expression. This comparison is made in
Table II, and it can be seen that the two expres-
sions do agree in the appropriate limit.

One might wonder how close the Born expres-
sion is to the actual spectrum for high-energy elec-
trons. The Born approximation predicts the right
order of magnitude for p~, as seems reasonable.
But it cannot be used for quantitative estimates, as
I now describe. The following expression for the
muon lifetime will prove useful in the discussion:

m '
T'I =(gs'+up'+ l6g VA'+24g T')

3X2 (2n')3

Herzog and Alder fix the muon lifetime and con-
sider the electron spectrum for four cases, namely,
pure 8, P, V —A, and T currents. (When one
neglects the electron mass, as we do, there is no
difference between the S and P cases. ) Now, from
Table II and Eqs. (6) and (8) we see that the Born
approximation predicts that the high-energy end of
the electron spectrum is independent of the case
considered. However, the calculations of Herzog
and Alder with correct wave functions show that
at high energies the tensor spectrum is —, times the

V—A spectrum and the scalar arid pseudoscalar
spectra are very small, about one-thousandth the
V—A spectrum. %hy does the Born approxima-
tion fail so badly in predicting these ratios, and

why do the calculated spectra have the simple rela-
tions mentioned above? The Born approximation
fails because it neglects the bottom component of
the muon wave function, i.e., it assumes that

s& ——r2 ——O. However, because the electron and the
muon are in the same potential and have the same

energy, the following interesting relation can be
proved using the Dirac equation (the proof is given
in the Appendix):

pr=~&- (9)

This simple relation predicts that for high energies
4

the tensor spectrum must be —, the V—3 spectrum

and the scalar spectrum must be small (the leading
term for the latter case vanishes). This can be seen

from an inspection of Table II and Eqs. (6) and (8).
Thus, we see that Eqs. (3) and (6) give us insight
into the high-energy end of the electron spectrum.
Equation (9) is valid when the muon and electron
have the same energy. Since the maximum elec-
tron energy E,„differs from E& by an amount

E& /(2M~), there are small corrections of the order
of the nuclear-recoil energy to the above ratios.
Neglecting these corrections the leading term for
the spectrum becomes

2 5
'5

N(E, )dE, = 32E, mp 2 2 2 2 5)
3 (r2 +2p) )(gyp +2gr ) dE, ,

45m(2n ) mp

where r2 and p ~ are defined in Eq. (7) and 5& is de-
fined in Eq. (3). Since g2 and f ~ both reduce to
rj &(E,r) in the limit that the electrostatic potential
is turned off, and since the electron is energetic,

I

the difference between g2 and f; must be small.
Thus, we see that r2-s ~. Hence, from Eq. (9),
r2-p&. For the light elements one can estimate
the order of magnitude and the Z dependence of
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(r2 +2@i ) =3pi using the approximate wave
functions given below Eq. (7). One finds that

12(gv~'+2g T')

(gs +gp + 16gvA +24gT )
(12)

From Eq. (10) it is clear that the high-energy elec-
tron spectrum depends only on these parameters 8

and hence does not change very much for devia-
tions of the weak current from the (V—A) form.
Since the neutrinos carry away little momentum
the effect of nonzero neutrino mass should be con-
sidered. Since the weak current is (V —A) (to a
good approximation at least), a nonzero neutrino
mass will not change the weak-interaction matrix
element. The phase space will get modified. If
one of the neutrinos emitted has mass m the effmt
can by obtained by replacing 5i in Eq. (3) or (10)
by [(5i—m) + Sm(5i —m ) ]. In the presence of
neutrino mixings the experimental spectrum would
be a sum of such terms with the coefficients
depending on the mixing angles. Only the limit on
the ~ neutrino mass is greater than the experimen-

tal resolution. Given present limits on the mixing
angles the effect of a nonzero w-neutrino mass is
likely to be undetectable.

If we include the next higher term in 5~ the ex-
pression for the spectrum takes the form

N(E, )dE, = (E, /m~) (5i/m„)5

dE, , (13)

2

p, = I jo(E,r)2(Zam„) ~ e "r dr
0

16(Zam~)

[E, +(Zamq) ]

The coefficient varies as Z for the light elements.
The nuclear finite-size effect reduces the coeffi-
cient from the above estimate. This effect is sub-

stantial for the heavy elements. The numerical
values of the coefficient for different elements have
been calculated using the correct wave functions
and will be presented later.

I will now discuss how the high-energy electron
spectrum changes with deviations of the weak-

interaction parameters from their standard values.
One has very good measurements of the free-muon
decay rate and the Michel p parameter,

where the term containing F arises because C in
Eq. (3) involves integrations over the electron wave
function and hence is a function of E, . D is equal
to m& C(E,„). For a (V —A) current

32gpg wp
2 7

, [(ei, i
—ri, i »S i+r2(s2, 1+F2,1)] .

135ir(2ir)

(14)

64gyg Alp 3p ) dp ) p ) dS ) 4&2

4g~(2~)3 2 dE, 2 dE, dE,
+ +~2

where pk, qk, etc., are similar to p, q, etc., in
Eq. (7), except that the integrand involves an extra
factor r . The Born expression can be used to
check Eq. (14), as we did for (6) (see Table II). In
the appropriate limit Eq. (14) also reduces to the
form predicted by the Born expression. Table III
lists the values of D and E and estimates of F for a
few elements. These were calculated using a Fermi
charge distribution with c= 1.072 '~ fm (where A
is atomic weight) and a=0.55 fm. (For Z=29,
however, the same c and a were used as in
Hanggi's thesis, namely, c=4.26 fm and a=0.578
fm. ) We note that E and Ii are not small com-
pared to D and hence higher terms are important
for precise numerical calculations. Figure 1 shows
a comparison of the predictions of Eq. (13) with
Hanggi's exact calculations for Z= 29. For
E, =200 m, [i.e., (5/m&) =0.013] Eq. (13) repro-
duces Hanggi s result to within 10%. The contri-
butions of the E and F terms are 4% and 8% of
the total value, respectively. For E, =190m,
[(5/m&) =0.06] the value of Eq. (13) is about 60%
of the value in Ref. 3. Our conclusion, that the
spectrum depends mainly on the Michel p parame-
ter, should not change in spite of the large contri-
bution of higher terms. Certainly, our success in
understanding the qualitative features of the results
of Refs. 3 and 4 has been encouraging.

In conclusion, we have seen how a trivial modif-
ication of the formulas of Ref. 4 can account for
the nuclear-recoil effect to a very good approxima-
tion. We have explained the qualitative features of
the results of Refs. 3 and 4, using Wronskian-type
relations which follow from the Dirac equation.
We have presented numerical results which should
aid in making a quick rough estimate, for different
elements, of the bound-muon decay contribution to
the background in pe conversion experiments. Our
study indicates that the high-energy electron spec-
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TABLE III. Numerical values of D, E, and I' [defined in Eq. (13)] for a range of ele-

ments.

z 10"D 10"r Spectrum end

point Emax

{MeV)

12
16
18
23
25
29
34
45
55
65
82

0.28
0.71
1.02
2.35
3.10
4.74
7.01

13.8
18.3
22.8
27.4

0.7
2.0
3.0
7.2
9.7

15.4
23.8
51.0
73.5
98.4

132

2
4
6

16
21
35
54

119
176
241
332

105.0
104.8
104.7
104.2
104.0
103.5
102.8
101.2
99.6
97.8
94.9

trum is insensitive to deviations of the weak-
interaction parameters from their standard values.

4J

Ol

IO

102

]0'

10

The author has gained from many discussions
with Lincoln Wolfenstein and from his sugges-
tions. He also appreciates useful discussions with
Harold Fearing.

APPENDIX

In this appendix the Dirac equation is written
down to specify the wave-function conventions and
normalizations. Certain relations are derived
which help us in understanding the ratios of the
electron spectra for different types of weak-

interaction currents. The Dirac equation for a par-
ticle of mass m, energy E, total angular momen-

tum j=
~

A,
~

——,, and parity (—l)(A, —I/2)sign(A, )

—1/2 is given by

Ag'= g [E V(r)+—m]f-, —
r

IO

IO

170 180

E, /m,

I

190 200

FIG. 1. Comparison of the prediction of Eq. (13)
with Hanggi's results for copper. The dotted line is
Hiinggi s result and the solid line is from Eq. (13). At
E,=200m, the two data points come together.

For the electron the mass m is taken to be zero,
an@ the wave functions are normalized such that g
is positive and both are regular at the origin, and g
varies as sin [Er+.Zaln(r)+4] for r~~. With
this normalization g and f would reduce as Za-+0
to rj~q, ~

(Er) and rj o ~
(Er), resPectively, for Posi-

tive A, . For negative A, they would reduce to rj~
(Er) and —rj& ~ &~ (Er), respectively. The muon
spends most of its time in the ground state, and
hence A, takes the value 1 and E becomes the muon
mass minus the ground-state binding energy. In
our convention both g and f are positive for the
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muon wave function.
The Dirac equation can be used to find relations

between the different terms occurring in the elec-
tron spectrum. For example, consider the deriva-
tive of the following determinant:

gie fp
dr g» f»

(A2)

Using Eq. (Al) the above determinant can be written
as

gP fP gP fP gP fl
e ~e +rn ~e e (Ee Ep) ~e e

r gg —Jg Jg gg Jg —gg
(A3)

For X= 1 and E„=E,one can integrate both sides and find that

Pi —~&=0 ~

which explains the ratios of the electron spectra for different weak currents as calculated by Herzog and
Alder. Another relation useful for the 5 term of the electron spectrum can be derived by putting A, =2.
Multiplying by r and integrating gives

M(p2, 1 S2, 1) 2r2

(A4)

(A5)

Another relation useful for the electron spectrum expression can be derived by considering the derivative of
the determinant:

g" f"
e e e e —m e e +(E„E)—f»g» -r f» g» g»f» —" ' g»f»

For A, = 1 and E& E„multi—p—lying by r, integrating, and using Eq. (A4) gives

W(gl 1+rl 1) pl +$1 2pl

(A6)

(A7)

I conclude this appendix with a remark on the numerical integration formula used in the calculations,
since others may find it useful in their numerical work. If the interval of integration is divided into n equal
parts of length 5 each, then

f„ f(»d&=&
2

+fr+f2+ f. i+ 2
+fo f. fo f.'—

(Ag)

where

(A9)
dx

The error is of order n5, just as in the commonly
used Simpson's method. The advantage of Eq.
(A8) over Simpson's method is that all the inter-
mediate points are weighted equally, making it
more efficient for computer use. (In Simpson's
method the program has to treat odd and even

points differently. ) Of course, one has to know the
values of the derivative of the function at the end
points, but in practice one usually has that infor-
mation. Equation (AS) was derived by fitting a cu-
bic polynomial to the values of the function and its
first derivative at the end points of the basic inter-
val, and integrating the polynomial. The resulting
formula was then applied to each interval in turn
(just as in Simpson's method), leading to Eq. (A8).
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is discussed in Ref. 4. Since the nuclear-recoil correc-
tion is important only near the spectrum end point,
the formulas of that reference can be approximated
quite accurately by Eq. (4). For the scalar and pseu-
doscalar cases of Ref. 4 the use of a recoil-correction
factor calculated in the Born approximation is not jus-
tified. This is because a cancellation occurs in the
weak matrix element evaluated with correct wave
functions. This cancellation does not occur in the
Born approximation, and hence the latter is a bad ap-
proximation. For the scalar and pseudoscalar cases
the leading term in the actual spectrum is 6~ while
the Born approximation predicts a 5~ variation. The
next paragraph describes how the nuclear-recoil effect

can be directly incorporated into the spectrum calcula-
tion, without the need for using the multiplicative
recoil-correction factor.

H. Fearing and G. Brookfield (private communication)
have considered other recoil effects not included in
Hanggi's formula.

7We recollect that Eq. (2) neglects the dependence of the
nuclear-recoil energy on the neutrino momenta.

This fact is not obvious from Eq. (6). One has to use
the Wronskian-type relations derived in the Appendix
to see this fact.
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