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The proton Compton scattering at low and intermediate energies is studied by means of a dispersion framework
which exploits in an optimal way the (fixed-momentum-transfer) analyticity properties of the amplitudes in
conjunction with the consequences of the (s-channel) unitarity. The mathematical background of the work consists
in methods specific to boundary-value problems for analytic vector-valued functions and interpolation theory. In
comparison with previous related work, the extremal problems to be solved now are much more difficult because of
the inclusion of the photoproduction input and also lead to additional computational complications. The lower
bounds on the differential cross section, obtained without any reference to subtractions and annihilation-channel
contributions, appear sufficiently restrictive to provide rigorous evidence of some inconsistencies between results of
single-pion-photoproduction multipole extractions and proton Compton-scattering data.

I. INTRODUCTION

The main physical information used in the dis-
persion treatments of the proton Compton effect
is represented by the supposedly known photopro-
duction data which establish, according to the un-
itarity condition, the s,u-channel absorptive parts
of the Compton-scattering amplitudes. However,
the knowledge of the photoproduction matrix ele-
ments alone is not sufficient to determine fully
the Compton scattering since two (out of the six
independent) amplitudes describing the process
require subtractions in the fixed momentum-trans-
fer dispersion relations, due to their presumably
bad (as predicted by the normal Regge-pole model)
high-energy asymptotic behavior. It is at this
point that the real difficulties begin to appear and
they manifest themselves especially at low ener-
gies where the theoretical results depend to a
great extent on the way in which the highly model-
dependent annihilation-channel contributions to the
needed {-channel absorptive parts are treated.
Efforts have been made to evaluate the ¢-channel
exchanges!™® (particularly in connection with dis-
persion estimates of the proton electromagnetic
polarizabilities) in the approximation of disregard-
ing higher than two-pion states in the (¢ channel)
unitarity sum but the situation will continue to re-
main rather confused until more reliable informa-
tion on the yy —mrm reaction will become avail-
able. First experimental results from the study
of the reactions vp - ypm, ee — eenm and radiative
scattering of pions on nuclear Coulomb fields are
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soon expected and they may bring important clari-
fications on the yy — 7w (or Y7 —yn) matrix ele-
ments. For the time being, it is perhaps better to
look more carefully at what has really been
achieved in the present theoretical understanding
of the proton Compton effect at low and interme-
diate energies, by trying to work as much as pos-
sible in a model-independent framework in order
to isolate the space actually left for model building
from that part of the conclusions which remain

in fact untouched by assumption regarding high-
energy asymptotic behaviors and/or annihilation-
channel contributions. We have undertaken such
an attempt in the work reported here.

Some recent new results in the dispersion theory
of hadron Compton scattering*” which originated
in themes previously put forward in Refs. 8 to 10
have made possible the present investigation. The
progress realized so far refers mainly to the con-
struction? of six new (analytic unitary) amplitudes
for proton Compton scattering which share with
the invariant amplitudes (free of kinematical sin-
gularities and zeros) their simple s-u crossing
properties and analyticity structure in v at fixed
t (v=1i(s -u), s,t,u=Mandelstam invariants) while, °
on the unitarity cut in the complex v? plane, they
are related to the usual helicity amplitudes by a
unitary matrix. The unpolarized differential cross
section on the boundary of the analyticity region
can thereby be written as a sum of moduli squared
of analytic objects. Since this analytic diagonaliza-
tion of the cross section was accomplished, the
question of finding (optimal) analyticity restrictions
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on the values of the amplitudes or their partial
derivatives with respect to v at interior points of
the analyticity domain is brought®*® to the applica-
tion of more or less known methods and results
from the current mathematical literature. Espe-
cially, one has to deal with the interpolation theory

and with boundary-value problems for vector-valued

analytic functions.

In Refs. 6 and 7 optimal bounds on the amplitudes
and cross section in the (physical) low-energy re-
gion below the threshold v? of single-pion photo-
production have been concretely obtained (taking
the unpolarized differential cross section as known
above v,%) and subsequently numerically tested
using experimental data. Those of the bounds
which referred only to directly measurable
quantities appeared satisfied but rather weak in
spite of the complete exploitation of the gauge in-
variance, s-u crossing, and fixed-{ analyticity
properties of the amplitudes. This weakness is
understandable because of the reduced dynamical
input and the generality of the underlying assump-
tions. The question of including rigorously in the
formalism the main dynamical ingredient, i.e.,
the pion photoproduction data, still remained open
although in the last section of Ref. 7 an attempt
had been made to illustrate in a simple manner
how productive such an enlargement of the starting
information might be in strengthening the bounds.
In the present paper within a certain particular
but precise formulation of this problem we are
able to solve it to the very end. The absorptive
parts of all the six invariant (or helicity) ampli-
tudes of the process are taken as known (in terms
of single-pion-photoproduction multipoles) over
the interval v ?<1? <y, ?, where v, 2 is the thresh-
old of double-pion photoproduction (in practice
um2 may be chosen well above this second inelastic
threshold since the double-pion-photoproduction
contributions remain comparatively very small up
to photon laboratory energies w~ 800 MeV); above
v,,2 the unpolarized differential cross section for
proton Compton scattering is taken as known from
experiment. This information (supplemented with
the knowledge of the s,#-channel Born-poles re-
sidua which are entirely specified by the proton’s
charge and anomalous magnetic moment) is opti-
mally exploited to get, by means of special tech-
niques, the domain of the allowed values of the
amplitudes at any wanted v® point. Particularly,
for v? in the physical region from v_,,? up to v, ?
(i.e., in the low- and intermediate-energy region
including the zone of the N* resonance) one there-
from obtains, through a subsequent extremization,
the optimal domain of allowed values for the po-
larized or unpolarized differential cross sections.
The interval of (physical) ¢ values in which the

present considerations hold is sufficiently large to
cover all the physical angles and is substantially
larger than the domain of the ¢ allowed in Refs.
10, 4, 6, and 7.

The complete treatment of the above physical
input leads to a problem of functional extremiza-
tion, related to a combined finite Pick-Nevanlinna
and infinite Schur-Carathéodory interpolation prob-
lem for vector-valued analytic functions. This
kind of problem is treated by techniques of func-
tional analysis in the specialized literature -3
Such techniques have already been applied in the
scalar case (i.e., the case of only one analytic
function) in other studies.!#*'® In order to get
numbers to be compared with experimental val-
ues, complex computational methods and program-
ming devices were employed, some of them being
adapted from material already existing.'”

This paper is organized as follows. In Sec. II
the problem to be solved is precisely formulated
starting from a certain physical input accepted as
known. The solution of the problem is obtained in
Sec. III. In Sec. IV an optimal-sum-rule inequality
relating the proton anomalous magnetic moment to
the single-pion-photoproduction multipoles and the
Compton-scattering unpolarized differential cross
section is obtained and tested numerically. In Sec.
V (analyticity and unitarity) bounds on the unpo-
larized or polarized differential cross sections
are found and compared with experiment. The
lower bounds improve previous results and give
rise to some violations which evidentiate incon-
sistencies between the results of the pion-photo-
production multipole extractions and proton Comp-
ton-scattering data. Section VI is devoted to some
final comments.

II. FORMULATION OF THE PROBLEM

We shall work here with the Bardeen-Tung
amplitudes A(v,?) used in Ref. 1 or rather with
the (nucleon) pole-free (s-u crossing symmetric)
amplitudes

AP0 =KAWV - v A (v,1) (i=1,...,6),

1
Kl:;;;’ K,=K, =1,

2
K, =%L" Ks=m, Ke;:'y%;

v 2=12/16 =the position of the s-u-channel Born
poles. A(vg? t) are known functions of £, speci~
fied completely in terms of the proton charge and
anomalous magnetic moment [see, for instance,
Eq. (2.9) of Ref. 4]. A(v%,{) are real analytic func-
tions [AX(v?*,t) =A,(v%, )] in the complex v* plane
cut along the real axis from v,? to . To the low-
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est order in the fine-structure constant the first
inelastic threshold v, is given by

t L
Vo=%(s°_m2+_2—) [so=(m+ w?], Vo=%#(ﬂ+2m)+z

(u=pion mass, m =proton mass). The physical
region of the process in the v,¢ variables is

t\/2
t<0, VZth=%(—t)”2(m2—Z) .

We recall the kinematical relations

¢ 1+2w/m
v=Em u)i"z ’ -——72255——-,
where w denotes the photon energy in the labora-
tory system and 6. the center-of-mass scatter-
ing angle.

The essential dynamical information about the
Compton process is provided by unitarity, which
gives an exact connection between the absorptive
parts ImZ‘. above the pion-photoproduction thresh-
old s,=(m + p)? and the amplitudes describing
various photoproduction processes. Since in the
present work we use this information only at low
and intermediate energies we retain only two-par-
ticle (i.e., mN) intermediate states in the s-channel
unitarity sum and compute the imaginary parts
ImZi in terms of the multipoles for single-pion
photoproduction

cosf, . =1+t

m

ImA (1%, t) =p,(v3,1) (i=1,...6), v2svi<y 2.
(2.1)

The concrete form of the functions p (1%, ¢) we have
worked with is that employed in Ref. 1 [we recall
that the pion-photoproduction multipoles were taken
from Ref. 18 in the w (photon laboratory energy)
region from 180 to 250 MeV and from Ref. 19 for
250 MeV < w< 1210 MeV]. Rigorously, Eq. (2.1)

is exact only up to the threshold of double-pion
photoproduction v, 2=(s,, - m?®+t/2)%/4, s, =(m
+2u)%. However, the contribution of the multi-
pion photoproduction is believed to be rather small
well beyond this threshold, as suggested for in-
stance by the estimations performed in Ref. 3.
Therefore in the actual calculations we shall take
for the threshold v, ? various values below that
corresponding to w=1210 MeV, the limit up to
which the multipoles are tabulated in Ref. 19.
Above the threshold v, ? the unpolarized differen-~
tial cross section (UDCS) of the elastic y-proton
scattering will be considered as known. This
yields a boundary condition on the amplitudes 4,
of the general form*

6
2 MR OANE OA0A D =o(R, 1), P>, 2,
$,4=1

(2.2)
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where the matrix M is Hermitian and positive de-
finite on the cut and ¢ is related to the UDCS in
the center-of-mass system by

o(v?,t) =128nzs<£g> . (2.3)

at /o, m.,

The concrete expression of M,(1?,1) is to be read
off, for instance, from Eqs. (2.10)=(2.12) of Ref.
4.

In the present paper we establish and exploit a
dispersion formalism which takes into account in
an optimal way the physical information contained
in the relations (2.1) and (2.2). As a consequence,
constraints upon the values of the amplitudes Zi or
their derivatives with respect to v? at fixed ¢ in an
arbitrary number of points inside the analyticity
domain (12 <vy?) or on the cut, in the region
v2<1®<v, 2, can be derived and expressed in
terms of this physical input. Our derivation re-
lies on functional-analysis methods used in the
theory of extremal problems for vector-valued
analytic functions.!*-!3 Below we shall formulate
rigorously the extremum problem to be solved in
connection with the physical boundary conditions
(2.1) and (2.2) and the solution of this problem will
be worked out in detail in the next section.

We start by noticing that the present considera-
tions generalize the approach developed in Refs.

4 to 7 to the more difficult case in which conse-
quences of the unitarity condition are being incor-
porated. The main point of the procedure applied
in these references was an analytic factorization
of the bilinear form from the left-hand side of Eq.
(2.2).

A new set of six “analytic unitary amplitudes”
having the same good analyticity structure in »?
as the invariant amplitudes Zi but connected with
the usual helicity amplitudes f; by a matrix which
is unitary on the cut was found. For treating the
condition (2.2) as it appears now, i.e., only along
a part of the unitarity cut, it is natural to resort
to the same technique as in Ref. 4 properly adapted
to the new situation. Accordingly, let us perform
first the conformal mapping

=(thz T T e b
V2 — VBz)uz +(V1n2 — Az

(2.4)

which brings the cut v* plane onto the interior of
the unit disk |z| <1 cut along the real segment
[x4,1], where

O W U
o (V{uZ — VBZ)l/Z +(V1n2 - V02)1/2

From (2.4) this segment is seen to be the image of
the part [v?, v, 2] of the unitarity cut, the upper
and lower borders of the remaining part =y 2
being applied onto the upper and lower semicir-
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cles, respectively. For convenience the point v g?
was applied through (2.4) in the origin z =0.
We introduce further the outer real analytic

function'?

1 T i6+
8(2)=exp[ﬂ f f;;_—zlno(e)de]

which, by definition, has the modulus equal to
[0(6)]*/2 on the boundary z =e® and has no zeros

(2.5)

N(z)=Nm(V2,t)=<NI 0 ,
0 Ny

inside the unit disk |z| <1. Particularly $(x) is
seen to be positive for real x.

By the conformal mapping (2.4) the condition
(2.2) is imposed along the circle |z| =1, exactly
as it was in Ref. 4. One can therefore apply step
by step the procedure developed there for diagon-
alizing the bilinear form expressing o. Specially,
we shall consider the 6 X 6 matrix

_4£2[Vin +(Uin2 — V2)1/2]

O O m(4m2 - t)1/2
- WL(—t)l/z 12 . 12 —4V2(—t)1/2
N1—2\/2—(L1)2 (=2)*"?(4m?-t) 0 e AmE = D) s (2.6)
42
0 t -
N.. = 1;2
T 4y2(L,)%( 20, ) vy + (v, 2 = v, D22
( SN
2
tL, ,,-},FLz[V{n (1,2 = 1,02
X[vg, + (v, = v)12)
X —8mLz(2Vin)1/2 _ %2(4”22 - t)llz(zyin)llz 0

x [Vin +(Vin2 - mez)uz]uz

2)1/2]

-2t 2
v {Vmin + [Vin +(V1n = Vuin
min

L

X [yt (v, 2 =32

2[(vy® = v ) 2+ (v, = vV 7],

which is obtained from the matrix Ny(»?,¢) defined
in Egs. (2.21)—(2.24) of Ref. 6 by simply replacing
the threshold v ? with the new threshold v, ? rele-
vant in the present case. By construction the ma-
trix N(z) is real analytic and nonsingular [detN(z)
#0]in |z| <1. Therefore the new set of amplitudes
¢ (z) defined by the relations

9 2) =.§(127§ N (A f2) (i=1,...,6)  (2.7)

has the same analyticity properties as the ampli-
tudes 4,, i.e., they are real analytic in the disk
|z] <1 with a cut along the segment [x,,1]. Since
both 8(z) and N(z) are real along this segment,
being by construction analytic and of real type in
|z| <1, the discontinuity of the functions @,(2)
across this cut, obtained from Egs. (2.1) and (2.7)

X [Vln +( Vin2 - me2)1/2]1 2

—4v
m? P+, +(v,? “Vin )]

x[vin +(Uin2 - UZ)I/Z]}

J

Ly =20, = v P+ (0,7 = 1

r
is

Im(pi(x) =§(1;5ZN“(9€)P,:(9€), X< [xo, 1] (i=1,..., 6)
=1

(2.8)

and the condition (2.2) expressed in terms of these
amplitudes takes on the simple form
6
D ledd|2=1, ec[~-m,1]. (2.9
i=1
We shall now take into account explicitly the analy-
ticity properties of the functions ¢,(z) by splitting
each of them into two terms, one being analytic
in [z l < 1 and the other having a cut along the seg-
ment [x,, 1] with a given discontinuity (2.8) across
it. Of course this separation is not unique but as
we shall see below the result will not depend upon
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this arbitrariness. For our purposes it is conven-
ient to write ¢ (2)

(o)l [TImE)
‘”‘(Z)'g"(z”wf,o o

where >0 is arbitrary and Img,(x) for x>1 are
arbitrary continuous extensions of the functions
(2.8) known for x <1, Since the last term in (2.10)
has inside |z| <1 a cut for x,<x <1 with the same
discontinuity as ¢,, the functions g(z) are real
analytic in |z| <1, having in particular real values
for xo<x <1.

By introducing the relations (2.10) into (2.9),
the boundary conditions of the problem, expressed
by Egs. (2.1) and (2.2), can be formulated in terms

dz (i=1,...,6), (2.10)

of the functions g (z) in the following compact form:

6e[-mm].

2
. (2.11)

The sign < was introduced above instead of the
equality sign in order to preserve, in further
considerations, the freedom of using, instead

of the cross section given for V2>Vin2, a quantity
majorizing it.

Let now v,2, 1 <k <u be n points, which we as-
sume for simplicity to be distinct and situated on
the real axis, below the threshold vinz and Zi(vkz, t)
the values taken in these points by the amplitudes
A,, which are real if v <v,? and complex on the
cut, i.e., for v, >vy2. Denoting by z, the images
of the points v, through the conformal mapping
(2.4) one has from Egs. (2.10) and (2.7)

1 " Ime (x)
gi(e)'*';‘[o - e‘gd

gi,(zk) s(z )zNj(Zk j(zlz)
_lj‘l"’lmw.(x)

dx , zp<x
s X - Zp ’ 0’

(i=1,...,6), (2.12)

1 < -
g‘(zk)=§@;N1.’(zk)ReAj(zk)
1+
f "Iﬂ&("_)dx, xg<zn<1

the last 1ntegral being evaluated as a principal
part.

The problem we have to solve is to find the opti-
mal domain of the allowed values A (v,?, )= Zi(zk),
consistent with Egs. (2.1) and (2.2). Since for
vi2 >v? the imaginary parts are known from (2.1),
we shall derive in this case constraints upon the
unknown real parts ReA,(v,?,#). But, as the matrix
N is nonsingular, the values of interest, Zi(zk) for
zp<x, and ReA(z,) for z,>x,, are seen from (2.12)
to be fully specified by g,(z:). We must therefore
find the admissible domain of the values

{g{zn)}5i::::28, when the functions g (z) are sub-

ject to the unique boundary condition (2.11), and
then, using (2.12), express it in terms of the val-
ues Az;) of interest. This problem will be com-
pletely solved in the next section.

III. SOLUTION OF THE PROBLEM

We first notice that the values {g,(z,)}%:100%
compatible with the condition (2.11), form a con-
vex and closed domain D in the Euclidean space
R®",  Let us take a point of coordinates
{g:(z,)} %007 inside this domain. This means that
one can f1nd at least one set of analytic functions
£;(z) which take these values in the points z, and
satisfy (2.11) on the whole boundary. There-
fore if one calculates the L® norm, i.e., the es-
sential supremum with respect to 8 € [- 7, 7] of the
left-hand side of (2.11) for a fixed set of an-
alytic functions g;, having at z, the fixed values
g:(z,), and then takes the infimum with respect to
all these functions, the result surely will be less
than or equal to one. On the other hand, if a point
{g:(z,)}4zinio% is outside D, the L® norm of the ex-
pression appearing in (2.11) will be strictly
greater than one for all the analytic functions g,
taking in z, the prescribed values g,(z,). If one
considers again the infimum of all such L® norms
and takes into account the fact that it is effectively
attained by some analytic functions g; (Refs. 12
and 13) one will also obtain a number strictly
greater than one. From the above arguments it
follows that the domain D of admissible values
{g,(z,)}5cksm is exactly described by the inequal-

ity
Mo = min H[ ‘g (6)
g€H" i=1
Ei(ck)=given
(i=lye 00,65 k=1y 0 oyn)
1 i Im¢, (x) 21/2
t f io xl ]
T J -e "
<1, (3.1)

which is actually saturated if the points
{g,(z)}%=1n:: % are situated on the frontier of D.
In this relatlon we have restricted the minimiza-
tion to analytic functions g, of class H*(Ref. 12),
i.e., bounded in |z |<1. Actually this restriction
did not appear in our previous discussion. How-
ever, since the nonanalytic terms added to g,’s
in Eq. (3.1) are by construction bounded on the
frontier of the unit disk, it is enough to consider
in the minimization process only bounded analytic
functions g,, the L” norm being otherwise infinite
and hence of no interest for us.

In order to solve the constrained minimization
problem (3.1) it is convenient to express first the
functions g,(z) as
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g,(&)= ZA“’B ()+ B, ,(2)h,(2) (i=1,+.4,8),
(3.2)

where B,(z) are products of Blaschke factors'?
defined recurrently by

B,(z)=1, B,(2)=B (z) £ By

R-1

k=2,..., (n+1), (3.3)
and A;" are real coefficients determined from the
triangular system of equations
13

£,z)= 2L AW¥B(z,), k=1,0ee,n G=1,...,6),

it (3.4)
In the expressions ( 3.2) the additional constraints
upon the values of the functions g, in the points z,,
appearing in Eq. (3.1), are automatically fulfilled,
the functions hi.(z) being arbitrary bounded analytic
functions in |z | <1. By introducing Eq. (3.2) into
Eq. (3.1) and taking into account the fact that the
Blaschke factors have modulus equal to one on the
boundary, the minimization problem (3.1) written
in terms of i, becomes

’

6 /2
llw: mln [2 lhi(e)—xi(e)lz]l “ ’ (3.5)
hEH® i=1 b
where
X (9)_ _ ZA(i) )

B,, 1(9)
en Imqol(x .

ﬂBn.x(G)f x-c? & o (1=1,-,6)

(3.6)
are the boundary values of a set of six functions,
nonanalytic inside the unit disk, and the analytic
functions %;, unlike g, in Eq. (3.1), are subject to
no additional constraints.

The solution of the minimization problem (3.5)
can be obtained by applying a duality theorem.!*?
Usually, by duality a minimum norm problem in
an abstract space is related to a problem of max-
imization in the dual space, which is sometimes
simpler than the initial one. For completeness we
first state below the general duality theorem for
minimum norm problems,'''? gspecifying afterwards
its particular form as needed in our case.

Let X be a Banach space and X* its normed dual
(i.e., the space of all linear continuous functionals
acting on X). We denote by (x*, x) the value taken
by the functional x* € X* acting upon the element
xe€X. Then if x and x* are fixed vectors in X and
X* respectively, M a closed subspace of X, and
M* C X* the orthogonal complement (the annihila-
tor) of M (i.e., {(m*,m)= 0 for every m € M and
m*eM*), the following equalities hold:

mf |x-ml = max [¢m*, x|, (8.7)

me
L} m*“sl

min ||x*-mx||=sup [(x*,m)]|. (3.7)
m*¥eML meM
Hmit<1

The maximum in the right-hand side of Eq. (3.7)
and the minimum in the left-hand side of Eq. (3.7)
are attained.

In the present problem we are dealing with the
spaces I.? (1<p <w) of vector-valued functions

T ={r,6)},.,° (measurable on -7, 7] with respect

to the measure d6/27) with the norms

- [ 10T,
E{gl;ﬁ'de[glf,(e)lz]m}w <w, 1<p<ew

R R

= ess sup [Z |f¢(9)|2]1/2 <oo

GEL-7,x] §=1

[where ess sup=essential(i.e., up to a null-measure
set) supremum ] and with the subspaces H? of I.*con-
sisting of (boundary values of) analytic vector-valued
functions in |z|<1. According to the Riesz
theorem*'*? the dual of T.” is the space .7 (with
1/p+1/g=1, 1<sp<oo) and every linear continuous
functional on T.” has the form

(%, 1) = 2—1—f 21«" ©)£,0)a8, Tef?, Fels.
Ty o1

(3.9)
Moreover, the annihilator of H” , required in the
duality theorem (3.7), consists!"'? of all the func-
tions having the form ¥(z) = 2G(z), with Ge He.
With these preliminaries we apply the general re-
lation (3.7) to the minimum-norm problem (3.5),
where we identify X* and M* to be T and A=, re-
spectively, and the element x* the boundary value
of the nonanalytic function X ={x,(8)},..° e T.".
Using (3.7’) and (3.9) we obtain

po = min |H-X|l.

Riefl~

(3.10)

" P 21nj;l “Z_: F (c)x,(z)dgl,
N <1

where ¢= e and d¢=14¢df.

In order to evaluate the supremum over the func-
tions F; we first evaluate the integral appearing
in (3.10), using the expressions (3.6) of the func-
tions ¥, (¢= e%) and applying the residua theorem.
The first term of X, contains only poles (due to the
Blaschke factor in the denominator) and brings
in the contribution

Z ZA({)EF ( )[(Z & —-2,)0,\%) z-zB) (Z)]
2=x,

$=1 j=1 k=]
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to the integral in Eq. (3.10). Permutmg the sums
upon j and k, i.e., 2y 2 ;= 2upy ,_ and taking
into account Egs. (3.4) one finds

1= Z ZF (2,)2 (=, )[ d(z)]

i=1 g=1

The contribution of the second term entering ¥,
can be evaluated by applying again the residua
theorem but noticing that now the integrand has a
cut along the segment [x,, 1]. We first write

i=1

(3.12)
where we have picked up the contribution of the
poles z, situated below the threshold x,, the re-
maining term I5 containing an additional integral
around the segment [x,, 1]

""—-2mf y—

dx {26:{ F (3 + i€) Img (x)

7LB,, (v + i€)(x -y - i€)

F,(y —i€) Img (x) ]
B,,(y-i€)x~y+i€)] )’

By using the known identity

1 f‘*" Img,(x) (x)

x— yi-‘LE

1
P f _‘_Im<p (x) dx¥iIme,(y)

and by applying once again the residua theorem
for the poles of the Blaschke factors situated in-
side the contour of integration, i.e., for z,>x,,
one can write I, as

=3 Trelith] ST

¢k>x %g

j ' Fy(x) Ime,(x) ) (3.13)
n;l(x
We now 1ntroduce the relations (3.11), (3.12),
and (3.13) in the right-hand side of Eq. (3.10).

Using the relations (2.12) one notices that the in-
1

] 1en
L=3 ZF<Z [2-2 ] f 9, gy,
l +1(z) x=£ x- zk

termediate values g,(zk) as well as the arbitrary
functions Im(p,(x) for x >1 eventually disappear
from the result which is expressed only in terms
of the input values ¢,(z,) and Img,(x) for x <1 as

vg, BT rinin 28],
R

i'éfl <
N1
+ Z F,(zx) Reg, (z )[——f-ﬂ

&%

1

M@dx} . (3.14)

%o Bml (x)

For the further evaluation of the supremum (3.14)
it is convenient to use a factorization of the func-
tion Fe A1 We first define the function

1 i 1/a
w(z)=exp{ﬂf iw” [ | F( e)l] de},
-1

(3.15)
which is, by construction, an outer analytic func-
tion belonging to the Hilbert space H2, From the
constraint upon the functions F;(z) it follows that
w obeys the condition

1
Hwll?=5- | l OIRL)

=§1; [,, [26:1 |Fi(e)|2]1/2des1. (3.16)

We now define the functions G; through the rela-
tions

Fi(z)=w(2)G;(2) (i=1,...,6) (3.17)
and notice that they belong to H? and moreover
satisfy [in view of Egs. (3.14) and (3.16)] the in-
equality

[1GI].2 =—f ZIG 6)|2d6

- i=

=Lﬂf_”[;lF¢(9)l2} do<1. (3.i8)

The supremum (3.14), written in terms of w(z)
and G;(z) becomes

#e® wEHSZupéEHZ El{zzﬂz W(Zk)G (Zkka (Zk)[ +1(z) 2=z,
llw lig=1, G =1
+ Z w(z,)G;(z,) Reg; (zk)[——-—zﬁj] P w(x)G x)(I:)l(P‘(x)dx}l (3.19)
zk>x0 n+1 z= zp n+1

and it can actually be expressed as a norm of an
operator acting from 72 into H2. Indeed, let us
first develop w(z) and G;(z) as a Taylor series

w(z)= Z wmzm’
m=o

Gi(2)= 2 G8%2™ (i=1,...,6).
m=0

(3.20)

Then Eg. (3.19) can be written as

had []

po=  sup > w, ZH“’G“’\ (3.21)
Lo m’s myk=1 i
L T (;)241

where H') are the elements of the Hankel ma-
trices H®,
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H=cW ey mk=1,2,... (i=1,...,6),
(3.22)

defined in terms of the real coefficients ¢,

2 =2y
By = Z EHNG [ (z)]
£;<x0 n [ 5=8p

v 2 szecp,(Zk)[ .1(3)]"!:

523,
1,4
B Imeiy)
T Je, By, (x)
j=0,1,... (¢=1,...6). (3.23)

In Eq. (3.21) there appears the norm of an infinite
matrix acting from 12 into 72.!' For its computa-
tion it is useful to truncate the matrices H’ at a
finite dimension N by setting all the coefficients
c%,,,,=0 for j> N and to take into account the fact
that the norms obtained in this way tend, for N
-~ towards the exact result (3.21),1%1%

Let us evaluate explicitly the supremum (3.21)
by means of the Kuhn-Tucker theorem for convex
optimization,?® assuming that the matrices are al-
ready truncated at the dimension N. The Lagrang-
ian of the problem is

6 N
= Z Z wm-lc (ki-)l (H()if) )km

i=1 Rym=1

+ AN( Wt — 1)
m=l

+ "N(Zz G - )
i=1 k=1

with A, and k) being non-negative Lagrange multi-

pliers. By setting the derivatives of £ with re-

spect to w,, and G’ equal to zero one has

N

Mm

(H%))mhcg-)l=thm-1! m= 172’ ... N3

-
n

1 R=1

£

(i) = i _
(HN )kmwm-l_KNG(g-)p k—l,Z,...
m=1

w,=0, m=N; G{’=0, k=N (i=1,...6). (3.24)

If one now multiplies the first set of equations by
w,,., and the second one by G¢),, sums upon m and
i,k, respectively, and takes into account the fact
that for nonzero A, and «, the constraints upon
w,, and G’ must be saturated,® one obtains

N 8
Ay=Ky= 3 Wy ‘Z;(H%’)M,G?_’l. (3.25)

Rym=1

Using this equality in Eqs. (3.24), one also finds

N _6
2o 2 H D H D oy =N y0py (3.26)

which shows that A ,? is an eigenvalue of the real
matrix

,N (i=1,...,6);

6
HN=‘§ H? (3.27)

In Eq. (3.25) expressing A, one may recognize on
the other hand the supremum to be evaluated. It
is thus equal to the square root of the greatest
eigenvalue A, .2 of the matrix H, defined in Eq.
(3.27). In view of the starting formula (3.1) and of
the above remarks one obtains the inequality
%= lim p®%= lima, o 2(A,(z,))< 1, (3.28)
N—>w N—ew

which provides the required optimal description of
the domain D of the allowed values for A,(v,2,t);

Ay max depends 1mp11c1t1y on A,(v,f,t) through the
coefficients c%,,,, as seen from Egs. (3.22),
(3.23), and (3.27).

The problem formulated in Sec. II is thereby
solved. A first specific application of this result,
together with details concerning the numerical
calculations, will be presented in the next section,
where we shall be interested in the case of a single
interior point v?=wgz%z =0), actually corresponding
to the location of the s, #-channel Born poles.

We point out also that the inequality (3.28) can be
expressed equivalently as a non-negativity condi-
tion for the matrix 1 —H, when N - which, in the
particular case v, 2=v?, can be reduced to the
condition derived in Ref. 5 and tested in Ref. 7.

Before concluding this section we shall present,
as an alternative to the above technique, another
formulation useful in practical applications. The
problem treated above was complicated since it
actually was an infinite Schur-Carathéodory inter-
polation in the origin (z =0), combined with a finite
Pick-Nevanlinna interpolation in distinct points
z,, formulated in the Banach space H*. Usually a
minimum norm or an interpolation problem is
considerably simplified if it can be considered in a
Hilbert space such as H2. In what follows we shall
exploit this idea, embedding the problem from the
initial H* space into a large family of Hilbert
spaces H?. Let us first go back to Eq. (3.19) and
assume that the function w is kept fixed, the max-
imization being performed only over the functions
G,. By this procedure the resulting supremum,
depending on w and denoted further by u,(w) will
be, for every w with the properties required in
(3.19), less (in general) than the optimal value p.,.
Therefore if this new supremum is majorized by
one, a constraint upon the values 4,(v,%,¢), weaker
in general than the optimal one (3.28), is obtained.
This means that the domain D, of admissible val-
ues for Z‘(vf,t) in this new context is (in general)
larger than D and includes it. On the other hand,
as we shall show below, D,,, unlike D, can be ex-
plicitly found. Indeed, it is yielded by the inequal-
ity
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“2(w) = Ssup
def2
nauzsl

LISET n+1(

+ Y w(e,)6,(,) Reo, (2 )[
P %,

2 zZ =z
Z{Z w(z,,)Gi(z,,)%(z,,)[B 2>],=,,,

Z ~Zp
n*l(z

Developing as before the functions G;(z) in the Taylor series, this relation becomes

ZZ G“) (:()mﬂ)

i=1 m=0

dlw)= _ sup 1

EG E" G(")st ’

where the real coefficients v, are

7-("1’1)' Z Zp W(Z )ﬁ%(z )[_"_:z'(i‘]

f<x, Z)zuk 2> %,
_P x"w(x) Imgi(x)

w Xg Bnﬂ(x)

dx, m=0,1,...;(

Z =z
+ Z Zh'"W(Zh)Re‘Pi(Zk)[E——L]
2=8)p

] f wi( x)G ) Ime; (v )dx <1 (3.29)
222, EN "‘” () . '
(3.30)
n*l(z)
.,6). (3.31)

The evaluation of the supremum (3.30) is trivial: using the Cauchy-Schwarz inequality we obtain

“zz(w EZ Y(‘()mﬁl) <

i=1 m=0

(3.32)

By introducing in this relation the éxpressions (3.31) for 'y‘_i(’m,l) and noticing that the summation upon m
can be performed exactly, the following inequality describing explicitly the domain D, is obtained:

2 =Z;

%) E {Z Re%l(z_,,)stjD,( )w(z,,)w(z,)[; —z;] _‘k[

n+1(z) &=

i=1 JoR=1

n
-2 Z Rey;(z,)w(z,
R=1

) [fzz ¢ >].=., :

n
-

In this relation the points z,(|z,|<1) lie below or
above the threshold x,. When z,<x, the values
¢;(z,) are of course real and the notation Reg;(z,)
is for them redundant.

From the initial conditions (2.1) and (2.2) of the
problem we have obtained in (3.33) a set of neces-
sary constraints on the values Z,(sz,t), for every
outer analytic function w in the unit sphere of H2,
Finding among these constraints the optimal one
amounts to taking the supremum over w in u,(w).
The practical usefulness of the procedure proposed
here depends upon a successful guess of a simple
and economical way of approaching closely the
optimal result by a suitable choice of w. Of course,

a complete maximization would lead again to the
previous optimal result (3.28). The number p,(w)
defined in (3.29) is also the solution of the mini-
mum-norm problem:

w(8) [ES:

i=1

Ky(w)= min
£, €H
& (2p)=given

gi(G)

Ll
f m¢ zed

2} 1/2

(3.34)

2

B,.( )] 2=,

' Im@i(x)w(x
% (1 - Xz ) n+1

Ime; (x Im<ﬂ( Jwxw(y)
ff (1 -xy) B ., (x)B ner(¥) dxdy}

(3.33)

i
The equivalence between Eq. (3.29) and Eq. (3.34)
may be established by applying again the duality
theorem (3.7'), the spaces X* and M* in the stated
theorem being this time T2 and -I:Iz, respectively.
In the relation (3.34) one may recognize an L2
norm, weighted by a function w € H? with [lwl|l,< 1
[actually this justifies our notation w,(w)]. The
mapping of the unit circle |z |=1 onto itself,

z-a
1-za’

? -

(3.35)

where @ is a real parameter @ ¢ (-1,1), leaves
invariant the L* norm of a function f,

lIfll, = ess suplf(e)l , oe[-m,m],

while it changes the L? norm,

=55 [ lrto)1%a0]

Actually, by taking the maximum of all such L2
norms one obtains ||fll,. A suitable choice for w
appears to be!®

(1 __az)J./z

w)= 1-za

(3.36)
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since |w(6)|2=(1 -a?)/(1 - 2a cosf+ a?) coincides
with the Jacobian |d6’/d6| of the conformal map-
ping (3.35). By varying « in the interval (-1,1)
we expect to obtain a result very close to the
optimal one (3.28).

IV. THE “ONE-POINT PROBLEM”: OPTIMAL SUM
RULES FOR THE BORN RESIDUA

In this section we perform the first numerical
application of the technique presented above. We
start by treating the case of a single interior point
corresponding to the position of the s, u-channel
Born poles, vg?=¢2/16. The amplitudes A, take at
this point values completely specified in terms of
t, the electric charge, and the anomalous magnetic
moment of the target.* Optimal-sum-rule inequal-
ities for these values are derived in Refs. 4 and 6
and were investigated numerically in Ref. 7. In
this present context one makes use, in addition, of
the absorptive parts Imz, as yielded by the uni-
tarity condition.

We shall perform the numerical analysis using
both the rather complicated L* solution (3.28) and

]

X

0= 3o 2 0n0) - 2o 0] [ 2l ments)

i=1

+

_1f‘ Tww(y)Imei(x) Ime(y)
m? x xy(l _xy)

*o

although it is in general nonoptimal, presents the
great practical advantage of displaying an explicit
dependence on ¢,;(0). In fact in Eq. (4.3) one has
a family of sum rules (labeled by the arbitrary
function w) which must approach the optimal re-
sult (4.2) when the maximum over w (with [lwl|,?
<1) is taken. In this section both the inequalities
(4.2) and (4.3) will be examined in detail numeri-
cally.

For the purposes of the present analysis it is
quite reasonable to test the above sum rules for
several v, ® values situated in the range corres-
ponding to the photon (laboratory) energy region
w< 1210 MeV, where the pion-photoproduction
multipoles are available.'®'’® Particularly, when
vy, 2=v,% we must obviously recover the corres-
ponding results reported in Ref. 7. In the context
of the present paper one has a much greater flexi-
bility concerning the allowed range of values for
the momentum transfer than in Refs. 5 and 7. In-
deed, the limitation for { comes from the require-
ment that the region v?> v, ? be physical (i.e.,
V4,®> Vi) since in this region one uses the cross
section of the Compton scattering. This gives for
t the allowed range

the sum rule (3.33). We particularize the general
formulas derived in the previous section to the
case of a single interior point vg? applied through
the mapping (2.4) into z=0. The coefficients
¢, defined in Eq. (3.23) are

1 r!
C‘.‘(’!-ﬁ-l):(Pi(O)a!O—.;f %3 Im@; (v )dx 5

*o
§=0,1,...; (i=1,...,6). (4.1)

We have first to construct the matrix H, defined
by Eqgs. (3.22) and (3.27) and then to compute its

greatest eigenvalue Ay ...%, which depends impli-
citly on the values ¢,;(0) containing the Born-pole
residua. In the limit N~ , A, .. 2 actually pro-
vides, according to the inequality (3.28), the op-
timal constraint looked for,

k2= lm Ay 2(@;(0)< 1. (4.2)

N—eo

On the other hand, according to the arguments ex-
pressed in the previous section, the inequality
(3.33) which now takes on the particular form

dx

dxdy} <1, (4.3)

—
—4mwy?
iiilhet 3 WP

< =
T S0 (v=mw, +t/4),

so that for w, > 300 MeV one may work practically
in the whole interval -12u2<¢< 0 in which the
Legendre series for the imaginary parts Im;l-,
converges.?* This relaxation of the momentum-
transfer domain of validity of the constraints is
very important since it allows a model-indepen-
dent treatment of the proton Compton effect in the
whole N * resonance region.

For carrying out the numerical investigation of
the above inequalities a set of computational pro-
grams, dealing with the various steps of the cal-
culations, were applied. In what follows we brief-
ly describe the main points of these programs.

A first problem that occurred was the calcula-
tion of the outer function $(z) defined in Eq. (2.5).
Using the equality o(—0)=0(6) we wrote this rela-
tion in the equivalent form

1_z2 T

$(z)= exp[ o Ino(6)

o 1-22cosf+z?

do] , (4.4)

where the variable 6 is related to v? at fixed ¢ by
the relation
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VV -V
6=2arc tanﬁ , vEzu (4.5)

which follows from Eq. (2.4).

We have computed the integral (4.4) using the
experimental data on the differential cross sec-
tion do/dS2 considered as a function of v2 at fixed
t. In the present work (apart from small differ-
ences in the evaluation of the high-energy contri-
butions) we have adopted for o(v2,¢) the parame-
trizations discussed in detail in Ref. 7. 8(z) de-
pends essentially only upon the values of o(v2,t)
in the immediate vicinity of the threshold v, 2.

In our applications we shall often work with a
threshold v, corresponding to w,,~ 700-1210
MeV. As in Ref. 7, we have employed for ¢ a
linear interpolation (in the v? variable at fixed #)
between the data of Jung et al.?? at 700-850 MeV
and the high-energy parametrizations quoted in
Ref. 23. With such interpolations we have repro-
duced satisfactorily, or slightly overestimated,
the experimental values at 700—1400 MeV reported
recently in Ref. 24, for { in the allowed range.
From the formulation of the problem given in the
previous section it is clear that an overestimation
of o could weaken but not endanger the validity of
the bounds. Therefore one has to be especially
careful not to underestimate the input values of o.
On the other hand, a drastic overestimation of ¢
has to be avoided, too, since the inequalitities
then risk becoming uninterestingly large. Of
course, for completeness one must take into ac-
count also the uncertainties affecting ¢ and inves-
tigate their influence upon the results; a discus-
sion of this point will be given below. The integral
(4.4) and the integrals appearing in Egs. (4.1) and
(4.3) have been computed using a standard Gauss-
quadrature method. For the L” method leading to
the condition (4.2) we had, in addition, to calculate
the number 4, [according to Eq. (3.28)] using for
the construction of H, the relations (3.27), (3.22),
and (3.23). A similar evaluation was performed
previously in another context in Ref. 14. In the
present work we have applied, for the calculation
of Ay ma @n algorithm described in Ref. 17, which
consists in successively squaring the matrix H,
and taking the traces of the resulting matrices. It
can be shown'? that the quantity

KN. m“Z(n) = (TI' HNZ")VZ" ,

where the integer » specifies the step of iteration,
tends to the greatest eigenvalue A, .2 of H,

when -, A theoretical estimation of the error
of the procedure at the step » of the iteration and
other programming details may be found in Ref.
17. In practice, in our case a good accuracy in

the computation was achieved without difficulty.

The problem of the limit N-« in Eq. (3.28) was
also carefully investigated, the required stability
of the results against the increase of N being
practically settled for N= 100.

The techniques described above were applied in
connection with the sum rules (4.2) and (4.3) for
several values of the threshold v, ? and of the mo-
mentum transfer {. We have computed both the
number .2 defined in (4.2) and u,%(w) defined in
(4.3), with w of the form (3.36). As expected, the
maximum of the numbers u,%(w) with respect to o
was practically identical with u_2. This fact is il-
lustrated in Table I where we list, for w, =1210
MeV and ¢=~-0.5 u?, the values u,*(a) for several
values of @ within the interval (-1, 1), together
with the optimal result p 2. The maximum of u,% )
(actually corresponding to « ~0.20) is seen to co-
incide with the number p_? obtained through a
much more sophisticated procedure. This result
is important in practice since it shows that the
formulation leading to Eq. (4.3) [or more generally
to Eq. (3.33)] does not imply a significant loss of
optimality, being at the same time much more
convenient from the computational point of view.

We present in Table II the results of the evalua-
tion of the sum rules for the Born-pole residua.
All the numbers u,? [or max p,*(w)] written in
Table II are less than one, which means that the
inequalities (4.2) or (4.3) are not violated. The
various pieces of physical information entering as
input in these relations, i.e., the absorptive parts
ImA, for v2sS v %, the unpolarized differential
cross section for v?>p, ?, and the target’s static
electromagnetic characteristics (charge and mag-
netic moment) are therefore consistent with each
other. This consistency is actually very comfor-
table when the number u, is much less than one,

TABLE I. Evaluation of u22(w) defined in Eq. (4.3) for
various weight functions w(z) of the form (3.35); Moo
represents the optimal result Eq. (4.2) (w;,=1210 MeV,
t=—0.5u%).

a to¥(@)
—0.96 0.008
—0.84 0.029
—0.72 0.049
-0.60 0.066
—0.40 0.090
—-0.20 0.108

0.0 0.118

0.20 0.120

0.40 0.112

0.60 0.094

0.96 0.021

Pe?=0.12
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TABLE II. Test of the optimal-sum-rule inequality for
the Born—pole residua Eq. (4.2), for several values of
the second threshold wj, and £.

t/u?  —0.1 —-0.6 -3.48 —6.0 ~10.0
Wiy (MeV)

wo=u+p?/2m 043 0.32  0.10

300 0.57 0.56 0.49 0.45 0.39
350 0.88 0.87 0.82 0.74 0.57
400 0.86 0.86 0.81 0.77 0.62
450 0.68 0.68 0.63 0.61 0.51
500 0.48 0.48 0.48 0.48 0.48
700 0.32 0.32 0.35 0.40 0.44
1210 0.12 0.12 0.14 0.19 0.18

as it happens if w, is taken either near the
threshold w, or at high energies (w,;~ 1210 MeV).

When the threshold v, ? is taken in the N * reso-
nance region (i.e., w,,=350-400 MeV) the inequal-
ity (4.2) appears to be rather close to saturation,
at least for some low values of |t| . Before dis-
cussing the significance of this result it is neces-
sary to estimate the uncertainty upon the values
given in Table II, produced by the error, experi-
mental or computational, affecting the physical
information used as input.

A reasonable way of investigating the possible
effect of the neglected multipion photoproduction
is to modify Imfcl-i randomly by a factor not greater
than 5%, this being the order of magnitude of the
two-pion-photoproduction contribution suggested
by the analysis performed in Ref. 3. We have
found that the effect of this change in ImA4; upon
1.2 was not greater than 8-10%. This variation
turned out to be monotonical (for instance, an
overall increase of ImA4; led to larger values for
Mo ?).

The influence upon the results of the uncertain-
ties affecting the cross section o can, on the other
hand, be established in a more precise way. Let
us assume that the input cross section o(v2,¢) is
replaced by p -o(v?,t), where p is constant with
respect to ¥2. From the definition (2.5) and the
maximum-modulus principle it follows that the
outer function $(z) will become equal to Vp §(z)

and it enters quadratically in the denominator of
Eq. (4.3) it follows that w,%(w) will become equal
to (1/p)u,2(w) and the same property will hold for
lo?, too, since it is equal to the maximum of u,?
with respect to w. If we now assume that the
cross section taken as input in our calculations is
lowered by 10-15%, i.e., if it is chosen at the
lowest extremity of the experimental error bars
usually given in Refs. 22 to 26, it may be seen
from the above arguments that the numbers given
in Table II will become generally greater by
10-15%. Particularly, if the threshold w,  is
taken in the critical region 350-400 MeV and ¢ is
sufficiently low, w2 will reach 1 or become even
slightly greater, which means that the sum rule
(4.2) is saturated or even slightly violated. The
significance of these possible violations will be
discussed in the frame of the more general analy-
sis performed in the next section.

V. THE “TWO-POINT PROBLEM”: BOUNDS
FOR THE COMPTON DIFFERENTIAL
CROSS SECTION

In this section we start considering the case of
two points, one of them being again v,* and the
other an arbitrary point »,? situated either inside
the analyticity domain or on the cut, below the
second inelastic threshold v,?

Since the optimal L™ norm solution (3.29) is
rather complicated, especially when many inter-
ior points z, have to be considered and, on the
other hand, the numerical analysis performed for
the one-point problem in the previous section
showed that the formulation (3.33) leads in prac-
tice to almost the same result, we shall use in
this section only the latter, more simple formu-
lation.

For the subsequent applications it is convenient
to write the inequality (3.33) in the case of two
interior points, z =0 and the image z, of v,%,in the
form

a 3 [Reg(z,)P =23 b Regi(z,) -c<0,  (5.1)

i=1

at every point z. Since $(x) is positive for real x where
]
1 - 2
a= 2 2 W(Zz) s
2
b, = 1-z wl(z )[w(0)901(0) * wlx)Ime; () x] (i=1,...,6), (5.2)
2, Tale-z,)

taw(x)Ime; (x)(1 - xz2)

c=1— z[u}z(O)q).z(O) Zw(O)(Pi(O)P

z Z, T Jy

x(x - 2,)

dx

t w(x)w( 9)Im @; (x)Ime; (y)(1 = x25)(1 = yzZ)
T f.[ x9(1 = x9)(x = 2,)(y = 2,) ]
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The above relations are valid for z, situated either above the threshold x, or below it [in the latter case
the notation Reg;(z,) is redundant since ¢;(z,) are real numbers; also the principal part in front of the
integrals appearing in b; and ¢ becomes superfluous].

The function w entering the coefficients a, b;, and ¢ will be chosen again as in Eq. (3.36) with a left as
a free parameter. For a fixed a, a, b;, and c are completely determined in terms of the absorptive
parts ImA; (for 1% < 1,?), the cross section ¢ (for v?> ;%) and the Born-pole residua entering ¢;(0). The
entire physical input being concentrated in these coefficients, the inequality (5.1) expresses a rigorous,
model-independent constraint upon the values Rey;(z,). In geometrical terms, the inequality (5.1) shows
that the allowed values of Re;(z,) are restricted to the intersection of a set of convex domains d,, in the
Euclidean space R®. Since any physical observable of the Compton process at given v,% and ¢ is completely
specified by the amplitudes A;(v,?, ) or, equivalently, by ¢;(z,), and the imaginary parts Img;(z,) are al-
ready taken as known [particularly Im¢ (z,) =0for z,<x,], the condition(5.1) onRe¢ (2,) (i=1,2,...,6) in-
duces rigorous upper and lower bounds upon every such physical quantity of interest. Next we shall in-
vestigate the unpolarized differential cross section do/dQ as well as the differential cross sections with
the incoming photon linearly polarized parallel or normal to the reaction plane (do,/dQ and do,/dQ) at
some v? points below and above the threshold v,? for the single-pion photoproduction, especially in the N*
resonance region.

We display below the explicit expressions of the differential cross sections interms of Rey;(z,). Using
the known kinematical relations for the proton Compton scattering and Eq. (2.7) one has for v2< umz

(d—")' .(vz,t)z(d—o-)::_( L0+ BEDF 5~ b (1,2) Rewy(ep) Rew,(zs) (5.3)

dQ c.m dQ 128ﬂ2(2V2+m t/2 i,3=1
fiﬂxi . 1,4 [3(22)]2 6
(dﬂ > v, )= ( ).m.(”z’t)+128n2(2u2+m2-t/2) Z (@,,,(27)]i; Re@i(22) Re¢ (z,) (5.4)

A

‘)

Here P and Q, , are real, symmetric, and positive definite 6 6 matrices defined as

p ( 2) __[(sz - VBZ)I/Z + (vinZ - V2)1/2]2[Vin — (Vinz - V2)1 /2][(1}1“2 - me2)1/2 - (sz - v2)1/2]
u\ww’= [(Vinz - y82)1/2 - (Vinz _ V2)1/2]2[Vin+ (Vinz — VZ)I/Z][(VinZ - Vmin2)1/2 + (Vinz - V2)1/2] ’

inz_ 2)L/2 4 () 2 _ 2)1/2 2
(V ) 33(7/ %Ezmz _ 522)1/2 _ E;ﬁi _ :j2)1/2%2 )

(o) < 0 = = = P2 g P 0 Bl a2 K = g2
. (V2 = Vi) 2+ (0,7 = )1/2] (v, 2= v 2=, = V)12 Vin[vin+ vy = vAV?

5.5
[(Vin2 - VBz)1/2 + (Vinz _ V2)1 /2]2[(Vin2 _ VminZ)l/z - (Vinz _ V2)1/2]2 , ( )

P () =[(sz»_ V82)1/2 — (i — O P[(0 — vmin?) 2 + (0 — 2122

P = b () L8 =R+ (” = P L0 vaa?)' - ® = 22210 = v = ) (a2
46 64! [(Vina _ VBz)l/z — (Vinz —_ V2)1/2] [(Vm meZ)l/z ¥ (Vin2 _ Vz)llz]aVin[Vin"'( mz 2)1/2]
P?)= [(Vinz B L V2)1/2]2[(Vin2 _ Umz)uz — (32 = )2y - (V2 = V) 2(vy2 - Ummz)l/z]‘
66 - [(Vin2 _ VBZ)l/Z - (Vi“z _ V2)1/2]2[(Vin2 - meZ)l/Z + (Vin2 — Vz)l/z]’/in[yin 4 (Vin2 - VZ)]./Z] )
all the other P;;=0 and @, , =PFR with
R, (V%)
=R,,(1?)
_ [(vinz — VBZ)J./Z + (Vin2 - V2)1/2]2[(Vin2 - vminZ)l/Z - (Vinz - V2)1/2]2Vminy2
(i = ;D72 = (032 = A 2P0 - Vi) 2 + Wik = PP P20l vin+ i = vmind) PP 2wt (032 =02 2 2
R16(V2) :Rel(l/z) == [(Vinz - lJBZ):U2 +(Vin2 - uz)l/z]z[(ymz ~ Vmin 2)1/2 - (V Vz)llz] Vzhjm+(l/ inz - Vminz)“z]l/z

[(Vinz_ Vez)l/z - (Vinz - Vz)l/z]z[(vinz min2)1/2+(y - Vz)x/z(zyin)l/z [Vm*(sz;‘ V2)1/2]2

[(Vinz - VBZ)UZ +(Vin2 - V2)1/2]2[(Vm2 - me2)1/2 - (Vin2 - V2)1/2]
[(sz_ VBz)l/z_ (sz — P2 ]2[(1)1“2_ v 2)1/2+(V1n2 -3z

all the other R;;=0. As far as the first terms appearing in Eqs. (5.3) and (5.4) are concerned, they are

Ry (?) = Rsz(’/z) =-

(5.6)

min
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equal to
ao\*® _ [8(z5) P 3
(dﬂ)c.m. ~1287%(2v, +m® - £/2) i,zj=:1 Pulreimey(ez)tme, (2o ®.0
and
doy, .\ 8(zp) P <
( ;sz )m = 1281r2(2u[z Erzrzn?] -1/2) ;,‘;1 [Q,,, )], Ime,(2,)Ime,(z,) (5.8)

containing therefore the contribution of the ab-
sorptive parts. The superscript UB means “uni-
tarity bound” and expresses the fact that these
terms yield a natural lower bound on the cross
sections®” due only to unitarity requirements and
obtained by setting the real parts Reg;(z,) equal
to zero (particularly this bound is trivial, i.e.,
zero, for points below the threshold v,?). One

of our purposes was to improve this lower bound
by taking into account the nonvanishing contribu-
tion of the real parts in a model-independent way,
particularly avoiding any specific assumption
about subtractions. Since the analyticity struc-
ture of the scattering amplitudes was ignored in
purely unitarity bounds, a substantial improve-
ment is now to be expected.

In order to derive bounds on the differential
cross sections from Eqgs. (5.3) and (5.4) one has
to solve a standard finite-dimensional optimization
problem. It consists in bounding a function

F(g)= ;z,.:l Ry 8L (5.9)

when the real parameters ¢; satisfy the constraint

6 6
G(g) = 2=2) bit;—c<0.
(&) agg Z; g —c<

In these relations &; denote the parameters Reg;
(2,), the matrix & being either P or @, ,, depend-
ing on the case considered. Both the functions F,
which must be extremized, and G, expressing the
constraint, are convex functions of ¢;. Indeed, F
is a positive definite quadratic form while G re-
sults from the L2 norm of an analytic vector which
is known to be a convex function of the values
taken by the vector components in a specified
point. For solving this problem we resort again
to the Kuhn-Tucker convex optimization procedure
with inequality constraints® already applied in
Sec. III. For completeness we expose here in
more detail the content of this method. Let £™
and £’ be the optimal values of the parameters
¢;, realizing the constrained minimum and max-
imum of F, respectively. The Lagrangian of the
problem writes as

L(g;,\)=F(&) +AG(¢,) . (5.11)

According to the Kuhn-Tucker theorem? there ex-

(5.10)

ists a value ), = 0 and a value ), < 0 such that £™
and £’ are stationary points for the Lagrangian
£ in which ) is set equal to ), and )4, respective-
ly. Moreover, the following alignment conditions
hold:

AmGEM) =0, 2,G(e")=0. (5.12)

Using the expressions (5.9) and (5.10) we obtain
from the stationarity conditions 9£/9¢; =0 the
equations

6
2 @y =2, @b e W =0, yby (i=1,...,6)
1

which have the solutions
£ 90 2x, S @ - 1arg )b,
j=1

(i=1,...,6) (5.13)

(1 denotes the unit 6 X6 matrix). From Egs,
(5.12) it follows that either the Lagrange multi-
plier is zero or the inequality (5.10) is saturated
by the optimal values {™:*’. The first alterna-
tive has to be studied separately and leads to a
trivial result: from Eqgs. (5.13), x, 4 =0 imply
£, = 0 which leads to the unitarity bounds
(5.7) and (5.8) for the differential cross sections.
In almost all the cases investigated by us only the
second alternative occurred, i.e., x, y#0, the
optimal parameters £{™:*’ being situated on the
boundary of their admissible domain. By intro-
ducing into the equality

G(gm: ) =0 (5.14)

the expressions (5.13) of £™“  one is finally
led to a nonlinear equation for the Lagrange mul-
tipliers ),, and »y4. The solutions of this equation
were found with standard computer programs.
Using relations (5.10) and (5.13) one can see that
Eq. (5.14) has a unique positive solution »,, which
corresponds to the minimum of F. On the other
hand, the number of negative solutions for ) is
finite and therefore one may choose unambiguously
the value ), corresponding to the maximum of F.
A last comment is now in order concerning the
weight function w entering the coefficients a, b;,
and c written in Eqs. (5.2). The procedure de-
scribed above has to be applied for every fixed w,
an additional optimization upon w being necessary
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afterwards. We have taken again w of the form
(3.36), repeated the algorithm for various values
of ¢ in the interval (-1,1) and finally picked up
the best results, i.e., the greatest lower bound
and the smallest upper bound on F. As in the pre-
vious section, this procedure proved itself quite
economical from the point of view of the computa-
tional time. The lower bounds varied quite
smoothly with a around the best found values
while, on the contrary, the upper bounds exhibited
a drastic variation.

We have first computed upper and lower bounds
on the differential cross section at some points
below the threshold v,? previously investigated
also in the framework of Refs. 6 and 7. In con-
nection with the point w=80.9 MeV, fcm.=95°,
we have used several values for the threshold ;2.
When v;? is set equal to v,2, we are in the condi-
tions of Ref. 7 and our results should essentially
reproduce the values reported there. This was
indeed the case, as it may be seen comparing the
values from Table III for v,®>=v,? with the cor-
responding ones from Table 6 of Ref. 7. The
very good agreement found offered us an additional
confirmation that the simple procedure regarding
the weight function w adopted in this section works
well. From Table III one sees that when the value
taken for the threshold v;” is increased, i.e.,
when the information about the absorptive parts is
enlarged, the lower bound slightly improves while
the upper bound worsens severely (which is other-
wise expected in view of the maximum modulus
principle). The knowledge of the absorptive parts
in the region v? < 1* < v;” is therefore of not much
help in improving the upper bounds on the cross
sections at interior points at least unless an ad-
ditional physical information (for instance the
specification of the cross section at several other
points below viZ) is not taken into account. In the
actual formulation it is therefore reasonable to
confine ourselves to the consideration of the lower
bounds. In Table IV we display the computed
lower bounds on the unpolarized cross section
(with ;2 taken such that the corresponding photon
laboratory energy w, be 1210MeV) at the labora-
tory photon energies w and c.m. scattering angles
6cm. considered in Table 6 of Ref. 7. The present
lower bounds are somewhat stronger than the cor-
responding ones from Ref. 7 (especially at large
angles) but still remain too weak to be practically
useful as seen from the last column of Table IV
where the experimental values are listed.

We now start considering bounds on the differ-
ential cross sections inthe interval vy? <1? <y’
above the pion photoproduction threshold. From
the computational point of view, the only addition-
al difficulty encountered now when v,%>p?2 (i.e.,
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TABLE III. Upper and lower bounds on (do/d) .
(units of 10732 cm?) at w=80.9 MeV and 6, =95°, calcu-
lated with several values for the threshold wy,.

Win Lower bound Upper bound
wy = +p/2m 0.40 7.2
400 MeV 0.49 23.7
1210 MeV 0.51 323.7

z,> x,) is the calculation of the principal value in-
tegrals appearing in Egs. (5.2). We have applied
a standard numerical procedure writing

P oglx) 1-2z

1
Ty ¥ =22 dx~vg(zz)ln

Zp = X
oL ratdogle)
m o X =2Zqy
and computing the last integral using quadrature
programs. For the double integral entering the
coefficient ¢ in Eqs. (5.2) the above formula was
applied twice.

Except for the bounds on the unpolarized differ-
ential cross section do/d we have also calculated
bounds on the differential cross sections for pol-
arized photons for which some experimental data
are reported in Ref. 28 and 29. The results of
our calculations are presented at several angles
Ocm. in Figs. 1-9. Only the lower bounds (compu-
tedwithathreshold v, ? corresponding to w,, =1210
MeV) are graphically represented since the upper
bounds turned up again to be by an order of mag-
nitude too high. For reference, we have drawn
in Figs. 1-6 and 9, together with the calculated
lower bounds, experimental points taken from
Refs. 25, 26, and 28. As a general feature one
notices that the lower bounds are very close to the
experimental values and, at the same time, very
near to the semiphenomenologic bounds discussed
in Sec. VIII of Ref. 7. However, unlike the latter
bounds, the present ones are rigorous and resul-
ted from a consistent exploitation of the fixed-¢
analyticity properties of the amplitudes and of the

TABLE IV. Lower bounds on (do/d2)¢m. (units of 10732
cm?) at several energies below the threshold of single-
pion photoproduction, obtained for wy=1210 MeV,

w(MeV) Oem. Lower bound Experimental value

80.9 95° 0.5 1.16 £ 0.06 (Ref. 30)

109.9 95.6° 0.5 1.03 £0.06 (Ref. 30)

97.0 150° 0.1 2.57 + 0.51 (Ref. 31)
(0,m.=138.7°)

152.7° 0.1 1.70 + 0.07 (Ref. 30)

111.1
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gc.m.= 50.

| ] ] | 1 | .
150 200 250 300 350 400 450 wiMey)

FIG. 1. Energy dependence of the c.m. unpolarized
differential cross section at c.m.-scattering angle 6,
=50°. The continuous line is the lower bound computed
in the present paper; experimental data taken from
Table III of Ref. 26,

consequences of the (two particle) unitarity condi-
tion.

An important output of our calculations as seen
from Figs. 1, 3, and 4 is that in some cases (6.,
=50°, w =360 MeV, and w =400 MeV; fcm.="70°,

w =400 MeV, and w =440 MeV; 6cm. =90°, w=214
MeV, and w =320 MeV) the lower bounds appear
to lie definitely above the experimental points
(with the quoted error bars included). These vio-
lations clearly reveal that the results of the pion-

2
cm*sr]
S
|

-32

em L10

(da/dn)
S
I

| ] ] L1 | -
150 200 250 300 350 400 450 wiMel)

FIG. 2. The same as in Fig. 1 for 6, =60°.

©
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>
I

(dg/dn) ., [107 " Cm¥sr]
S
[

| ] | | | ] -
200 250 300 350 400 450 w(MeV)

FIG. 3. The same as in Fig. 1 for 6., =70°

photoproduction multipole analyses used in the
evaluation of the bounds and at least some of the
experimental data for the Compton-scattering un-
polarized differential cross section in the N*-
resonance region are at variance. This conclu-
sion, previously reached in a phenomenological
way in Ref. 27 on the basis of a purely unitarity
bound and afterwards strengthened within the ap-
proach from Sec. VIII of Ref. 7 (where analyticity
requirements were somehow taken care of but in
a very crude way) is now reached rigorously. In
order to make sure that the violations are really
significant, one has, of course, to estimate the

3
E } e =90
N0

)
N

§
-8
g .
Nim i ;

] I | l ]

200 250 300 350 %00 450 @thel)

FIG. 4. The same as in Fig. 1 for 6, =90° except
the experimental point at 214 MeV which is taken from
Ref. 25.
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\ 8, 10°

(do/da) ;, [107emsr]
S
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FIG. 5. The same as in Fig. 1 for 6., =110°.

uncertainties affecting the calculation of the
lower bounds. Keeping fixed the imaginary parts
from Eq. (2.1) (which are being tested), the possi-
ble uncertainties originate mainly in the experi-
mental errors on the cross section for v?>y, 2
(the errors introduced by numerical integrations,
etc., were estimated to be not greater than 2—-39%).
To get a corridor of variation for the computed
lower bounds, we have varied the input cross-
section data inside reasonable limits and estab-
lished how this change affects the output. A vari-
ation with £10% of the cross section given on the
boundary (v®= v, %) had an effect not greater than
¥5%. An overall error of approximately 5-7%
seems therefore to be a most pessimistic estima-
tion. The discrepancies mentioned above still
persist even if we decrease the lower bounds by
such an amount. Also they are still present if one

A 8, = 100"

S
I
e

(d0/08) ¢y, L0 em/sr]
-

| 1 | ] ] | -
200 250 300 350 400 4860.w(MeV)

FIG. 6. The same as in Fig. 1 for 6., =130°.

(1072 em%sr ]
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Ll
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FIG. 7. Energy dependence of the c.m. polarized dif-
ferential cross sections at c.m.-scattering angle 6. ..
=50°. The curves represent the lower bounds computed
in the present paper.

(06, [00),,,,(~), (db; [90),,,, (~~)

| | 1 | -
250 300 350 400 450 ) (MeV)

(6,40, (A(06[T6) .y (~~) £ 10 0m s ]
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FIG. 8. The same as in Fig. 7 for 6., =70°.
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lowers the threshold v,,? uptoavalue correspond-
ing to the laboratory photon energy w, ~600 MeV.
The conclusions are therefore quite stable against
various sources of bias in the numerical con-
sideration of the bounds.

We have found that an overall increase and de-
crease of 5% of the imaginary parts Im4, (13, 1)
led to a change of approximately +10% in the lower
bounds.

VI. SOME COMMENTS

Inthis paper we have presented a moderndisper-
sion approach to proton Compton scattering able to
yield results unaffected by the usual model depen-
dence introduced by subtractions and the accom-
panying annihilation-channel contributions. The
lower bounds on the (polarized or unpolarized) dif-
ferential cross sections appear very restrictive
and improve substantially previous constraints
based on unitarity alone. In some cases the
bounds are clearly violated and thereby show in-
consistencies between results of single-pion-pho-
toproduction multipole extractions and some
Compton-scattering data. The upper bounds come
out disappointingly poor but possible ways remain
open to strengthen them through appropriate mod-
ifications of the initial statement of the problem
so as to include additional physical information.
For instance, one may try solving the problem of
finding similar constraints (it is hoped, optimal)
in the case in which apart from the knowledge of
the six absorptive parts, along the interval
[ve?, viuZ] of the unitarity cut, one takes as known
the unpolarized differential cross section all along
the interval [v,2, ») and not only along [v;,2, ) as
considered in this work.

We end with the remark that the techniques em-
ployed here in order to exploit optimally the fixed-

e
-

N
)
I

S
I

I B -
= 250 300 350 400 480 wW(t1eV)

A6, (1), ,, (), (067 [96) ¢, =) 100577

FIG. 9. The same as in Fig. 7 for 6., =90°; ex-
perimental values taken from Ref. 28,

t analyticity properties of the Compton amplitudes
may, with various degrees of utility, be used in
connection with other hadron reactions as well.
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