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Do quarks and leptons know a simple group'?
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Without using the requirement of a single coupling constant for grand unified theory

(GUT), we prove the uniqueness of SU(5) and SO(10). Hence, the way of having the fam-

ily structure is G =G(family) G(GUT) only. There exist no simple or nontrivial semi-

simple groups which unify both the family structure and GUT.

In our last three papers, ' we have shown the
uniqueness of SU(5) and SO(10) grand unified
theories (GUT's) among simple groups using only
the ordinary quantum numbers of quarks and lep-
tons under the electroweak group SUL, (2) 8 U(1).
The proof was done without assuming the color
group to be SU(3). The same proof goes through
and leads to SO(10), even if the left-right-sym-
metric group SUL, (2) 8 SUit(2) 8 U(1)tt I, (Ref. 4)
is used. The reason is that the U(1) generator of
SUL, (2) 8 U(1) corresponds to the sum of genera-
tors (IR)3 + —,(8 I ) in the —left-right-symmetric
model. Since we can have only SU(5) with 5 -+ 10
or SO(10) with 16, it is impossible to have a simple
group which also unifies the family structure. %e
just have repetitions of one family.

In the case of the Pati-Salam-type grand unifica-
tion [i.e., grand unification of particles (GUP), not
grand unification of particles and antiparticles
(GUPA)], we have shown that 1t is possible to have
models with three generations, although groups
are semisimple (two or more coupling constants pos
sibly), not simple (single coupling constant) There-.
fore, it is natural to try semisimple groups for
GUPA. Of course, if G=G(family) 8G(GUT), it
is obvious that one has the family structure. Here,
we look for a nontrivial way, i.e., 6=6& S 62
8 86~ 8U(1), where none of GJ is a family

group. This is the topic of this paper.

G =Gi 862 8 . . 8GN 8U(l) . (1.2)

The quantum numbers of quarks, U and D, and
leptons, X and E, under SU&(2) 8 U(1) are as fol-
lows:
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where m denotes the multiplicity under the color
group Gc. Electric charges are (Q&,Qz)=(0, —1)

2 . 1

and (QU)QD) =(—,,——,). The numbers nt and nq

denote the numbers of lepton and quark famihes,
respectively. %e assume the anomaly-free condi-
tion for GUT.

where GJ are simple groups. %e assume that 6 is

I. ASSUMPTIONS II. UNIQUENESS OF SU(5) AND SO{10)

Using the fact that our multiplet is finite dimen-
sional and eigenvalues are real, the group must be
of the form

6 =6 i 8 G2 8 8 U(1) 8 U(1)

8. . . 8U(1),

A. Lemmas

We develop a few lemmas for our purpose.
Lemma 1. For G=Gi S 62 (3 . . {36~

8U(1) where each GJ has nj distinct eigenvalues,
we have at least
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N

$ nj N—+1
j=1

distinct eigenvalues as a whole.

Proof. We denote nj dis.tinct eigenvalues as bj
(1&i &nj) where bz') bj » . . bj'. Then, we
have the following ordered sequence of eigenvalues:

N

g bj &b)+ g bj'&b)+ g bJ~) . &b, '+ g bj')b, '+b2+ g bj'&b, '+b2+ g bj'& . & g bj'
j=2 J=2 J=2 J=3 J=3

The total number of these eigenvalues is

N

$ nj. N+—1 .

Lemma 2. The group 6 is the same as Lemma
1. The smallest number of eigenvalues m as a
whole is

Proof. Use the fact that nj )2, since trXJ ——0
where Xg 'E GJ ~

Lemma 3. The group G is the same as Lemma
1. The largest number of eigenvalues as a whole is

gn ()2 ). .

N N

g b')bf+ g b')
J=2

g b~' & b 2+ b ) + g bj' )
j=1 J=3

N

where each has m=g. ,nj —N+1 eigenvalues.

Hence, we must have

b1 —b1 ——b2 —b2 .1 2 1 2

Similarly, we can show that bJ —bJ+' is the same
for all j.

Since eigenvalues of Y are six in number and not
equally spaced, we discuss only the following
groups for Gr which contain Y as a generator:

Therefore, in order to have m distinct eigen-

values, we must satisfy

N N

N+1& g nj N+1&m —& g nj . (2.1)

N=4: n1 ——n2 ——n3 —n4 —2,

N=3: n1 ——n2 ——n3 —2,

n1 ——3, n2 ——n3 ——2,

(2.5)

(2.6)

(2.7)
For the case where there are six eigenvalues, we
have N =2: n, =3, n, =2, (2.8)

N N

N+1& g n N+1&6&—g nj . (2.2)

n1 ——3, n2 (2.9)

From this equation, we see

n1 ——4, n2 ——2,

N =1: n1 ——6,

(2.10)

(2.11)

N(5. (2.3)
which are derived from Eq. (2.2) and Lemma 4.

Hereafter, we assume without loss of generality
that

nj)nj+~ (j=1,2, . . . , N —1). (2.4) B. Examination of G~

Lemma 4. The group 6 is the same as Lemma
1. If we have only m eigenvalues where

N
m = g nj N+1 (N+1), —

these eigenvalues are equally spaced.
Proof. Consider the following two sequences:

Here, we discuss the group Gz which contains I'
as a generator. For Gz ——61 s 62 s . - . s GN
8 U(1), the generator Y is given by

Y= g Y;+c,

where YJ EGJ and c comes from U(1).
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1. Gy=Gi 862 8 U(1)

(2.12)6& Z&

Hence, the solution is

1 2 5 2 3 1 1 2
b1 —b1 ———,, b1 —b1 ———,, b2 —b2 ——

3

(2.13)

Quantum-number assignments yield

1n2 nI, n1n2 mnq n in 2 2mnq1 1

For the case where n1 ——3 and n2 ——2, we have .

four distinct eigenvalues,

b1+ b2) b1+ b2 & b1+ b2 & b1+ b2$ and
1 ~

bi +b2&bi+ b2. Eigenvalues of Y(1, —,, —,, 0,
1 2——,, ——,) are spaced as

2 1 1 1 1

+bz&bi+bed&bi + b2&bi+ b2). In the same
way as above, we can show that we have seven or
more eigenvalues.

2. Gr=Gi 8Gg 8Gs 8 U(l)

For the case where n1 ——n2 ——n3 ——2, we have at
least four distinct eigenvalues (bi+ b2+ b3)bi + b2+ bi) bi+ bi+ bi )bi+ b2+ s).
Hence, we examine six cases:

1 1(1}a=1, b= —,, c=—, ;
2 5 1

(2) a=- b=-, c=-, ;3y 6y

2 1 5
(3) a=-, , b=-, , c=-, ;

5 2 1

(4) a=-, , b=-, , c=

3 1 2 2 3 2
n in2 ——np, n 1n2 ——2ni, n 1n2 ——mnq,

(2.14) 5 1 2
(5) a=-, b=-, , c=-, ;6~

2 1 2(6)a=- b= , c=-, -;
3 P 3

where nj denotes the dimension of eigenvalue bz
From Eq. (2.14), we see

and

1 3 1 2 1 2
n1 ——n1 ———,n1, n1 ——n2, {2.15)

ni ——mnq nI =np . (2.16)

Using tr Y~ =0 and Eqs. (2.15) and (2.16), we obtain
2 2 1 3 1b= — b= —— b= ——

1

(2.17)
1 2 1

b2 ———,, b2 ————, .

It is easy to see that we do not need U(1) in this
case. However, the solution is not anomaly-free,
since tr Yi+0.

For the case where n1 ——3 and n2 ——3, we denote
a=b1 —b1, b=b1 —b1, c=b2 —b2, d=b2 —b2.
Since we have at least five distinct eigenvalues
{bi + b2&bi+ b2&bi+ b2 &bi+ bi&bi + bi)
and the spacing is given by Eq. (2.12), four cases
are examined:

5 1 1 1{1)a=- b=- c=- d=-6P 6~ 2P 6 7

2 1 1 1

(2) a=-, b=-, c=-, d=-, ;3P 3P 2P

2 1 2 1
(3) a=- b=- c=- d=- '

3~ 6~ 3t 6

2 1 1 2(4)a=- b=- c=- d=-.3y 6y 6~ 3

However, it turns out that in each case, we have
seven or more eigenvalues.

For the case where n1 ——4 and n2 ——2, we have at
least five distinct eigenvalues (b2+ b2&b i

where a=b1 —b1, b=b2 —b2, c=b3 —b3. We can
show that in each case, we have seven or more
eigen values.

For the case where n1 ——n2 ——n3 ——2, we can show
that it is impossible to have six eigenvalues in the
same way as above.

3. Gr =G i 8 G2 8 Gs 8 G4 8 U(1)

It is impossible to have six distinct eigenvalues,
using the same argument as above.

4. Gr=Gi 8 U(1)

The trace identity, tr Y1 ——0, yields

0=( ——, +x)2ni+xno+ (1+x)ni

+(—,+x)2mn&+( ——, +x)mnz+( , +x)mn4—,

O=x (4mn4+3ni+no) .

Hence, x=O, i.e., there is no U(1}.
We have shown that Gz must be a s&mple group

where Gz E Y: Hypercharges of quarks and lep-
tons pick Gq as a simple group.

C. Incompatibility of 6 DGI Gy

In the case of GUP, we can have the possibility
of unifying the family structure, using either
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G DGO where Go is simple and both I3 and Y are
contained in Go or G DGI 8 G~ where GI and Gz
are simple and I3 EGI and YEGz. In GUPA,
we can show the incompatibility of G DGI SG~
easily: If so, we would have the electric charges —,,

1 5——,, —,, etc. Therefore, only the case where a sim-

ple group Go contains both I3 and Y as generators
is allowed in GUPA.

D. Incompatibility of G DGg SGo

In subsection C, we have shown that Go coIl-
tains both I3 and Y as generators. It is easy to see
that Go must contain Gc (color group) as its sub-

group, since otherwise we would have colored lep-
tons. Hence, a simple group Go can be regarded as
a grand unification group. Now, we can prove the
uniqueness of SU(5) and SO(10), using Ref. 1.

pie or semisimple group, using just ordinary quarks
and leptons, except the form above. Various at-
tempts for G as a simple group necessarily lead to
the introduction of unfamiliar quantum numbers
in SUL, (2) SU(1). Although this fact has been
known by practices, we have proved it here. In the
proof, we have used the value of Y for quark doub-
lets, which yields (QU, Qo) =( —,,——,). Once we

find G is simple, then we need not assume eigen-
values of F for quarks as was done in Ref. l.

Our results may imply the compositeness of
quarks and leptons, if we believe in G as a simple
group and believe that G must produce the family
structure. This is one of the ways we can take
here.

Note added in proof. For the case where no
——0,

i.e., no Nt', the proof holds except for N=2,
n) ——3, n, =2 with b) —b) ———,, b) —b) ———,,

2
b2 —b2 ———,. However, in this case, we have

nq+nt.

III. CONCLUSIONS

We have shown the uniqueness of SU(5) and
SO(10), without using the requirement of a single
coupling constant in GUT. The use of a simple
group for grand unification is a consequence of hy-
percharges of quarks and leptons. Therefore, the

way of hauing the family structure is G =G (fami-
ly) 8 G(GUT) only We ca.nnot have G as a sim-
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