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Space-time symmetries of confined quarks
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The first paragraph of Rotbart’s recent paper is amplified. It is shown that the
minimum symmetry for the space-time separation of the confined quarks is that of the
O(3)-like little group of the Poincar€ group for massive hadrons. It is then pointed out
that the existence of additional coordinate dependences is determined from the way in
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which specific models are constructed.

In his recent paper,' Rotbart presented an in-
teresting calculation on the complete set of rela-
tivistic harmonic-oscillator wave functions on the
0O(1,1) space which, because of the separability of
the oscillator wave functions in the Cartesian coor-
dinate system, can be trivially extended to the full
0O(3,1) Minkowskian space. Rotbart’s Eq. (15) is
correct, and reproduces the simpler calculation of
Ruiz? and Kim et al.? if timelike excitations are
suppressed in the Lorentz frame in which the ha-
dron is at rest.

In the same paper, Rotbart stated that his calcu-
lation is useful in the relativistic oscillator models
in which timelike excitations exist, and mentioned
the model of Horwitz and Piron as an example.*>
He mentioned also the model discussed by Kim
and Noz® as an example which does not contain
timelike oscillations in the hadronic rest frame.
While carefully avoiding the question of which
model is consistent with the real world, Rotbart at-
tempts to justify his calculation as a physically
meaningful effort based on the requirement of
“completeness” in the O(3,1) relativistic space-time.

Although Rotbart did not elaborate on the ques-
tion of how much completeness is needed under
what circumstances, his paper brings back to the
surface a much broader question of whether im-
posing a constraint or subsidiary condition can be
consistent with the accepted principles of quantum
mechanics and special relativity. Indeed, since the
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appearance of Dirac’s classic paper on “forms of
relativistic dynamics”,” this has been one of the
most sensitive issues among model builders of rela-
tivistic quantum mechanics.®°

The purpose of this paper is to set a criterion for
determining how much completeness is needed.

We attack this problem by examining the mini-
mum space-time symmetry needed for relativistic
dynamics of quarks confined inside a hadron with
definite mass and spin. We then discuss what ad-
ditional symmetries are needed to meet the require-
ments of specific models.

In order to see the minimum space-time symme-
try needed for relativistic dynamics of quarks, let
us consider a hadron consisting of two confined
quarks whose space-time coordinates are x; and
x,, respectively. Then the standard procedure is to
use the variables X and x defined as

X=(x14+x,)/2 (1)

and
x=(x;—x,)/2V2. (2)

The four-vector X specifies the space-time coordi-
nate of the hadron. The variable x is the space-
time separation between the quarks.

The basic space-time symmetry governing this
two-quark system is of course that of the inhomo-
geneous Lorentz group or the Poincaré group.®!°
This group consists of four space-time translations,
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three rotations, and three boosts. Let us consider
first a translation on x; and x,:

X|—>X{+a, x,—x,+4a . (3)
Then
X—>X+a. (4)

However, the separation coordinate remains invari-
ant under this translation:

X—X . (5)

We can therefore write the generators of the four
translations as

P,=id/3xX"*, 6

This is the four-momentum operator for the ha-
dron.

Let us next consider rotations and boosts. The
generators of these transformations are contained
in the expression

My, =Lyy+Suy » @)
where

L,,=i(X,0/0X"—X,3/0X"),

Suy=1i(x,3/0x"—x,3/0x") .

It is quite clear from Eqgs. (5) and (6) that the x
coordinate is invariant under translation. This in-
variance leads us to a “temptation” to conclude
that the space-time symmetry of the x coordinate
is that of the homogeneous Lorentz group (without
translation): O(3,1). We would like to point out
here that this is not the case.!!

In constructing representations of the Poincaré
group generated by the operators given in Egs. (6)
and (7), the standard procedure is to find the state
vectors which are diagonal in the Casimir opera-
tors'?:

P>=PHP, and W2=WFW, , (®)
where
W, =7 €upP "M% .

These operators commute with all of the ten gen-
erators given in Egs. (6) and (7). The operator P2
specifies (mass)? of the hadron, while W? is (mass
X spin)? for the hadronic system.

Strictly from the symmetry point of view, the
eigenvalues of the above Casimir operators are the
only Lorentz-invariant dynamical variables which
can be extracted from the hadronic system.!!1?

Let us then look at the expressions in Eq. (8) more
closely. As was noted above, P? does not contain
the x variable. As for W2, it is determined from
the expression for W), which takes its simplest
form in the Lorentz frame where the hadron is at
rest. Then W? depends only on the rotation opera-
tor in the three-dimensional Euclidean space
spanned by three spatial components of x, and does
not depend on its time component. This O(3)
space “perpendicular” to the hadronic four-mo-
mentum is indeed that of the little group'® which
leaves the hadronic momentum invariant.'?

We can conclude therefore that the minimum
space-time symmetry for the confined quarks is the
relativistic O(3) as defined above. This probably is
the reason why the calculations based on nonrela-
tivistic quantum mechanics, which preserves the
O(3) symmetry, are so successful in describing the
real world,'* in spite of the widespread misunder-
standing that the O(3) symmetry is inherently non-
relativistic and that the basic relativistic space-time
symmetry has to be O(3,1).

The above conclusion, however, does not prevent
us from adding a dependence on the time com-
ponent of the x variable. This is indeed the case
when we require the covariance of the model.»%13
The question then is how much time dependence is
needed. In the harmonic-oscillator model dis-
cussed by Kim and Noz,%!6 the time dependence is
introduced through the ground-state wave function
for the time-separation variable in the coordinate
system in which the hadron is at rest. This pro-
cedure is consistent with the “c-number” nature of
the time variable,*!” and with the experimental ob-
servation that there is a lower limit on the (mass)>
spectrum. The existence of this ground-state —like
time dependence has been experimentally con-
firmed in the parton phenomenon both qualitative-
ly'® and quantitatively.!®

If the model discussed by Kim and Noz is so
consistent with everything, why do we need
Rotbart’s calculation? Here are the reasons.

(a) Even in the standard approach of Kim and
Noz, the absence of the timelike oscillation in one
Lorentz frame does not mean its absence in all oth-
er frames. Those timelike states are linearly com-
bined in such a way that there are no timelike exci-
tations in that Lorentz frame in which the hadron
is at rest.’

(b) Although Hussar’s calculation'® leads to a
reasonably accurate proton structure function, it is
quite possible that the real world is not exactly like
a ground-state harmonic-oscillator wave function.
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In this case, we have to consider a complete-
orthonormal-set expansion, even if we impose the
lower limit on the (mass)? spectrum. This is so
even if we believe in Dirac’s assertion that the time
variable is a c-number, because the uncertainty
principle does not specify the functional form.!’

(c) The O(3) restriction discussed here is applic-
able only to the relative coordinate for the confined
quarks. In constructing relativistic dynamics, we
have to consider also other cases such as free rela-
tivistic particles with the Newton-Wigner prob-
lem.* In these general cases, where the complete

Hilbert space on the I0(3,1) space is desired, the
timelike oscillation should be taken into considera-
tion.

(d) There is growing evidence that the present
form of quantum field theory is not suitable for re-
lativistic bound states.?® For this reason, there are
theoretical models in which confined quarks are
described by relativistic wave functions, while ha-
drons are regarded as particles that can be ex-
plained by lines in Feynman diagrams.?! In this
case, we have to consider off-mass-shell hadrons.
This may require timelike excitations.
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