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We study an estimate for the mean-field potential between two heavy quarks (qq) using
Adler's chromostatics. To do so we work out the pseudocolor charge algebra for the qq
system in SU(n) of color, which has not been correctly presented previously. Using the
leading-logarithm, renormalization-group-improved Euclidean action for the gluon fields,
we find that the mean-field potential depends crucially on the algebraic properties of the
sources, and that while the quark-antiquark (qq ) system possesses an at-least-linear po-
tential, as Adler showed, the qq system has infinite energy, and hence is decoupled from
the physical spectrum. The physical states exhibit color screening.

I. INTRODUCTION

Adler' has recently proposed a semi-classical
model for bag formation by heavy quark systems.
Using the leading-logarithm, renormalization-
group improvement to the local Euclidean
Lagrange function,

W,tt(F )= , boF ln—(F /etc ),
where bo is the first-order P-function coefficient,
he minimizes the Euclidean action in the presence
of static color sources —"quarks. " That minimiza-
tion, when the sources are classical objects, yields
(i) an at-least-linear mean-field potential for anti-
parallel color charges, and (ii) infinite action for
parallel color charges. This suggests flux-tube con-
finement of the quark-antiquark system, and the
absence of quark-quark states from the physical
spectrum.

However, to approximate the realistic quark sys-
tern, it is necessary to employ color charges that
satisfy the SU(3) color charge algebra. ' Adler
schematically indicated' how the argument goes
through for the qq case, where the algebra was first
worked out by Giles and McLerran. However, it
is not obvious what happens for the quark-quark
system, and one might fear that this mechanism
leads to automatic confinement of all quark states,
through the generation of a permittivity rather
similar to that postulated in the MIT bag model.
The difficulty of seeing what occurs here is com-
pounded by the apparently large number of tran-
scription sign errors in the published quark-quark
charge algebra. Beyond this, there remained the
important question of where qq confinement oc-

curs, in the singlet or octet channel.
In this paper, we will start by recomputing the

SU(n), n )3, qq and qq color-charge algebra. In
the process we note a hitherto unnoticed symmetry
between the two algebras. Then we will adapt,
with some detail, Adler s analysis to this matrix
charge space ("pseudocolor"). This will enable us
to derive the results: flux-tube confinement for the

qq system, but infinite energy for qq. Moreover,
we show that for the confined configuration the to-
tal (quark + gluon) color charge is zero, so that
confinement indeed occurs in a color-singlet chan-
nel of the system, which in an appropriate gauge is
the quark color-singlet channel.

II. PSEUDOCOLOR ALGEBRA

The essence of Adler's approach ' is that in the
static limit the quark color charges must still satis-
fy the non-Abelian color algebra of SU(n) QCD,
and that causality requires that spatially separated
quark charges commute. This recognition is im-
plemented by requiring that the two charges lie in
an n )& n direct-product space, the direct product
of the n Xn U(n) charges,

gg t( gg2' 2

1/2

a, b,c =0, 1,2, . . . , n —1, A, = — 1.

Bimatrix-valued sources imply, through the field
equations, bimatrix-valued gluon fields. Thus the
static limit of the non-Abelian configuration of
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(3)

gagb qubcgc

gagb q
abcgc

qabc i (dabc+if ubc)

qubc i
( d abc+ if'abc)

in terms of the symmetric and antisymmetric
structure constants of SU(n), and

(4a)

(4b)

(5a)

(5b)

two quarks with their associated gluon fields leads
naturally to a bimatrix-valued "chromostatics. "

The U(n) algebra of each charge is given by

trQ'Q =trg'Q = —,5'

to differ from this only by an overall sign:

[p( pf] = A—(jpi(. (9)

Actually, it should be noted that there are only
three independent products in Table I, say those
corresponding to A 12, 313, and A 34 since the oth-
ers are determined by charge interchange symmetry
and complex conjugation.

The pseudocolor algebra of (8) and (9) has the
structure of SU(2)XU(1). A normalized' diagonal
basis is, for qq

ei ———(a3 a4)= (Qi Sl —1SQ2),2 A A 2 A

n n

' 1/2

abcOb

n
(Sc)

eA (aA aA) dABcgB Sgc4 4
n n

The algebra of the direct-product space is defined
in terms of the SU(n) outer product

, (Q", S 1+ 1 S Q", ),
(10)

U]A fABC(uBUC+ CuB)
2

where A,B,C, . . .=1,2,3, . . . , n —1. We choose
as the basis for the qq and qq pseudocolor algebra,
respectively, the following:

e4 ——2(n —4) [a3+a4 ——(ai —a2)]2 —1/2 A A 4 A A

n

n2 4 1/2
=2

2 [Qi Sl+1SQ ]
n

A gAbcgb Sgc

pA giAbcgib Sgc

where

6Abc Abc GAbc —Abc
2

g +2n 5Ab5c0 gAbc ~2 5Ac5bo

(7a)

(7c)

2 —1/2
g

(n —4)

in terms of which the SU(2) XU(1) algebra is mani-
fest:

[e;,ef]"=ie(jbeb, I ij,k j = I 1,2,3 ],
[e;,e4]"=0,

The qq algebra is given by

[a al]"=Aij.ab (8

where the AfJ are computed most easily using the
q' identities given in Table I of Ref. 5. The A' s
are tabulated in Table I. The qq algebra turns out

TABLE I. 8A,J- for qq pseudocolor algebra.

and the basis satisfies the trace normalization con-
dition

Tre("ei =(4/n)5;J5"

The normalized diagonal basis for qq, ( e; },is ob-
tained by replacing a; by g, and introducing an
extra (—1) factor in the definition of e i. Thus

ei =—(Qi S I+1&Q2),
n

12

13
14
23
24
34

—2n
2n
0
0
8

0
0

2n
—2n

8

2
1

1

1

1

0

2
—1
—1
—1
—1

0

A fABCQB SgC
n

—2 n' —4 'i2
(Qi Sl —1SQ2)

4) dABCgB S gC
2 —1/2

n
1 2

(13)
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The principal result we shall need in the follow-

ing is the expansion of the charges in the pseu-
docolor basis. For qq, we have

EJ= —m, c', ~,-=aj+ cj,
0EJ4 ———8 c4

Bj=dk'(ak c'+- c'X c')
(20)

4 1 2 2 4

while for qq,

4 2

Qi S 1=—ei ——,e2 ——,(n —4) e4,A n —A ~ —A ~ 2 ]/2 —A

(14)

(15)

and

B4=6 Bkc4,j kl l

2

F =4 (E~ EJ+BJ BJ
n

+EJ~J +BJ~J ) (21)

18Q2 ———ei+ —,e2+ , (n —4)'—e4 .
4

The reader will note at once the crucial differences
between qq and qq. Q i 8 1 and 1 SQ2 can be ro-
tated by a local SU(2) pseudocolor gauge transfor-
mation so that they are parallel while Q i 8 1 and
1 SQ2 cannot; they can only be made antiparallel

by such a transformation. "
j (x)=Qi5 (x —xi)+A@5 (x —xz),

j4(x)=Qi5 (x —xi)+Q25 (x —x2),

where, according to (14),

(22)

Thus, effectively, the SU(n) color problem is re-
duced to an SU(2) )&U(1) chromostatics one.

The static sources are taken to be, in the pseu-
docolor basis, j„"=(j,j4), where

III. MEAN-FIELD POTENTIAL

As stated in the Introduction, when the gauge
currents jz describe two static heavy quarks or a
quark and antiquark, the resulting chromostatics is
given in terms of sources and gauge fields that are
bimatrices, belonging to the SU(2) SU(1) algebra
constructed in the previous section. ' The ap-
propriate Euclidean action functional is'

W[j"„]=J d x[&,ff(F ) W,fr(a )]—

n 1 n 1
Q = ——0 Q2= — 0] 4p 2p s 4

Q4 (n2 4)1/2 Q
i (n2 4)1/2

for the qq configuration, and, according to (15),

n 1 n 1Q= ———0 Q= ——04p 2~ t 2 4021

Q, = —, (n 4—)',—Q =-, (n —4)'

(23)

(24)

2
TI Qxc~X j~X (16)

for the qq configuration. The field equations
which follow from variation of the action (16) are

where W,rr is given by (1) and

Tr[E 'JE 'J+B ' B~' ], j=1,2,3,
n

(17)

and where E 'J and 8"'J are the color electric and
magnetic fields, which for statics are

uj~Ej= j', a,.~sj =j', ,

where

e(F~) =BW, r(F2)/5( —,F )

= —,bain(F /a ),

(25)

(26)

a,' +

BA,j ykl g cA, 1 i
[ k 1]A2'"

(18)
and

e'Jk&'~eB = c )&eE', e'Jk5jeB4 ——0 .

Applying N; to the 8 equation implies

(27)

c""=cue,", cP =( c",c~ ),
and then

(19)

All colored quantities are to be expanded in the
pseudocolor basis ( I e; I for qq, [ e; ] for qq ) as fol-
lows:

OX ~ 0 O, (28)

that is, at the charges, the SU(2) parts of the scalar
potential and the pseudocolor charge are parallel or
antiparallel. In fact Eq. (25) implies that these are
parallel. In view of the observation made at the
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end of the previous section, it appears natural to
perform a local SU(2) rotation so that, for qq,

where

E2—EJ-EJ B2—g~-g& . (37)
Qi=(0 o

I Q I » Q2=(0 0
I Q I

) (29)

and, for qq,

Qi ——(0,0, —iQ i), Q2 ——(0,0, iQ i), (30)

where
~ Q i

= , (n —+4)'~ Ho. wever such a gauge
rotation does not preserve the commutation rela-
tions of the charges at x| and xz. In fact no pseu-
docolor gauge rotation will preserve these commu-
tation relations. ' The commutation relations
should be viewed as a constraint that picks out the
physical solution from the set of pseudocolor gauge
equivalent solutions. Therefore the physical solu-
tion for the problem at hand will be obtained by
making a pseudocolor rotation on our solution that
reverses the rotation that we have just performed
on the charges. '4 Without further loss of generali-
ty we can take the gauge where

where

—W,g(a ) ], (38a)

0 if NE2&~ (38b)
NE

W ONE ) W—ga ) if NE )a'

where in the first case, B fills in to minimize
W ff that is,

N(E2+.B )=a

while in the second

(38c)

Adler next minimizes 8' with respect to 8 varia-
tions:

W,g(NE2) =min[ W,(r[N(E2+B )]

Then

c (x)=(0,0,c(x)) .

j c =j(x)c(x),

(31)

(32)

B =0.
Finally we must minimize

W[c]=f d x[&eff(N(B&c) ) Ncj ], —

which implies the flux conservation equation

(38d)

(39)

j(x)=
~ Q ~

[5 (x —x2)+5 (x —x&)], (33) dkD"=J (40)

where + refers to qq, qq, respectively. Here, the
antisymmetric form of j for qq corresponds to a
color singlet state.

Once this gauge choice is made, I' takes the
orm

F =N[(dlc) +(cJXz) c +BJ BJ

+E'4EJ4+B'4B'4] (34)

where N =4(n —1)ln Followi. ng Adler' we
minimize W, which, of course, is equivalent to
solving the field equations. Since B4 obeys a
homogeneous field equation, we may take BJ4 =0.
Then, as in Adler's case, c may be taken to be
parallel to z. Now we define some two-vector
quantities:

DJ—gEJ (41)

e(NE2) NE2 & a

0 PfE2 (g2
L

(42)

(43)

Note the similarity of the permittivity e to that of
the bag model. The seemingly simple equation
(40) has not yet been solved. ' Instead Adler' fol-
lows a flux conservation argument of 't Hooft. '

Adapting that argument we find the following in-

equality satisfied by the mean-field potential

V= —W&aN f d xD,

where D =(DJ.DJ)'~, provided the source term in
(39) is integrated by parts, and the surface term
discarded. Now

c=(c,c4), j=(j,j4), EJ=—BJc .

In terms of these we smk to minimize

8'[c,B ]=f d xI W,ff[N(E2+B2)]

&err(z ) Nc j ], — —

(35)

(36)

f d'xD= f dldAD= f did i@i &
i 4i l;„,

(44)

where l;„is the length of the shortest flux line
(which may be oo ), and 4 is the flux emanating
from a single charge.
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Now we refer explicitly to the qq, qq systems,
where the sources are given in terms of the charge
algebras by (14) and (15). After carrying out the
charge rotation given in (29}and (30}we find for
the total flux at infinity

4„,=f d xj(x)

(
i (n2+4)1/2 i (n2 4)1/2}

X f d'x [ 5—'(x —x, )+5'(x —x&)]=0

for qq, but

4„,=f d xj(x)=(-, (n +4)'/, —,(n —4)' }

(45b)

for qq. Thus, for the qq case, the flux lines begin
on one charge and terminate on the other; the
minimum flux line has a length equal to the
separation between the charges, R =

~

x i
—x2 ~, so

(43) implies for the mean-field potential

find, from the first term

e-aN'/
i Q i p, (49)

linearly diverging as p~ Oc. Thus the qq state is a
physically inaccessible one of infinite energy.

IV. COLOR SCREENING

5c„=5k,(x)X c:„, (50)

f d'x 5~„,= f—,
' (a'5Z) E~X cJ,

&( —,+ )

(51)

We should point out that the flux arguments are
not special to the particular gauge we have been
using with c and c proportional to z. In general
the total color charge is carried not only by the
quarks but by the gluons as well. The pseudocolor
charge of the latter is found by varying f d x jeff
with respect to

V&~N'"~Q ~Z (46)

where the magnitude of the charge on either quark
1s

whence the gluon pseudocolor charge is

Q'= f d'xem'X c'. (52)

i Q j
=-, [(n'+4)+(n' —4)]'"= . (47)

Thus, the potential between quark and antiquark is
at least linear. On the other hand, for the quark-
quark system, Gauss's law (45b) implies that the
flux lines are semi-infinite; hence the action is in-
finite, and the qq state does not lie in the physical
spectrum.

However, although this conclusion for qq is
correct, the argument is a bit more subtle. In fact,
—f d x c j is infrared finite, and indeed simple

asymptotic estimates

[D- I/p, (tE aN '/ )- lip —]
show that the surface term omitted above cancels
the IR divergence of the —f d x Ez DJ term ob-

tained on partial integration. f d xW,rr is IR fin-

ite, since W(v ) =W'(z )=0. The point is that
for unbounded flux configurations the above form
of the action cannot be identified with the energy,
but instead the canonical energy density is '

The quark pseudocolor charge is obtained by in-
tegrating (25):

Q»= f d'x& eEJ

=f d x[BJ(eE~)+ci)&eEJ] . (53)

Then the total charge,

Q„,=f doj(eEJ), (54)

vanishes for any configuration with vanishing flux
at infinity. ' Thus the qq case with antiparallel
pseudocolor charges corresponds to confinement in
the singlet channel of the composite quark and
gluon system. It was only a matter of convenience
that we chose c and c proportional to z every-
where. In a general gauge the cancellation of the
flux at infinity would reflect the non-Abelian
charge-carrying attributes of the gauge fields, as
well as that of the static charges. In the particular
gauge used for this calculation, the gluon contribu-
tion to this flux is zero.

goo ——XEJ. D) —W,g . (48) V. CONCLUSION

(8&„gives the correct trace anomaly. ) Integrating
this over a large spherical volume of radius p, we

In summary, the effective one-loop-
renormalization-group-improved action coupled
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with Adler's pseudocolor charge algebra seems to
embody a great deal of the essential physics of the
QCD of heavy quarks (presumably), linear confine-
ment of a quark and antiquark in the color-singlet
channel, together with decoupling from the physi-
cal spectrum of nonsinglet states. 's The next step
is to investigate three quark states, which is an

order of magnitude o more difficult an undertak-
ing, both algebraically and physically.
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