
PHYSICAL REVIEW D VO LUME 25, NUMBER 6 15 MARCH 1982

Strong-coupling expansion with fermions: The formalism all an application
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We review and discuss some properties of the strong-coupling expansion for a single scalar field with a quartic self-
interaction. We generalize the method to the case of fermions and mesons, called, maybe unduly, nucleons and
pions, interacting through a Yukawa coupling, and propose a renormalization program. We apply the ideas and the
techniques to a leading-order calculation of the nucleon anomalous magnetic moments, with the result

—p„=2.33.

I. INTRODUCTION

The main purpose of this paper is to generalize
and extend to problems involving fermions the
formalism for a strong-coupling expansion that
we have developed for the scalar P~ theory in
Refs. 1 and 2. This formalism and some modified
versions of it were successfully applied to the one-
dimensional anharmonic oscillator by Kaiser
et a/. ,

' Bender et al. , and ourselves'; to the @-
dimensional anharmonic oscillator by Ader et gE, , '
and to the d-dimensional g4 theory with an O(N}
internal symmetry by Parga et al. '

In this paper we shall treat the case of a spinor-
isospinor field g strongly coupled to an isovector-
pseudoscalar field g through a Yukawa interac-
tion. For simplicity, we call p and P the nucleon
and the pion field, but we do not claim that the
true nucleons and pions necessarily have some-
thing to do with our elementary fields, and the
Lagrangian model that we study can be considered
as nothing more than a simple support for the
setting up of the formalism.

Certainly, according to the generally accepted
ideas about the nature of the strong interactions,
a major progress would be the development of
methods for strong-coupling expansions in the
framework of continuum non-Abelian gauge theor-
ies; in this respect, our work represents only
a very preliminary step. However, our feeling
is that ultimately the forces between hadrons will
be described, at a phenomenological level, to
some extent and to some approximation by simple
Lagrangian models that, quite possibly, would
not differ too much from the old-fashioned Yukama-

type or quartic interactions. From this point of
view the method we propose here could be of in-
terest in the understanding and in the calculation
of low-energy strong effects. We have in mind,
for instance, the production of low-lying reso-
nances and the renormalization of static para-
meters related to weaker interactions. In par-
ticular, the first-order computation of the nucleon
magnetic moments, which is the object of the last

section of this paper, could be considered as the
first step towards a realistic calculation.

Qur paper is organized as follows. In Sec. II
we review the known essential results for a single
scalar field with a quartic self-interaction. The
natural framework where to obtain strong-coup-
ling expansions is provided by the path-integral
formulation of quantum mechanics or field theory,
and the very simple idea is to expand, not the
interaction, but rather the free part of the La-
grangian after a field rescaling. Clearly the
Green's functions will turn out expanded in nega-
tive powers of the coupling constant, but they
exhibit two striking features: first, they are poly-
nomials in the external momenta; second, the
Green's functions critically depend on the volume
g of the cells in space-time, whose discretiza-
tion seems unavoidable in the computation of the
functional integrals. These two features make
difficult the connection with the usual renormali-
zation program, but the work of Refs. 2-6 indi-
cates that the situation is far from being hopeless.

In Sec. III we extend the formalism established
for a scalar field to the more realistic situation
where fermions are present and interact with
mesons. We treat explicitly the case of nucleons
and pions interacting through a Yukawa coupling,
but consideration of other types of particles and
of larger multiplets would require only a few mod-
ifications. An amusing result is that also in our
context a pion self-coupling accompanies the Yu-
kawa coupling; but, in contrast to what happens
in usual perturbative calculations, the two inter-
actions cannot be disentangled, even at the lowest
order. In this case, the Green's functions turn
out expanded in powers of the two parameters
X'~'g ' and x '~'

(A, and g are the v-w and the n N-
coupling constants}, and exhibit the same unusual
features as in the case of a scalar field alone.

In Sec. IV we try to establish a connection with
the traditiona, l renormalization theory. The idea
is again very simple: if our propagator is a poly-
nomial, an appropriate Pade approximant can
exhibit a pole, and from the pole we can define
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the physical mass and the wave-function renormal-
ization constant. We shall not go beyond a second-
order approximation for the nucleon propagator,
but close examination of higher-order corrections
will, it is hoped, suggest some more sophisticated
procedure to restore in the propagator and in
all other Green's functions the expected analytical
structure.

Finally, in Sec. V, we put the strongly interact-
ing nucleons and pions in a weak external electro-
magnethc fheld A

p
and face the old problem of

computing the nucleon anomalous magnetic mo-
ments p~ and p.„. Qur primary motivation is to
test the ability of the formalism to treat, at least
in an encouraging way, a real problem, and we
limit our ambitions to a leading-order calculation.
A nearly immediate result of our approach is that
the isoscalar magnetic moment, g~ = ()u~+ y,„}/2,
is one order in X' 'g ' smaller than the isovector
one, )((,„=()L(~—p,„)/2; thus, to the leading order
in that parameter, we have p~ = —p.„. To the lead-
ing order in A.

' ' also, we compute p~ = —p,„=3.
Section VI is devoted to some comments and

dhscusshons.

II. GENERAL FORMALISM FOR A SCALAR FIELD

Before considering the interaction between nu-
cleons and pions, let us recall how the method
works in the simpler case of a real scalar field

P, with a AP self-interaction. Our purpose here

is to illustrate the major features of the strong-
coupling expansion, and actually we condense
and recast part of the material contained in Refs.
2-4.

The starting point is provided by Z(J), the gen-
erating functional of the g-point unamputated
Green's functions G(x, ' ~ x„), or by W(J), the
generating functional of the connected, unampu-
tated Green's functions G, (x, ' ' 'x„}:

z(d) =exp[w(d)1 =)ejup exp) e de(p, -xp'+ dp) ),
lr'. 4

1 s"W(J)
g" sJ(x) ~ ~ ~ sJ(x)

In Eq. (1), p, is the free Lagrangian

&0= 2s( 4's" 0'

and J an arbitrary source; the coupling constant
A. is supposed to be positive; N is a normalization
coefficient, independent of J', such that Z(J'=0}=1.
In what follows we shall omit this coefficient,
because it is inessential in computing the connected
Qreen's functions, but we shall keep in mind that
we can absorb undefined factors (independent of J)
coming from the functional integration over P.

We rewrite Eq. (1) in the equivalent form

Z(d)= J&dexP
p

dydy P(y)P(,y-. y )P, (y) ,—(X. dx, d'e( dxdd~,)'
where D(x -y) is the inverse free propagator

]3)

de
D(x -y}= —(Cl„+p, ')5(x -y) = 2, (0'-)((,')8""(*".

The idea we want to exploit is very simple and attractive: instead of expanding as a perturbation the
factor

( pe

exp -iA. dx 4 = -iA. dx 4 x

we rescale the field P so that A, P~- P', and consider rather as a perturbation the factor

i 1
exp — i dy dy p(y )D(y —y )p(y )e i dedp).

Expansion of the source term leads immediately to

1
1 n ~n4

and a further expansion of the /DE term leads to

1 " 1 f i l"
(&

l 2 ~r21 G' '(x "'x.)
Omt (2A, ]
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where the mth-order contribution G'"'(x, ' ~ .x„) is given by

) m

G'"'(*, „)=f yyd d(,)" d(*„)(fdydy. d(y)G(y, -y)d(y)l '*y(- f d0').2)

The Green's functions (6) or (7) contain as a factor the vacuum-vacuum amplitude

(8)

&olo&= Q —, '„,
I

v")=-z(z=o),, mt 2~'")

X) dggcfg pg D gg —$ g exp —g dg (10)

which differs from one if Z(J'} has not been correctly normalized. But once the Q( ' are computed, it is
easy by simple inspection to recognize and suppress disconnected contributions to t"' ' coming either from
vacuum diagrams V&'& or from products of Green's functions of lower dimensions. Thus Eqs. (I) and (8)
are the basic relations to compute finally the connected Green's functions.

The next job is to give a meaning to the functional integrals (8) and compute them. As usual we adopt
a discrete procedure by dividing the space-time in cells of volume 6, transforming integrals into sums

and considering the x„y, arguments of the ()))'s as labels of cells. This procedure causes no trouble in
the usual perturbative expansion, essentially because there the functional integrals are of Gaussian type,
and the parameter 6 disappears at the end of the calculations. In our formulation, this will not be the
case, and 6 will play the role of an inverse cutoff.

Let us call occupied the cells labeled by one or more arguments of the (j)'s in Eq. (8), and unoccupied
all other cells; let us call configuration a particular way of occupying the cells, namely a particular way
of distributing the x„y, arguments among the cells. Then Eq. (8) can be written as

G'"'(," .)=f dy, G(y, -y.)" ( ,G,y)yye'(*, " .;-y, " y. )

(to simplify, we still use the integral notation}, where

'( y''x xy "
y )= g ' f dele"ee'dd '

j f e' e'dd
coafjg occup uriocc

(12)

The factor I'& & arises from the functional integration over (()) and is the sum over all configurations of the
contributions of the unoccupied cells, and of the contributions of the cells occupied by p& arguments of
the Q's. We can divide Z(Z}, and so all Green's functions, by the undefined factor (independent of J')

e"~~'d,
a11 cells

so that the new E& & take the form

'( yx„;xy, '"y, )= P f Gee dd
config occop

e"~~'d

With this normalization, V'G& in Eq. (10), but still not Z(J' = 0), will be equal to one.
We see that E' & depends on x„y, only through the way these arguments are distributed into the cells

and not on their value; actually, because of the Q- —(I) symmetry of the interaction, only cells occupied
by an even number of arguments do contribute. Thus the 5' ' contain as factors Kronecker 6's like 5„....
6, , In view of coming back later to the continuum, we replace Kronecker 6's by factors b, 6(y, -y&),
b.6(y, -x,). The consistency of this replacement can be checked by dimensional considerations and veri-
fied in situations like

dxdy f(xy)il(x —y) Q gx'f(xg ye) Il =g xf (x' xg) fdxf(xx).1
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To evaluate the numerical coefficients in Eq. (13), we introduce a damping factor exp(- eP ) (we could
formulate the theory in Euclidean space as well), and we get

ag~H4Q &de&4 I'((2q+ 1)/4) 1
(g )((/2fx(1) (g )2/2 2(( ' (14)

Equations (7), (8) and (ll), (13) are all we need to formally compute, to any order, all Green's functions.
As an example let us consider the two-point Green's function (whose connected part is the propagator) up
to the second order. First we compute

1
F&'&(x„x,)=,. }„,~5(x, -x,)b, .1 2

Here we have only one configuration: the two arguments x„x,are in the same cell. Next we compute

(15)

F"'(x,x„y,y, ) = —. [b25(x, -x,)5(y, -y, ) b,'+ b.25(x, -y, )5(x, -y,}b,'+ b, 25(x, -y,)5(x, -y, ) b, '

—3~'5(x, -x,)5(x, -y, )5(y, -y, ) b, '+ ~'5(x, -x,)5(x, -y, )5(y, -y, ) b,]. (16)

In this case we have two kinds of configurations:
the one (three of this kind) where the four points
are distributed by pairs into two distinct cells
[the first three terms of Eq. (16)], and the one
where the four arguments are in the same cell
[the last term in Eq. (16)]. The third term is a
correction taking into account the possibility that
the two cells of the first configurations "acciden-
tally" coincide. We suppress the first term of
Eq. (16) because after integration over y it will
reproduce E& & multiplied by the vacuum amplitude
V'&'&, Eq. (10). From Eq. (11) we get

1
GC (xly 2} ( ly x2} y'g)1/2 5(xl 2} 2ygh

1
G&,'&(x„x,) = [2/2. 'D(x—,. -x,) b,'

gA

+ ~'(3b,2- b,)D(0)5(x, -x,)]

and finally, from Eq. (7)

1 1
Gc(xl x2) 1/2 y +}1/2 +5( 1 x2} 2

~z&

1 i+ ——. [z'b 'D(x -x )

(17)

+ 2 62(3b, 2 —bd)D(0)5(x, -x,)]

1
+ 0 2/, =2&2(X, -X ). (18)

The complexity of the expansion rapidly increases
at higher orders, but most of the important fea-
tures of the method are already apparent in the
structure of the simple result (18), or can be de-
duced from inspection of the preceding formulas:

(i) The Green's functions show an explicit de-
pendence on b, ; this parameter cannot be immedi-
ately set equal to zero because it multiplies singu-
lar factors whose singularities increase with the

I

order of the expansion.
(ii) Apart from constant, even if undefined,

coefficients, the Green's functions are made up
not only with distributions like

()(x, -x), D(x, —x), f dyD(x, -y)D(y —x),

but also with objects like

D'(x, -x,l, f dy D(x, -y)D*(y -x,), . . . ,

which are not distributions.
(iii) As a consequence, when choosing some

regularization procedure to handle such undefined
quantities, the final independence of the results
with respect to the particular regularization should
be checked.

(iv} Whatever regularization we adopt, the Four-
ier transforms of the Green's functions turn out
to be polynomials in the external momenta: they
do not exhibit the analytical structure which is
apparent in the first terms of the usual perturba-
tion expansion.

(v) The expansion of the propagator starts with
a term of order A,

' '; there is no "first-order
approximation" surviving at the limit g- ~.

In spite of this accumulation of difficulties, the
work done in Refs. 2-6 shows that the situation
is less dramatic than it would seem. If we treat
as a strong interaction a mass term A. (j))2 (our
formalism can easily deal with this problem), we
find, in a nontrivial way, that the propagator is
given by

1'lt n

i/2. ~(&') = '
Q —

~

(b'- ll')"

0' —g'-2X '
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as it must be. This suggests that Padd approxi-
mants could be an appropriate tool to restore,
at least in an approximate way, the expected ana-
lytical properties of the Green's functions. More
instructive is the study of the anharmonic oscilla-
tor in a AP» potential (see Refs. 2-5). The regu-
larization is achieved by replacing the 5 distribu-
tion by a convenient function 5"'(x), such that

a5'" (0) =1, (19)

in order to respect the relation b, 5(x& -x&)—5„,„.
Of course, there are many choices for 5"'(x}.
Referring for more techniques and details to the
quoted papers, we only remark here that the pos-
sibility of making b, disappear, the final numerical
independence on the regularization, and the good
numerical agreement with the known values of
the first energy levels indicate that the strong-
coupling expansion does have a meaning and a
predictive power. Also quite interesting is the
work of Ref. 6, where the authors study the P»

quantum field theory with an O(N) internal sym-
metry. In the large-N limit, the strong-coupling
expansion is able to discover a critical point in
2& d& 4 dimensions and to compute correctly the
critical exponent.

In this paper we work in a Minkowski four-
dimensional space-time, and we want to preserve
the Lorentz covariance; our choice for the regu-
larized 5 is

5"'(x)= lim, e" e"' A exp —e (0 )'~
dk q2 2

»-o (2g}» =o i
(.A'x'

—16, exp~i 4
(20}

where the "cutoff" A is related to 6 by condition
(19):

QA
16@2

In this way, D(x) is regularized through

D "N(x) =-(a+i ')5 "»(x)

(21)

= —P, '5"'(x) +i d(1],) 5"'(x)
and, for instance,

D '" (0) = ——( p. '+ 2iA').j.

III. STRONG INTERACTION BETWEEN NUCLEONS
AND PIONS

In this section, we generalize the formalism
we have developed for a single scalar field to the
more complicated situation where nucleons and

pions strongly interact through a Yukawa coupling

~.N =intr. ~g'4 (22)

In our context it is not evident, c priori, whether
a pion self-interaction is really necessary or not,
but anyway we can take it into account in the total
Lagrangian. Thus the g generating functional
takes the form

z(y, „,e)=f yydodeyd exe — dy, dy, t)(y, )s (y, -y, )d(y,)e,~, dx(t)eey)d)

+
e , dy, dy( d) y( y,yy)jy(y, )e(f d-xd j

dx y57' ' —iA. dx (23)

4

(p M } Hld(y( }})
(2v}»

(24)

while D(x -y) is the same as in Eq. (4). Spin and
isospin indices in the g, g, q, q fields are under-
stood, and the remarks of Sec. II concerning the
normalization of Z at zero sources are still rele-
vant. The fermionic nature of the nucleons is

We recognize in Eq. (23) a rescaling ~p- Qr.
The matrix $ ' is the inverse free nucleon propa-
gator, defined by

S (x —g) = (i'y "& —M)5(x —y)

expressed in the fact that (i), 7)), q, q are anti-
commuting c numbers, and Grassmann algebra
provides the framework in which to handle such
quantities. ' In what follows we shall need the rule

J ddiddi exel Z, .». .ded~+Z(einienidi}}

= (deed}exp(g y)gd, /eg) (ee}

The general idea is the same as in Sec. II, i.e.,
to keep the interaction factor exp(7()g(t}} as it stands
and consider all other factors in Z, except possib-
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ly for the A, Q4, as perturbations. (We shall omit

y5 and 7 matrices when they are irrelevant in the
discussion. } But the presence here of two kinds
of fields raises the problem of choosing the order
of performing the integrations, either (i) first
over the (j) field, or (ii) first over the g, 7)) fields.
Let us examine option (i): still we must decide
whether to treat the A, (j)' interaction (i,) as a small
perturbation or (i,) as a strong interaction.

Case (i,) is just the usual perturbative problem
for a scalar field in the source

J + itsy, &tP,

but the Gaussian integration over P produces,
among others, a factor

~%

exp —— dx dy (y y, r)I)), a~(x y) (7-))y, ry)„,

whose presence makes difficult the further inte-
gration over g, (j (A~ is the free-boson propaga-
tor). 80, we discard posslblllbJ (i)).

Case (i,) also is not interesting for us: actually,
after the rescaling A, Q~- (j)4, the Yukawa interac-
tion should be expanded in powers of A. ', which
is contrary to our philosophy. Actually, the
method of Sec. II could be applied, but further
integration over [I), 7]) would provide Green's func-
tions expanded in positive powers of the coupling

constant g.
We are thus left with option (ii). We expand

the exp(gS '[j)) factor in Eq. (23) and for the Z&„
the fermion-dependent part of Z, we get

Z~ = —' —Z(~), n, n,
tn= o

where

Sl

dgxdSa Sz ~ Si Xa 1a

(27)xF&((I]),q, q)

and where I'& contains the Yukawa coupling and
the fermion sources:

)'

F& =exp~ — dxdy g(x) [y, 7 Q(x)5(x -y)]g(y)

In order to evaluate the functional integrals in
Eq. (27), and to compute Green's functions with
fermions on the external lines, we essentially
have to take appropriate derivatives with respect
to q (to the left) and to q (to the right) of the basic
integral

l 1-$(D(Si = det[y, T' Pil(x —y)] exp] dxdy —q(x)[yP $ii(x —y)] 'q(y))g

, [ 4 (xr) (j)(xr)]'exp — dx q(x) '-, )|((x)
~

[see Eq. (25)]. As a very simple example, let us look at Z&& &:

(29)

Z y
= — dg~dg~ 8 g~ S ag Pg -P~ f)f Pg Ey

E

the minus sign comes from an anticommutation; N= 1,2 refers to the proton and the neutron. Then we
write

0)= dyxdya MS a[](» y~} —])(«F(( s )((I )'g6 (Pp)

If we want Z ~&
~ at q = g = 0, we find

Z&,'&(y; q =
&7

= 0) = —g dy, dy.&(y, y.)S '
&](y-. y.}(r.}8~-(

dy Tr[y, S '(0)] Tr —, , „.[ (I[)(xr) ' &]))(xr)]

It is amusing to recall that an expression similar
to our result (29) can be found in the pioneering
work of Hori. '

Two remarks are in order here. First we note

I

that when computing the pth-order contribution,
Eq. (27}, to a Green's function with 2f fermions
on the external lines, the derivatives with re-
spect to g and g will essentially produce a factor
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As soon as (f +p) & 10, the eight powers
of &p in Eq. (29), and the two powers of Q in up
will be unable to avoid troubles at &P =0. This is
not really a serious defect because we could trans-
fer the mass term (—)M/gPij into the interaction
i gg&p, still integrate the so-modified Eq. (28),
and get a new Eq. (29), complicated by mass
terms, but without problems at &P =0. We do not
adopt this procedure here because we are inter-

ested only in lower-order calculations, and we
do not like unnecessary complications in the Q
integrals. The second remark is that the very
presence in Eq. (25) of the factor lIr&pr' suggests
we take into account a strong A. Q» interaction.
Actually, were this interaction absent or pertur-
batively treated, even in the simplest situations
(leading order for Z&, no fermions on the external
lines), we should compute integrals of the type

DP ... , [ P(xr) ' P(xr)] &P, (x,)g&(x,) exp —
2 dy, dy, &P(y,)D(y, -y, )&P(y,),

K

which do not have a clean x, dependence. In contrast, when a strong AP» interaction is present, we can

apply the formalism of Sec. II, and we are led to integrals of the type

(P&e) -f -Pg(f+P- N-2e)/4
(2f~m) (30)

which can be easily computed.
The structure of the expansion of a Green's func-

tion for 2f fermions and m mesons on the exter-
nal lines should now be clear. The f derivatives
of expression (29) with respect to the couple q, q
give rise to a factor g ~ and to a factor &p ~; the
pth order contribution to g& produces another
g+ and another Q~; after the rescaling Ag»- Q»

we get a factor A(f'~); as in Sec. II, pg external
meson lines introduce a new A.

~» and a new P",
while the qth order in the expansion of exp(&PD&P)

contributes a A~ ' and a &Pa». Thus, finally, the

&p dependence is essentially given by a factor
&p&

~+"++"&, by the exp(- p ), and byIIr&pz. After
the last integration, we get

8
o2(xx2) ——

( )
Z(Jqq)

( )

= {0IT[4(x ) 7&(x.)]10) (31)

In this case we have f = 1, m = 0, and for the
leading contribution, p= 1, q =0. From Eqs.
(26)-(29) we compute first

Of course, because of the symmetry &p- —p,
f +p —m must be even, p increases by steps of
two units, and the relevant parameters in the ex-
pansion are A,

' 'g ' and A.
' '.

To show how the method works, let us consider
the leading contribution to the nucleon propagator
iS'(x, —x,), which is the connected part of the
two-point Green's function

~ y(x, ) ~ ~ y(x, )
s—

( ) g s ( )
2 ..., [4(xr) 4(AH x,S (xl x,)y5 p2( ) 2( )

and then we look for the integral

uy, [ y(xr) y(xr)]' exp — dx(&p ~ &p)'
- -, r j(x,) v'y(x, )

K

(32)

(33)

An easy way to evaluate this integral is to intro-
duce "spherical" coordinates in the isospin space,
l.e.~

&p=qPn, n'=1, dQ=&p'd&pdQ,

so that

r

The techniques developed in Sec. II can be applied
to evaluate integral (34); we make discrete the
space-time, factorize, and suppress the factor

-$6qb~4 aO

all cells

I=X' ' S QQ „, KaoeXP -j dg

r n(x, ) r ~ n(x, )

y(x, ) y(x, )
(34) f =~"~5(x,-x,)(m)'~'C (35)

and we get (x, must coincide with x„and [v ~ n(x, )]
x[7 ~ n(x, )]- 1)
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where the coefficients C, analogous to the b's of
Eg. (14), are defined by

C„= d dy ylo

Thus, the first approximation fS&„(x,—x,) to the
nucleon propagator is

(3'I)

The regularization can be achieved by the same
procedure as in Sec. II; so, in Eq. (3V)

S '(0) = -m6(0) = -u, '~ (38)

and, if we express' in terms of A according to
Eg. (21),

i 4&M ~/2
cS(~)(x, -x,) ——, , A, C85(x, -x2). (39)

fs&„(», —x,) = —,~6(x, —x,)X"'(f~)"(Z, S-'(0)&,)C,.

IV. A HIGHER-ORDER CONTRIBUTION
TO THE NUCLEON PROPAGATOR

In this section we compute a second-order con-
tribution to the nucleon propagator, whose leading
term is given by Eq. (39}. We are interested in
the contribution p = 1, q = 1, which arises from the
expansion of the kinetic factor exp(PDP), and is
of the same order in g ' as the first one, but of
the next order in A.

' '. Actually, for the computa-
tion of the nucleon magnetic moments, in the
next section, we shall need just this approxima-
tion of the nucleon propagator. Furthermore, we
illustrate the formalism and the regularization
procedure in a still simple but nontrivial situation,
and we show how it could be possible to establish
a connection with the usual renormalization pro-
gram.

With respect to the calculation of the preceding
section, we see that instead of the integral (33)
we must compute

v n(x, ) 7 n(x, )ug5)Q, ., P "exp — dxP'

&3'i~3'2 S~ &2 n Si n &2 3'i &2 ~ (4o)

Integration over P produces five terms according to the following configurations:

(1) x, =x„y,=y„x,ty, -a'5(x, -x,)5(y, -y, )C,C„[1-a5(», -y, )],

(2) xi=yi~ »2=y2,

Xg =g2q $2 =Py~
», gx, --', z '6(x, -y, )6(», -y, )[1-~&(»,-x,)], (41)

(3) x, =x, =y, =y, ~'6(», -y, )6(x, -y,)6(x, -x,}.
Coefficients C have been defined in Eq. (36). For configurations (1) and (2), we recognize the corrections
due to the possibility that the two different pairs of points "accidentally" coincide. The first of the two
terms (1}reproduces the leading contribution to the propagator multiplied by a vacuum amplitude, so we
suppress it and we get

i5S(,)(x, -x,) = — P3[y, S '(»~-x, )y JD(», -»,) +6(3 -C,C„)[y,S (0)y, ]D(0)5(x,-x,)).(2) 1 2 2 3 5 1 2 (42)

Coefficients S '(0}, D(0) are already known, but
the first, very singular term in Eq. (42} must
be regularized. In momentum space, we must
compute

y~ ~$Px dk „„22

(2w)' y (g-M)y e '~e"" +

X
dE 2 2

(2w)' (I —p 2)e~~~e~~ ~A (43)

v'=—,(g+-', p'+M)dk

&&~ y2+ I,p ~2 -2&4 /A( h 2 2

4

where a constant coefficient exp[-i(p'/2A')] has

(44)

In Eq. (43) we have understood the true conver-
gence factors exp[-gg&(k")']. Performing the x
integration, we obtain
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already been replaced by one. Keeping in mind
the presence of the convergence factors, the inte-
gration over 0 can be easily performed by appli-
cation of simple rules like

=i- ~ 2 . d dke""' .2

dQ

More difficult is the introduction of a renormali-
zation constant Z'2" for the first-order propagator
S&'», Eq. (39), which does not even depend on p.
But we shall need it in the next section and we pro-
ceed as follows: We require that the (constant)
value of the renormalized propagator S&y) be the
same as the value of S&',~& at P=m:

Collecting the leading term (39) and the second-
order contribution (42}, the Fourier transform
of the nucleon propagator can be written as

1 1
g(»s(» —

g(2& So&(p- ) .
2 2

(50)

.4~ ~" 4wz-"
(S)', )(&&=-)—,

g ))I(; (), (i(f (()*&+f,(i)'&&I
8

with

This requirement is in some sense analogous to
the more usual one that, to any order in pertur-
bation theory, the renormalized propagators have
a pole at the same location, with the same resi-
due. Condition (50) determines Z(», and we get

f, (()'&= (M™ —()*——A'} 24, go) ~ Z5)
2 2 2 (51)

f,(p') = ——12(—,
' —C,C») ( g'+ 2iA') (46)

p
2 —2jA2

The right-hand side of Eq. (45) hardly looks like
a propagator, and clearly higher-order contribu-
tions will not improve the situation; but as we
have remarked in Sec. II, a Pade approximant
could help to restore a more correct analytical
structure. To this order we can write

QM2Q 2g 2

-A'~'~'Mc /4m+ f (p')+f&f (p') (47a)

and identify the pole with the physical mass m of
the nucleons

The wave-function renormalization constant Z "2',

with

s,'„(p)= z,o&s,'", (p)

making the residue of the renormalized Pade ap-
proximant (48) equal to one, will be

gt)
1+ [2m/24f, (m')] (m/4+ M/2)

24k.~2+ 2g 2

—»,
' —(i/2)A'+mM ' (49)

In Eq. (49) we have already neglected m'/A' with
respect to mM/A'.

Sl R
(P -m)(1+ [(P+ m)/24f, (m')](P/4+M/2) j

(47b)

where

A'~'f'2MC„&(. M'C„'
mf,(m'}+f,(m'} =

This procedure could be applied to the meson
propagator, and with the additional pieces pro-
vided by the AN and 4w vertices, it could be
possible to set up a renormalization scheme along
the traditional lines. Many difficulties arise i.n

the realization of this program, and we shall
comment on some of them in the last section.
Let us only remark here that the dependence of
the Green's functions on two expansion param-
eters, X'~2g ' and X '~', leaves us with the practi-
cal problem of discriminating a preferential
parameter in powers of which to expand beyond
the leading order. We shall see in the next sec-
tion that, in the computation of the nucleon mag-
netic moments, this problem is easily solved.

We conclude this section with the technical re-
mark that in many equations of this paper strange
factors i appear. We do not worry about that be-
cause the origin of these factors lies in the partic-
ular choice (20) of the regularized 6(x}, and all we
ask of A' and of other bare parameters is they
ultimately disappear in favor of true physical
quantities.

V. NUCLEON MAGNETIC MOMENTS

The work we have done in the preceding sec-
tions enables us to compute strong corrections
to properties of the nucleons and of the pions
that are generated by weaker interactions. Here
we are concerned with the electromagnetic form
factors of the nucleons and in particular with the
anomalous magnetic moments. Quite naturally,
in this problem, we treat the electromagnetic
field A." as a weak external perturbation to be re-
tained only to the first order. Thus, the generat-
ing functional of Eq. (23) must be modified only

by the insertion into the integrals of the factor
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ie r'1+ 7,iS =-— dxPy
Iem 2

where

+8 dXp (52)

0 -i 0

Q= i 0 0

0 0 0

is the charge matrix of the pion field ()(). We re-
call that the parameter e in Eq. (52) is the physical
charge of the proton and of the positive pion,
since the A" field mill not be renormalized. In the
operator language, the quantity we are interested
in would be

(0( T'[y(x, ) T()(x,)]~0)„-=Z(x„x,), (53)

g ' in g, and to any order in A., the nucleon cur-
rent contributes only to the electric charge. As
a consequence, to the same order, the anomalous
magnetic moments receive a contribution only
from the isovector pion current, and we can make
the qualitative but important prediction p, ~= —p,„.
These remarks make clear what the (optimistic)
policy should be for a systematic calculation of
the magnetic moments: first stay at order g '
and go on with X '~' to get a good isovector mag-
netic moment, and then move to order g ' to im-
prove the isoscalar one.

Let us now perform the integrations (56); these
calculations are very similar to those we have
done to compute the first-order propagator, and
we easily find

K» =i e 5(x, —x,)y„A"(x,)
7' .(T)(x,) 1+T, T ~ (T)(x,)
y'x, 2 y2x,

i.e., the vacuum expectation value in presence of
the external field A" of the time-ordered product
T[f(x,) P(x,)]. In the functional formulation, K
is given by

If(x„x,) = Jf SP ugSFP —g(x, )m()(x, )i S, exp(iS),

(54)

x, „[4(x.») 4(x»)l',

Z „=i[y, S '(x, —x,)y, ]

e(,) 'e(, ) ----
2( ) 2( ),„,[(4(x») 4 (x»)]x, P x, »

(56)

(59)

where S is the same action, containing the free
part and the strong interactions, as in Eq. (23).

According to our method, to compute K we ex-
pand up to a convenient order the factor exp[(1/
g) PS 'P] and integrate first over P, I(). Noting,
again, that the integration over the fermion fields
brings a factor (())

' for each couple P P, and taking
into account the further integration over T(), we
immediately see that the leading contributions to
K of both the nucleon current and the pion cur-
rent are of the same order g '. Thus, the inte-
gration over g, $ gives

as the contributions to K~~" of H~ and H».
Next comes the integration over (T). Remember-

ing that the pion current multiplies the factor K„
we note that with respect to the coupling X, the
leading contribution of the pion is of order one
while that of the nucleon is of order X'~'. As the
charge takes contributions from both currents,
a consistent charge renormalization requires the
expansion up to A,

'i" of the factor

xp y dg dp p Dg

rc = —z("+o~—1, fl
g'

with

(55)
when integrating K» over P. Thus, we compute
N, the relevant contribution to K, from the nu-
cleon current

(56)

)e.=e()(e, ) p(e) f ey, ey.7(y, )& '(i, —y.)((y.),
(57)

yy„ie((e)((e)f ~i)-ye(- ='
()y,(e.

2

Simple inspection of Eq. (5V) reveals an extremely
pleasant feature of our method: H~ has the Lor-
entz structure y„A." and so, to the leading order

ie q 1 1 0
N= , 5(x, -«, )y„A"(—x,) -~

'(0 2)

x (ia)')'x')'c, + —D(0) a'(I —c,c„)+0

(60)
Integration over $ of the pion contribution is a
little more involved because of the derivative
8„(I); a good trick is to replace

&"(x)s„4(x)-0 (x+&) —4(x),
integrate over ())), develop the result in powers of
A", and keep the linear term. We get
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p= ——,o'
)

y, [o). , —,)w" (,)o„s'(o)-x"),)s '(o)o„o(,—,)lr, +o,„} (61)

as the relevant contribution to K from the pion current. Collecting terms I' and N, applying our regulari-
zation procedure, which should now be familiar, and defining K'„" by

K(x„x,) = K'„"(x„x,)A"(x,)+ 0 —,1

we get, in momentum

K'"0 P')= ——ie 1 1
P 1 g23

space,

~

—,y„C,A. ') —2(p'+ 2iA') —,(1 —C,C„)+ O~

e 4t1 Ol16v', , zM, (1+,
~ ~, —,

' A'y„- —(P+P')„+0(
0 —li

In Eq. (63), P and@'are, respectively, the mo-
mentum of the incoming and outgoing nucleon,
and condition ~„&"=0 has been taken into ac-
count.

To identify charges and magnetic moments,
stiQ we must amputate K'„" from the propagators
lying on the nucleon external lines, put the re-
sult I"'„"between free spinors u (P'}, u(P} solu-
tions of the Dirac equation with the physical mass
m, and finally renormalize I'„"=S,X'„". The rele-
vant nucleon propagator has been computed in
Sec. IV, Eq. (45), and we see that, in principle,
F '„"will be made up of two terms, one of order

g g ' and one of order g X '. Unfortunately, at
the preliminary level of this work, the amputation
of K'„" is a rather ambiguous operation; actually
the term of order A.

'~' jn K&' must be divided by
second-order propagators where, to give a mean-
ing to the notion of a physical mass, the pole at
P=m should be made apparent through the Pade
approximant (4V). Thus we face a problem like
the one of attributing a value to (1+x+ )

' at
x=1, after having interpreted (1+x+ ) as
(1 —x) '. However, fortunately enough, charge
renormalization gets rid of this ambiguity; we
can write

(64)

where coefficient A. alone contains the ambiguous
contribution of the nucleon current and all other
terms come from the amputation, with first-
order propagators, of the contribution from the
pion current. We understand that F'„" is taken
between free spinors, and we have as usual split
the (P+P')„ term into a y„and a o„„q"term; here
q=P'-P and o&„=(i/2}[y„,y„]. We impose that
the neutron charge vanishes, i.e.,

2 i Men

3 -'A'-iMm (66}

in the usual units, provided that

, ', (-,'A' iMm)=-ie.
8

(67)

Thus, for the anomalous magnetic moments we
get

4 &g'Z'"

8

and we write
2Z (1)

8

(I 0l 2 i Mm io„„q"/I

—I)
(65}

Condition (6V), through Eqs. (49) and (51), still
involves the ratio p'/A' and so does not provide
a complete determination of i Mm/A' We as-.
sume that the bare mass of the pion should not
be of crucial importance in our lowest-order cal-
culation (after all, it can be easily seen that the
leading contribution to the pion propagator does
not contain g'), so we set it equal to zero, and
we find

i Mm/A =
~~
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and finally

(68)

to be compared with the experimental values p.~
= 1.79, p.„=—1.91.

VI. COMMENTS AND DISCUSSION

At first sight, the price to pay in order to obtain
a strong-coupling expansion seems very high.
The analytical structure of the Green's functions
is lost and must be painfully restored to find
again the familiar ground of renormalization
theory. Essentially, this is because, to any finite
order in our expansion, the Green's functions
are too much local: they are combinations of 6
functions and of their derivatives; but this fea-
ture is unavoidable and must be accepted to the
extent that one accepts to expand the free La-
grangian instead of the interaction. From this
point of view, the crucial dependence of the
Green's functions on the &, or A, parameter is
quite natural: increasing powers of the external
momenta must be accompanied, for evident di-
mensional reasons, by appropriate powers of
that parameter. Also, to establish the dependence
on X (let us think for simplicity to the scalar
field) of the n-point unamputated Green's func-
tions is a simple matter of inspection of the gen-
erating functional Z(Z), after rescaling of the
field.

Thus, according to the preceding remarks in
our strong-coupling approach, the propagator,
say, for the scalar field must, a priori, have the
structure

where p' is a homogeneous polynomial of degree m.
Were we in a d-dimension space-time, we would
modify the & '~' argument of P into & @' . Our
task, in a sense, consists of computing the nu-
merical coefficients of the polynomials, which
do depend on the regularization and possibly on the
dimension of the space-time.

The introduction of fermion fields interacting
with mesons slightly complicated the situation,
but a discussion along the same lines as before
can be done in this case also. What is interesting

in our opinion is that the effects of the two inter-
actions, the Yukawa coupling and the pion self-
interaction, are inextricably combined in the
Green's functions. Of course when only pions are
on the external lines, the expansion contains
terms independent of the g coupling, but the nu-
merical coefficients always depend, through the
II/' factor, on the presence of the w-& interac-
tion.

In this paper we have introduced, and rather
successfully applied, a renormalization proce-
dure as close as possible to the traditional one.
It could be that consideration of higher-order con-
tributions forces us to adopt a procedure better
suited to the formal structure of our expansion.
We have in mind, in particular, the fact that when
dealing with a high-order propagator, we have the
choice between many different Pade approximants,
and that for a given Green's function it is not evi-
dent in general which parameter among A,

' 'g '
and X '~' is the more relevant in a limited ex-
pansion. Furthermore, dealing with unamputated
Green's functions is quite annoying, because the
factors corresponding to the propagators on the
external lines are not easily recognizable, im-
bedded as they are in the global polynomial struc-
ture, and because the amputation, as we have
already remarked, is not free from ambiguities.

The calculation of the nucleon magnetic mo-
ments, which in our opinion is rather straight-
forward and clean, is a test for the predictive
power of the method and an indication that it
could be possible to overcome the difficulties
still present in the formalism. The fact that the
isoscalar anomalous magnetic moment is one or-
der in g ' smaller than the isovector one strongly
suggests that our expansion is able indeed to ex-
plain the nature of strong corrections to some
weak or electromagnetic quantities. An interest-
ing comparison with our numerical result is
provided by the lowest-order calculation in the
usual perturbation theory, where one gets' ILL~

= 0.54, p.„=—3.9.
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