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In spontaneously broken non-Abelian gauge theories which admit gauge hierarchy at

the tree level, we show, to all orders in perturbation theory, that (i) the superheavy parti-

cles decouple from the light sector at low energies, (ii) an effective low-energy renormaliz-

able theory emerges together with appropriate counterterms, and (iii) the gauge hierarchy

can be consistently maintained in the presence of radiative corrections. These assertions

are explicitly demonstrated for O(3) gauge theory with two triplets of Higgs particles in a

manner easily applicable to more realistic grand unified theories. Furthermore, as a by-

product of our analysis, we obtain a systematic method of computing the parameters of
the effective low-energy theory via renormalization-group equations to any desired accu-

racy.

I. INTRODUCTION AND SUMMARY

A central idea behind the unification of forces of
vastly different strength is that such an apparent
hierarchy arises not from the difference of the fun-
damental coupling constants of the theory but
rather from that of the masses of the exchanged
particles. Although, ultimately, we hope to explain
the mass h'ierarchy itself through some dynamical
mechanism from a theory with a single coupling
constant and a single mass scale, it is certainly
worthwhile, at this stage, to try to achieve the un-

ification along such a line of thought. This has
come to be known as grand unification. '

In such unified theories, very heavy particles
must inevitably occur. The behavior of the cou-
pling constants of the now popular low-energy
SU(3)c SSU(2)L, SU(1) theory undeniably points
to that direction: If no new physics interferes
with their evolution drastically, the mass scale of
the heavy particles is as high as 10' —10' GeV.
It is perhaps not a coincidence that attempts of
quark-lepton unification (i.e., assigning them to the
same irreducible representation of the fundamental

gauge group) call for such a mass scale in order to
secure the longevity of protons. 2

Now in constructing a viable unified theory,
these heavy particles must be incorporated into the
structure with due caution. Among the most im-

portant requirements are (i) that superheavy parti-
cles must effectively decouple at low energies, (ii)
that correct effective light-particle theory must
emerge at low energies, and (iii) that the mass
hierarchy, arranged at the tree level, should be
stable against radiative corrections. As we shall

see, these requirements are deeply interrelated.
None of them are trivial to satisfy. Indeed there
have been numerous discussions of each of these
problems in the literature, with yet no clear-cut
conclusion. In this paper we shall address our-
selves to these questions and give solutions to all
orders in perturbation theory. Specifically, we
shall establish the following: In spontaneously bro-
ken non-Abelian gauge theories which admit gauge
hierarchy at the tree level, (i) superheavy particles
decouple from the light sector at low energies, (ii)
an effective low-energy renormalizable theory em-

erges together with appropriate counterterms, and
(iii) the gauge hierarchy can be consistently main-

tained in the presence of radiative corrections. The
assertions will be demonstrated for O(3) gauge
theory with two triplets of Higgs particles in a
manner that does not depend on the details of the
theory [hence readily generalizable to more realistic
theories such as SU(5) theory].

Let us first explain the nature of each of the
problems and point out the difficulties involved in
resolving them.
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A. Decoupling

Considering a theory with heavy (mass M) and

light (mass m) particles. Heavy particles are said
to decouple at low energies if their effects are phy-
sically undetectable in the limit M~ Oo. To be
more precise, they are said to decouple if their ef-
fects are either of 0(1/M) (manifest decoupling}
or, if nonvanishing [call it of 0 (1)],can be ab-
sorbed into finite renormalization of masses, cou-
pling constants, and the wave functions of a low-

energy effective light-particle renormalizable
theory. In equation,

rf»n(le &g&m&M&p )
(n)

=Z-""rI,",'„,(p, ,g„,,m„,,p, )+O(I'M), (1.1)

where p is a renormalization scale and Z is a finite
wave-function renormalization constant. For
theories without spontaneous symmetry breaking,
Eq. (1.1) has already been established by Symanzik,
and Appelquist and Carazzone. The essence of
their demonstration is that while for graphs (or

subgraphs) with dimension less than zero heavy-

particle effects are suppressed by the heavy propa-
gators, for graphs (or subgraphs} with dimension

greater than zero one can absorb all the apparently
large heavy-particle effects into the renormaliza-
tion counterterms. Although the original demons-
tration was done in a momentum subtraction
scheme with small subtraction scale (p &&M) so
that the decoupling is manifest, the fact of decou-

pling is clearly independent of the renormalization
scheme chosen. It is a matter of simple finite re-

norrnalization to go from one scheme to the other.
To discuss decoupling in theories with spontane-

ously broken symmetry, one must first specify the
manner in which M becomes large. In such
theories, the masses are proportional to gV, where

g and V are, respectively, a generic coupling con-
stant and a vacuum expectation value of a scalar
field. Thus two cases should be clearly dis-

tinguished. Case (a) g —woo. In this case, the
light-particle sector becomes, in general, apparently
nonrenorrnalizable, indicating its sensitivity to the
physics at large mass scale. One therefore expects
no decoupling. (This does not necessarily mean
that heavy-particle effects are easily observable in
practice. Since these effects appear through radia-
tive corrections, they are often suppressed by
powers of the remaining small coupling constants
of the theory. ) Indeed many examples of this
phenomenon have been reported. Besides, the
theory in this limit will contain a strongly interact-

ing sector. Although potentially very interesting,
we shall not dwell on this case any further. Case
(b) V~ oo. This is the case relevant to the theories
in the grand-unification category, and is the one to
be discussed in this paper. Contrary to case (a),
the light sector looks renormalized and therefore
one expects. the decoupling to take place. Some ex-
plicit calculations have been performed to one-loop
order with results in support of this expectation. '

However, to go beyond explicit calculation is not
an easy task. For spontaneously broken theories,
the essential arguments of Symanzik, Appelquist
and Carazzone do not go through: Propagator
suppression does not always work due to large
three-point vector-vector-scalar coupling and scalar
self-coupling (and possibly large Yukawa coupling
if very heavy fermions are present), and not every
two-, thrm-, and four-point counterterm can be
freely adjusted due to the gauge-symmetry restric-
tion. Added to these difficulties is the fact that, in
general, light-heavy mixing occurs, i.e., even if we
define light and heavy particles at the tree level,
this identification is lost once one turns on the ra-
diative corrections. Although conceptually one
may reidentify light and heavy particles at each
loop level, in practice it is certainly difficult, if not
impossible, to implement such a procedure to all
orders. Furthermore one must worry about the
gauge-hierarchy problem, for without gauge
hierarchy the very concept of decoupling does not
make sense.

B. Effective Lagrangian

Now, complementary to the existence of decou-

pling is that of an effective low-energy light-par-
ticle Lagrangian. As is already clear in the case of
theories without spontaneously broken symmetry
one cannot talk about decoupling without the ex-
istence of an effective light-particle theory, because
in its absence we cannot absorb the large mass ef-
fects by redefinition of the parameters of the light
theory. These two concepts are, therefore, two
sides of one and the same subject. Thus all the
difficulties associated with decoupling are present
in deriving an effective Lagrangian. Recently a
method of obtaining an effective Lagrangian by
"integrating out" "heavy fields" has been discussed

by several authors. If implemented naively, this
method produces an infinite series of seemingly
nonrenormalizable-looking terms in the Lagrangi-
an, which is due to the (unallowable) interchange
of the limits A(cutoff) ~ 0o and M~ 0o. To avoid
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this, analysis of light-heavy overlapping graphs is
called for and this has been done to two-loop ord-
er. Our method to be described in this paper
deals exclusively with fully renormalized Green's
functions and hence leads to systematic incorpora-
tion of the correct limiting procedure to all loops
orders.

C. Gauge hierarchy

Finally the gauge-hierarchy problem. There are
two levels at which to discuss this problem. Of
course the profound question is why such a hierar-

chy exists. Although some interesting ideas have
been put forth (e.g., heavy-color approach, and
Veltman's conjecture' of underlying supersym-

metry) nobody has yet solved the problem. From
this point of view, any nonsupersymmetric theory
with elementary scalars is "unnatural" due to the
existence of quadratic divergences. The less pro-
found, yet important and practical question is
whether we can maintain gauge hierachy con-
sistently in the presence of radiative corrections
within the realm of perturbation theory. The em-

phasis is on the "consistency, " for, in a renormaliz-
able theory, we have a certain number of free
parameters and it is trivial to choose the renornzal-
ized value of small (U) and large (V) vacuum expec-
tation values to be among our free parameters.
The real question of consistency is whether, by so
doing, all the masses (not all of them are free now)
automatically come out to retain the desired
hierarchical pattern. This is another question we
address ourselves to in this paper and give the
answer in the affirmative.

Now let us summarize the essence of how we
solve all the problems mentioned previously to all
orders in perturbation theory. (This will at the
same time serve to inform the organization of the
paper. )

The model is the O(3) gauge theory with two tri-
plets of Higgs particles. It is chosen so that we
can easily arrange a gauge hierarchy at the tree
level. (It is described in Sec. II.) The first step
(the content of Sec. III) is to do away with the
light-heavy mixing problem. We shall show that
consideration of one light-particle-irreducible (here-
after denoted by LPI) Green's functions, which are
the natural objects to study from the point of view
of an effective Lagrangian, takes care of the mix-
ing automatically without the need of rediagonali-
zation. Here "light particle" means the one de-

fined at the tree level.

The next step (see Sec. IV), one of the two cru-
cial steps in our program, is to decompose a given
arbitrary renornzalized LPI light graph into the
part which survives in the M~ ao limit [call it
0(1) part] and the remainder of 0 (1/M) in such a
way that 0(1) part is readily seen to be generated

by an effective Lagrangian with effective parame-
ters and appropriate counterterms. The basic idea
here is that of factorization of the most "divergent"

part, where "divergent" here is defined with

respect to the limit M~ 00. Factorization has
been widely discussed lately" but there is, however,
a novel feature in our case: the operators of in-

terest are of dimension four and hence appear
many times in a diagram. This is to be contrasted
with, for instance, the usual operator-product ex-

pansion, where one needs to consider only a single
insertion. Therefore combinatorical and renormali-
zation aspects of such multiple insertions present
complications. Technically, this is handled by the
construction of a new algebraic identity in the
Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ)
framework. ' At the same time power-counting
theorems are stated (see the Appendix for proof)
which guarantee that what is claimed to be
0 (1/M) is indeed 0(1/M). It is to be emphasized
that we shall always deal with fully renormalized

graphs so that nowhere do we interchange the lim-

its A —+ao and M~oo. The fact that the identity
is designed to closely follow the combinatorics of
renormalization is responsible for (i) the 0(1) part
can be generated from a Lagrangian and (ii) coun-
terterms are automatically supplied.

Now that we have an effective Lagrangian, the
final crucial step (Sec. V) is to (i) find what theory
it describes, (ii) see if all the light particles remain

light, and (iii) identify the effective coupling con-
stants of the theory. It is at this point that the

gauge symmetry of the theory plays the central role.
(Power counting alone cannot exclude the possibili-

ty that light particles may become heavy. ) From
the original O(3) Becchi-Rouet-Stora (BRS) identi-
ty' [in fact what is relevant is an O(2) part of it
around the direction of the large vacuum expecta-
tion value —the "residual" symmetry] we derive the
BRS identity satisfied by the proper generating
functional of the effective light-particle theory.
This puts such a severe constraint that the struc-
ture of the theory is completely determined: it is
that of the O(2) gauge theory spontaneously broken

by a small vacuum expectation value -u. In par-
ticular, the masses of the gauge, Higgs, and ghost
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particles (we shall use a renormalizable gauge' ) are
shown to be of order O(u). This demonstrates that
the gauge hierarchy can be consistently maintained
in the presence of radiative corrections.

Furthermore, as a by-product of our analysis, we
obtain a systematic and unambiguous method of
computing the parameters of low-energy effective
theory to any desired accuracy via renormaliza-
tion-group equations (Sec. VI). The effective
theory constructed in Secs. IV and V is provided
with counterterms corresponding to zero-
momentum subtraction, and it is not particularly
convenient from the point of view of
renormalization-group analysis. More advanta-
geous in this respect is the effective theory made
finite by minimal subtractions. ' We shall describe
an algorithm by which such a representation is ob-
tained directly from the full theory without going
through the intermediate stage of zero-momentum
subtractions.

In the minimal scheme, effective parameters are
free of infrared (i.e., m ~0) singularities and the
decoupling takes place irrespectiue of the magnitude
of the renormalization scale p. By comparing
renormalization-group equations pertinent to the
Green*s functions of the full and the effective
theory, exact equations satisfied by the effective
parameters are obtained. Boundary conditions to
be imposed at p-M for the solutions of these
equations are found in an unambiguous manner
through the algorithm alluded to above. The merit
of our method lies in that it is conceptually clear,
and is systematic (backed by the all-order analysis)
so that the procedure can be carried through
straightforwardly to any desired accuracy. Also
included in this section is a comment on the "par-
tially covariant" gauge-fixing procedure recently
proposed by Weinberg' in the context of effective
Lagrangian. It will be pointed out that there exist
certain difficulties associated with this procedure.

Dz "dz+——gt'Az (a =1,2, 3,),
( t ')ba ———eaba

(2.3)

(2.4)

is covariant derivative in the triplet representation.
We have assumed the symmetry under separate re-
flections H~ —H and h~ —h and for simplicity
no fermions have been added. The Lagrangian W0
is invariant under the O(3) gauge transformations,

5g a(x) ~bag a (x) 5abg 58b(x)
1

= ——(D„)' 58 (x),
g

5H'(x) =e +H'(x)58 (x),
5h'(x)=e' h'(x)58 (x) .

(2.5a)

(2.5b)

(2.5c)

We shall, of course, add the gauge-fixing and the
corresponding ghost terms later.

As was discussed by Gildener, one can easily
arrange a gauge hierarchy at the tree level under
the conditions

0&f; (i =1,24), (2.6a)

Nl-(fif2)'"&fi &fi
Nl I

(2.6b)

As we shall work in perturbation theory, fi —fj« 1 will be assumed. The absolute minimum of
the potential then occurs when

Fagpva0 4 p

+ —,(DqH. D"H)+ —,(Dq h D"h ) —V(H, h ),
V(H~h)= , m—H H —,m—b h + —,f, (H )i (2.1)

+ —,f2(h')'+ —,
'
AH'h '+ —,'f, (H. h )2

(2.2)
where

II. THE MODEL

Although our arguments and the techniques in
studying the three problems stated in the Introduc-
tion are quite general, it is certainly instructive to
carry through the procedures explicitly for a defin-
ite model theory. We have chosen to work with
O(3) gauge theory with two triplets of Higgs fields
H and h so that a gauge hierarchy can be arranged
at the tree level.

The starting Lagrangian is given by

(oiHio) (oihio)=0.
We may therefore choose

(0
i
H boa) =5„V,

(0 ( ha
~
0)=5,2U .

V and v are given, in terms of the original
parameters, by

V'=(f2mH' f3mb') ~(fif2 f3'»— —
ii'=(f i mb' —firma')~(f if2 —f3')

Alternatively,

(2.7)

(2.8a)

(2.8b)

(2.9a)

(2.9b)
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mH f—, V +f,u2 2 2

m„'=f&V'+flu'

Gauge hierarchy is arranged by choosing

p'2 gg U
2

(2.108)

(2.10b)

(2.11)

~a
1 2

2a

[a„~~ g.—(~,r v) g.—(X,r V]',
2(x

(2.12)

The original O(3) symmetry is broken by V to O(2)
[i.e., U(1)], and then by v down to no symmetry.

For the purpose of power counting, to be per-
formed later, it is convenient to choose a renormal-
izable gauge for which the ghosts and the Gold-
stone bosons associated with the heavy gauge fields
are also heavy. A suitable gauge' is specified by

where the shifted fields i) and X are defined by

h=g+v,
H=X+V .

(2.13a)

(2.13b)

The corresponding ghost Lagrangian then takes the
OHIl

Wsh= —cgt) (Di4) cs —g a[u cici+V c2ci+(V +U )c3ci]

—g a[ U( r12c ,cc,rl, c—2)+V(Xic,c, —c,X,ci)] . (2.14)

By shifting the fields as in Eq. (2.13) and di-

agonalizing the quadratic part of the resulting
Lagrangian, we easily find the particle content of
the theory at the tree level. The theory contains
altogether 12 particles listed in Table I. Note the
following features: (i) For a gauge parameter
a=0(1), the masses of a gauge boson and the as-

sociated ghost and the Goldstone boson are of the

same order. (ii) Mixing occurred in (X„r12) and

(rii,X2) systems with small mixing angles Oi, 9z
-O(u/V). Later we shall see that the radiative

corrections induce further mixings, of the same
order, within these pairs, so that the heavy-light
identifications made at the tree level will be upset.
This annoying problem will be nicely resolved in
Sec. III.

TABLE I. Spectrum of the theory at the tree level. '

Squared mass

Gauge bosons

Ghosts

Goldstone bosons

Physical Higgs scalars

A„'
Aq

A~
C)

C2

C3

713

X3

X2

g1

Xf

g2V2

g2V2

g2( V2+ V2)

CEg V

ag V
ag'(V'+v')
ag v

ag V
ag2(V +v )

,
'
f4( V'+v')—

fi V'+f2u'+[(f i V'+flu')' —4(fif2 —f3)V'u'1'
-2fi V [1+O(u /V )]
fi V'+ flu' [(fi V'+f2u')' 4(—fif2 f3)V'u']' —'—

2V (f,f2 f3)[1+O(v'/V )]—

'%'here g2 ——+2cosO] —g~sin8], g] ——glcos8]++2sin01, g1 ——+~cos82+'g2sin82, 'g2='g2cos92 —g]sin82 tanO~ ——v/V,

2f3Vu f&vtan82=, = [1+O{u /V')].
fi V' f2u'—
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g =(Zi /Z3 )gz a =Z3az

f) ——(Z/ /ZH )f1', f2 (Zy, /Zg ——)f2@,

f,=(zI /ZIIZII )f3' f4 —(Zf, /z„z„)f4„,

(2.15)

2 2 Q 2
mH =mHg —5mH m„=m~„—5m„.2 — 2 2

As was first pointed out by Appelquist et al. ' and
later elaborated by Lee, ' the use of renormalizable

gauge with scalars requires an additional renormal-
ization; namely Hz and hz defined above still con-
tain gauge-dependent divergent vacuum expectation
values of 6V and 5v (even in theories without
spontaneous symmetry breaking) and these must be
removed. The necessary counterterms are generat-
ed by writing

Finally, to complete the definition of the theory,
we must specify the renormalization prescriptions.
So far all the fields and the parameters in our
Lagrangian are the bare quantities and they diverge
in perturbation theory. From the general theory of
renormalization of spontaneously broken gauge
theories, ' we know that these divergences are re-
moved by the following renorrnalization transfor-
mations:

have now completed the definition of our model
and are ready for its analysis.

III. RESOLUTION OF THE
LIGHT-HEAVY MIXING PROBLEM

As has been pointed out, the identification of
light and heavy particles made at the tree level

may appear ephemeral; radiative corrections will

introduce further mixings and it seems, at first
sight, that rediagonalization must be performed at
cvcry loop lcvcl to iccstablish correct identification.
This vexing problem, however, has a neat natural
solution to the order of accuracy we wish to
achieve. This is the subject of discussion of this
section.

The first question to be asked is whether the ra-
diative corrections induce patterns of mixings dif-
ferent from those at the tree level. Fortunately
this situation does not obtain. The key observation
is that there exists a symmetry obeyed by every in-
dividual term (i.e., without even summing over the
group indices) in the Lagrangian, which we shall
call the index conservation. For the theory at
hand, it can be described as follows and we shall

assign the indices to various fields:

0 for g&~'g2 )

Hg ——Xg +Vg +5V,

hg = T/g + vg +5v
(2.16)

1 for A„,g3,ci,ci,1

2 fol A~,X3,C2, Cg,
33 for A»+2, gi, c3yc3

(3.1)

where now X~, V~, g~, v~ are completely finite.
Furthermore, one can choose 5V and 5v such that
the gauge-fixing Lagrangian retains its form ex-

pressed in terms of renormalized quantities. To
actually fix the counterterrns we need to specify
the subtraction procedure. Although any sensible
gauge-invariant scheme will do, for simplicity and
definiteness we shall adopt the dimensional
minimal subtraction' as the intermediate renor-
malization. After removing the infinities this way,
we must still find the true vacuum and reexpand
around it. This is actually done by demanding
that, at each loop order, appropriate sums of the
tadpoles vanish. This amounts to making a finite
renormalization on 5mII and 5mI, . As was em-

phasized in the Introduction, we are free to choose
V~ and vz to be among our free parameters and
insist that V~ &~ u~. Then according to our
prescription above, all the masses will be fixed in

terms of V~, u~, and the coupling constants. We

and impose the rules of composition

0.0=0,
&.0—

I,

)t —0
(3.2)

i.j=k,

FIG. 1. Examples of composition of indices.

where i,j,k =cyclic, i,j,k =1,2, 3 .

Then one can easily verify that every term in the
Lagrangian conserves indices. Some examples are
given in Fig. 1. This assures that, by looking at
two-point functions, mixing can occur only among
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P- ~ ~ ~

c ~ s ~ ~ ~ 0
2

X, ~1 /p of Xy
~ ~ ~

3 ~ ~ ~

FIG. 2. An illustration of "index conservation" for
gz —g& two-point function.

fields with the same index (see Fig. 2 for an illus-

tration), demonstrating the assertion made above.

Having been assured that radiative corrections
affect angles, but not the pattern, of mixing, let us
describe how rediagonalization at each loop level is
avoided. To do this we must first analyze what
are the objects of interest that we want to compute.
For the sake of clarity of discussion, let us concen-
trate on the mixing in the g1,2?2) system and

suppress all the other fields. Our starting point is
the generating function

exp[i'(jz, JI )]=f&2?2&XIexp[i(S+ijzr/2+iJIxI)] (3.3)

~IPI( qzx1} ~ j 2?2 Jl~l

where

(3.5)

which, upon tree-level diagonalization becomes

J&2?2&XIexp[i (S+ij zr?2+i J1XI )] . (3 4)

This is the form from which we generate perturba-
tion series. Now what we eventually wish to ob-

tain is the effective Lagrangian for the light parti-
cles. Thus the object of interest is the effective ac-

tion, defined, as usual, by the Legendre transfor-
mation

~LPI(z?2) ~LPI( ?2}+O(1~M) ~ (3.9)

To see this let us consider the actual process of di-

agonalization of fields. In (X&,z?2} basis, the inverse
two-point function matrix b '(p ) is of the form

S —~ —~x x —&x2 2
1 1 1~2

g —
1(p 2)

p —m —X2 2
'92'92

—&x1~2

compute this object'? lt turns out that, to O(1), this
object is exactly the same as the LPI Green's func-
tional I'LPI(2?2) = I'IPI(2?2EI)

~ 7 =0 defined wtth

respect to the tree-ieuel identification. In equation,

58' — 58'
g2= p i= ~

5j2 5J)
(3.6)

(3.10)

Because of the radiative mixing, we must reexpress
this in terms of the true light and heavy fields 2?z

and g& which are orthogonal linear combinations
of the tree-level fields 1?2 and XI. (Actually we

must do this for each Fourier component, i.e., the
mixing angle is momentum dependent. ) Thus we

write

cos8(p ) sin8(p }
O(p') = —sin8(pz) cos8(p )

so that we have

(3.11)

where Xx,x, , etc., are the (renormalized) self-energy

operators. This is diagonalized by an orthogonal
matrix

1PI(z?2 ~1) 1PI( ?2 +1) ' (3.7)

We now wish to "integrate out" the heavy field g&.
This means computing I &p& in the absence of the
source of Xi. It is expressed by

g2 ——g2cos0 —Xisin0,

g& ——g&cos0+ g2sin0 .

The mixing angle 0 is easily computed to be

(3.12a)

(3.12b)

('gz, XI)=0 .
5Xi

(3.8) &&x,g,
tan20=

M —m +Ex x —X„z
(3.13)

Hence we can solve for XI in terms of z?zgI
=XI(2?2). We then obtain the desired object
I'IPI(F/zp I(2?2)). This is nothing but 2?2 (i.e., light
particle)-irreducible generating function (since
Legendre transformation for XI is not effective due
to the condition p1 ——0), which we denote by
~LPI( ?2)

Now the question is the following: How do we

Xx,x, ——O(M ), Xv v
——O(m ),

Xx,q,
——O(Mm) .

(3.14)

At this juncture, we must borrow some results of
the power-counting theorem P1 described in Sec.
IV. Applied to two-point functions under con-
sideration it tells us that
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-Sln8 = --,~///////l

~/////A —=

xx
I l

\ ~ g1

QLPt

tp A
I/

+ E@E

FIG. 3. Graphical interpretation of the mixing angle

sin8. Shaded round blobs represent self energies.

Substituting them into Eq. (3.13), we find that the
mixing angle is small, i.e., + ~ ~ ~ +

8=0 (3.15)

Therefore, we can write

Xx,g,—sino=
p —M —X&&

1 1

Pl1+0
M

N1cosa=1+0
M

(3.16a)

(3.16b)

Equation (3.16a) has a nice diagrammatical in-

terpretation depicted in Fig. 3. Let us now com-
pute what the true light and heavy two-point func-
tions are. By elementary calculation one finds

r

2
' ——(p —M —Xr,r, ) 1+0

—1 2 2=p —m —X~ ~

(&x,v,
)'

p —M —X&,&,

(3.17a)

2

+0 . (3.17b)
M

„-'. (p'-m')

= LPI two point light function

FIG. 4. Graphical depiction of how LPI two-point
light function is formed. Shaded blobs and square carry
the same meaning as in Fig. 3.

Diagrammatically Eq. (3.17b) can be represented
by Fig. 4. Equations (3.17a) and (3.17b) tell us
that, within the accuracy desired, while "true"
heavy propagator is equal to "tree" heavy propaga-
tor, the "true" light propagator is obtained by
summing all the relevant LPI diagrams, where LPI

FIG. 5. Diagrams illustrating the equality of four-
point LPI light functions defined with respect to true
fields (double lines) and tree fields (single lines) to O(1)
accuracy.

is defined with respect to,"tree" diagonal fields.
As for the external lines, we learn from Eqs.
(3.12a), (3.16a), and (3.16b) that proper projection
of the true light field is done automatically by con-
sidering tree-LPI graphs. Figure 5 summarizes our
findings in the case of a four-point function. This
clearly proves the statement Eq. (3.9).

Thus, to O(1), we have a very useful conclusion:
Simply study the LPI Green's functions. The mix-
ing problem is automatically taken care of.

IV. SEPARATION OF O(1) AND O(1/M)
PARTS—A NEW ALGEBRAIC IDENTITY

We now come to the main part of the study.
With the result of the previous section in mind, we
can state our objective as follows: Given an arbi-
trary LPI light-particle graph, which is made finite
by the usual (in our case minimal) subtractions, we
shall give a prescription to separate its contribution
at low energies into the part that does not vanish
as M~ ao [we shall call it O(1) part] and the rest
which is of O(l /M) in such a fashion that O(1)
part is manifestly obtainable from an effective
light-particle Lagrangian with effective coupling
constants and effective masses.

To describe the basic idea, let us start with a
simple example which well illustrates our ap-
proach. Consider a diagram shown in Fig. 6. Ow-

ing to the large Higgs-boson three-point couplings
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'II

/

M. ~ iM

1I, /
WI

I

0, ,0-
/

V
/W

/

0 0

FIG. 6. A simple example, analyzed in Sec. IV, in
which suppression due to a heavy propagator (solid line)
is offset by large (-M) Higgs self-couplings.

this diagram contains O(l) part in spite of a heavy
Higgs-boson exchange. Moreover, it originates
from both low-(l «M ) and high-(l -M ) loop
momentum regions. First we look at the low-l re-
gion. In this region the dominant piece of the
heavy propagator is almost a constant ——1/M2.
It is thus natural to make a decomposition

1 1 1 1

(2 M2 I2 M2 M2 M2

=—6, +hb . (4.1)

/

/
/

M/ 'M

Pg
/

\

+
~/' M (-~)

M

(0) (b)

FIG. 7. A decomposition of the diagram in Fig. 6 as
explained in the text.

Upon substituting this expression, the original
graph splits into two graphs depicted in Figs. 7(a)
and 7(b). Because of the improved (-1/M ) low-

energy behavior of 6„the diagram 7(a) no longer
produces O(1) contribution from low-1 region. To
deal with the high-loop-momentum region, howev-

er, this decomposition is not sufficient; although
the sum is finite, Figs. 7(a) and 7(b) individually

diverge as l ~ oo. To remedy this we add and
subtract the zero-momentum values of the di-

agrams as shown in Figs. 8(a) —8(c). Now each

bracketed expression is finite. Moreover, recalling

Fig. 7 we see Fig. 8(c) is nothing but the original

graph evaluated at zero momentum. Notice that
Fig. 8(a) is not only convergent but also is of
O(1/M) since the potential O(1) part is subtracted

away together with the divergent contribution.
(The reader can easily verify this explicitly. ) At
the same time the diagrams giving O(1) contribu-
tions have exactly the diagrammatical structure
pertinent to a light-particle theory. Therefore, for
this example we have achieved our objective stated
at the beginning of this section.

0 .0
I

I
~ Jh

0 0-
0, ,0

/ w +
/

~0

Il

0~/0
/

0 '0

0.. .0/(
I
I I

w/0.) .0

FIG. 8. Complete decomposition of the diagram in

Fig. 6 in which each bracketed expression [(a), (b), and

(c)] is finite.

To see how this procedure may be generalized
for an arbitrary graph, we must rephrase the above
result from a different, more systematic point of
view. Diagrammatically Figs. 8(b) and 8(c) can be
obtained from the original graph by reducing non-

trivial LPI light (sub)graphs of mass dimension

&0 to a point. The resultant graphs contain
light-particle lines only and in this sense they are
"fully reduced. " On the other hand, Fig. 8(a),
which is not fully reduced (in fact not reduced at
all in this case), is overly subtracted, i.e., all of its
nontrivial LPI light subgraphs with dimension )0
were subtracted according to the nominal naive di-

mension counting regardless of whether they actu-

ally diverged. What we have learned is that only
the fully reduced graphs gave O(1) contributions.
These observations will be the key to our subse-

quent analysis —we shall make them more precise
and express the above rule as an exact algebraic
identity.

To handle the complicated combinatorics for ar-
bitrary graphs, BPHZ (Ref. 12) renormalization
procedure with Zimtnermann's forest formulation
is well tailored. Let us begin by making precise
the various key concepts, some of which have al-
ready appeared in the example above.

(i) Renormalization operator tr: tr is defined for
1PI graphs only. It evaluates the divergent (pole)
part of a 1PI graph y.

(ii) Taylor operator rr: This operator will be de-

fined for two-, three-, and four-point LPI light-
particle graphs (to be defined shortly as partition
elements). Given such a graph y, it extracts the
superficially divergent part of its Taylor series
around zero external momenta, where the superfi-
cial degree of divergence is determined according
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to the naive dimension counting, i.e., by the formu-
la 5=4 B—(B is the number of external lines).
Since the actual superficial degree of divergence is
given by d =4—8 —V3, where V3 is the number
of three-point nonderivative couplings in the
graph, ~y in general effects oversubtraction. Note
that ~y also acts on graphs composed of light inter-
nal lines only. When it does, the difference tr er-
is a finite renormalization. This is built into the
algebraic identity so that at the end the light-
effective theory is consistently renormalized by
zero-momentum subtractions.

(iii) Partition element: A partition element ir of
a graph is a nontrival (i.e., excluding tree light ver-
tices) LPI light (sub)graph of mass dimension & 0.
The whole graph itself could be a partition ele-

ment.
(iv) A reduction of a graph: A reduction of a

graph is defined by a set of mutually disjoint parti-
tion elements {xi, m2, . . . , n.„}.A reduced graph
I'/I ni, . . . , i.r„}is then obtained by shrinking
each m; to a point. m; s participating in a reduc-

tion will be called reduction elements. A reduction
is said to be a full reduction if the reduced graph
contains no hcavy-particle lines. Note that reduc-
tions are defined even for a graph that is composed
of light-particle lines only. In such a case every
reduction is a full reduction.

(v) Concepts of type-t (or barred) and type-~ (or
unbarred) elements: Later when we write down the
relevant forest formulas we need to assign, for each
element or the forest, the operator ty or ~y. An
element will accordingly be called of type t or of
type ~. For partition elements which are at the
same time divergent we shall have occasions to in-
clude them twice in a forest, once as type-t ele-
ments and once as type-~ elements. This point will
become clear later. When such a distinction is
essential we shall put a bar on top to denote the
type-t elements.

We are now in a position to state and prove the
crucial algebraic identity. I.et us first state it as a
theorem and give a clear explanation of it. A
proof will then follow.

Theorem 1. The following equation holds identically:

Ri —— g g ( —rr)1r
Up GaF'p( I ) yE Up

I w, , . . . , w I Ucw(I'/I~, , . . . , ~ I)yeU U; E.P p(m; ) y' E U;

(4.2)

Explanation of Theorem 1. Consider an arbitrary LPI light-particle graph I', with its unrenormalized ex-

pression denoted by Ir. The renormalized expression Rr, obtained by the usual Zimmermann s forest for-
mula, is recorded in the first line. Here P c(I ) is the collection of all the forests of I . Uo is a forest, y is a
renormalization part contained in the forest U. The subscript 0 means that the forests are defined in the or-
dinary way, i.e., according to the counting d =4—8 —V3. Now this R~ cd be decomposed in the follow-
ing way [the second line of Eq. (4.2)]. First choose a particular reduction of I', defined by a collection of
partition elements {m. i, . . . , n.~ },which are to be reduced. Before reducing each ir; to a point, all the
divergences within it must be subtracted. This is performed by the operation gU c~ ~ ~ gr ~U ( t-
After this renormalization, ~ acts on it to evaluate m; at zero momentum and produces local vertices of di-

mension &4. (This is the precise meaning of the reduction. ) Now we have obtained a reduced graph
I /{ iri, . . . , m }. The rest of the operation QU&~~r~( ( ~g ~U( Tr), where—

ty if y is a partition element of type-~
Ty=—.—.tr if (y= ) y is a LPI renormalization part defined

,according to the naive counting 5=4—8 & 0

(4.3)

renormalizes the reduced graph with consistent
oversubtraction for the partition elements of the re-
duced graph. A forest UEP(I'/{ ni, . . . , n~ })
is composed of nonoverlapping elements of the

I

type listed in (4.3). In particular for fully reduced
graphs all such elements are partition elements and
effectively only ~r's are operative. We then repeat
the same procedure for all possible reduction pat-
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terns, including no-reduction case, and sum over
all such contributions. The identity says that the
sum reproduces precisely the original renormalized
expression R~. Note the complete parallel with
the way the example was treated in the beginning
of this section.

Proof of Theorem l Th. e Theorem can be
provmi most transparently by focusing on the con-
tribution, on the right-hand side of Eq. (4.2),
corresponding to the no-reduction case. So let us
isolate it and rewrite the equation symbolically as

(4.4)

where P p, M NR and P ~ are the set of forests

pertinent to the original contribution, the no-

reduction case, and one of the reduced cases,
respectively. Because of the extra subtractions per-
formed for all of its partition elements, P NR is the
largest set of forests among them. Our aim is to
enumerate the forests in WNR and show that their
contributions precisely match those of the right-

U = {n.(,n.2, . . . , n„;{y
.
j j, (4.5)

where {m ~, . . . , n„j is. the set of minimal parti-
tion elements and {y j collectively denotes the rest
of the elements of U. The operator associated with
this Uis

g( — ')g( —Tr), (4.6)

where Tr is either tr depending on the type of y
[see Eq. (4.3)]. The crucial step now is to write the
operator above as a sum of "factorized" forms,
namely,

hand side of Eq. (4.4).
Let us take any forest U belonging to WNR. We

shall define the set of minimal Partition elements of
U to be those partition elements of type ~ which
are disjoint and which do not contain any other
partition elements of type ~. This set is uniquely
determined once U is chosen, including the possi-
bility of being an empty set. Let us then write

+( —1)(all pairs factorized)+( —1) (all triples factorized)+

(4.7)

Except for the sign, each term is identical. Alter-
nating sign then assures that the sum is indeed

equal to the original expression thanks to the sim-

ple combinatoric identity

(4.8)

Note that the overall sign inside the curly brackets

{ j is always negative. This is the correct minus

sign appearing in Eq. (4.4). Let us call what is in-

side the curly brackets a factorized part. We now

sum over all UEP NR and collect terms having the
same factorized part. It is clear that there exists a
one-to-one correspondence between a factorization

type and a reduction type. Focus on a particular
factorization type. Apart from a common factor-

ized part, e.g., { —g,. ,(r ') j, the rest of the ex-

pression consists of contributions from all possible
forests with the properties (i) that they appear to-
gether with the set {m ~, . . . , n. j and (ii) that
they do not contain any type-r elements which are
inside nj's. (This is because these nj's were among
the set of minimal partition elements of a
UGP NR. ) Recalling the form of Eq. (4.2), we

recognize that they are nothing but the set of
forests pertinent to the reduction defined by

{ n ~, . . . , n~ j. What are left behind are those

UE/NR which have no type-~ partition elements
in them, but they precisely form Wp. This com-
pletes the proof.

Some remarks are in order: (a) The spirit of the
proof given above is similar to that for the original
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Zimmermann*s algebraic identity, which has been
widely used in proving so-callled factorization" of
short- and long-distance physics. Our identity may
be considered a generalization of it which allows
for multiple insertions of operators. (b) Another
useful interpretation of the identity is to regard it
as performing a finite renormalization, although
the operations are performed not only on 1PI func-
tions but-on a wider class of diagrams, namely the
LPI functions. In terms of the symbols used in

Eq. (4.4), gs; performs minimal subtraction

whereas $s „performs zero-momentum subtrac-

tions for the light-particle two-, three, and four-

point functions. The difference then must give us

diagrams where finite, light-particle counterterms
of renormalizable type are inserted. This is exactly
what g, g~ represents.

Let us now turn to the remaining portion of our
analysis —the separation of O(1) and O(1/M)
parts. (So far what we have obtained is an exact
identity and hence involved no knowledge of the
fact that M && m. ) This naturally requires count-

ing of the maximum powers of M of a graph.
Again for clarity of presentation let us first state
the result as a theorem and then indicate what sort
of procedures are involved in proving it. The
specific details will be given in the Appendix.

Theorem 2. At low energies O(1) part of an ar-

bitrary LPI light Green's function comes entirely
from the jul/y reduced portions, in the decomposi-
tion of Theorem 1, of the relevant diagrams contri-
buting to such a Green's function. Further, these
fully reduced diagrams can be generated by an ef-
fective light-particle Lagrangian.

To prove the validity of this theorem, one must
first understand the behavior of an arbitrary LPI
graph as M becomes large, namely the maximum
power of M that a diagram may generate. For tree
diagrams this is rather trivial. However, for di-

agrams with many loops one must systematically
examine all possible regions of loop-momentum
space in order to obtain the correct power. This
analysis is presented in the Appendix. The result
is nevertheless pleasantly simple and we shall quote
it here as Theorem P1.

Theorem I'1. The maximum possible power
n,„ofM for an arbitrary 1PI and I.PI Green's
function with BH heavy and BL light external lines
is given by

n,„=8~ .

In particular for light-particle Green's functions

(i.e., &H ——0) n,„=O, meaning that dependence on
M is at most logarithmic.

Remarks. (i) It should be emphasized that the
theorem applies to Green's functions (i.e., relevant
sum of diagrams) and is not necessarily correct for
individual diagrams. This is due to the fact that
individually two- and three-point light particle
(sub)diagrams may contain O(M ) and O(M) con-
tributions, respectively. (This is the maximum in-
formation one can obtain by a power-counting pro-
cedure alone. ) However, in the sum which com-
prises the corresponding Green's functions to a cer-
tain loop order, these adverse powers cancel. The
Ward identities ensuring this cancellation are dis-
cussed in the next section. (ii) n,„ is the max-
imum possible power of M, and the actual may be
less. In fact in certain cases reflection symmetry
of the theory does reduce the power. (See Sec. V

for effective uses of this fact.) (iii) For purposes of
dealing with the BRS Ward identities, we shall
have occasions to consider Green's functions which
contain new vertices corresponding to the compo-
site operators generated by the BRS transformation
[see Eq. (5.2)]. Theorem Pl is valid for these
Green's functions as well, provided that we regard
the sources of these new vertices as effectively be-
ing composed of two light fields.

Now the central part of Theorem 2 follows if we
can prove the following.

Theorem I'2. For any LPI light Green's func-
tion which contains at least one heavy internal line,
extra zero-momentum subtractions upon its parti-
tion elements (plus associated subtractions of the
divergences generated for diagrams containing such
partition elements) render it vanish as M~ 00.

The proof of this second power-counting
theorem is again relegated to the Appendix. It is
quite similar to that of Theorem P1 except that
this time one takes into account the oversubtrac-
tions in counting the powers of M arising from
various regions of loop-momentum space.

Finally we must show that the remaining fully
reduced graphs can indeed be generated from an
effective Lagrangian with effective masses and
coupling constants. This is done as follows: We
sum over the O(1) parts of all the diagrams making
up a Green's function in a rearranged fashion.
Namely, contributions represented by a common
fully reduced structure are bundled up first and
then a sum over the different structures is per-
formed. This is schematically illustrated in Fig. 9
for a four-point function. Note that the effective
coupling A; is the four-point LPI Green's function
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try of the theory to completely fix the structure of
the effective Lagrangian.
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FIG. 9. An example of how the 0(1) part of the full
LPI light function is reproduced from diagrams of ef-
fective light-particle theory according to the rules of the
algebraic identity. Effective coupling constant and
light-particle (inverse) propagator are explicitly identi-
fied.

evaluated at zero momentum. This ensures the
symmetry (under p;~p~) property and leads to the
correct combinatorical factor (—,), for example, for
the second graph. The fact that the combinatorics
comes out precisely right is easily understood if we
recall the remark (b) made immediately following
the proof of Theorem 1; from the point of view
advocated there, O(1) contributions are made up of
diagrams generated by the finite light-particle
counterterms only.

This then completes the construction of the ef-
fective light-particle Lagrangian. It cannot be
overly emphasized that throughout our procedure
we dealt with finite renormalized quantities. It is
this feature that allowed us to take the meaningful
M —+ 00 limit and obtain the effective Lagrangian
accompanied with appropriate counterterms. In
the next section, we shall utilize the gauge symme-

V. BRS WARD IDENTITIES

S,a'= gW"H—c"S~,

5gc =—I', M, ,
1

CX

6xc'= —,gd' c c'5A, ,

(5.1)

where M, is an infinitesimal global anticommuting
variable. It is convenient, as is customary, to in-

troduce the sources for the composite operators ap-
pearing on the right-hand side of Eq. (5.1). So we

add to our Lagrangian,

The final step of our analysis requires a detailed
study of various BRS Ward identities. ' We shall
see that the gauge symmetry constraints are suffi-
ciently restrictive to dictate that all the desired
structure of the theory be present. Specifically we
shall establish (i) that the light-heavy mixing angle
remains small [O(u/V)] to all orders, (ii) that the
structure of the low-energy effective Lagrangian is
precisely that of spontaneously broken O(2) gauge
theory (known as our Abelian Higgs model), and
(iii) that all the light particles remain light. More-
over, all the parameters of the effective theory will

be expressed explicitly in terms of the quantities in
the full theory.

Let us first briefly review ' the basic BRS Ward
identity to our theory. Our Lagrangian including
the gauge fixing and the ghost terms is invariant
under the following BRS transformations:

D~bcb5g

5&h'= ge ~h'c—bM.

.5h' .5II' .5c'~-=K:
S~

+"'
S~

+K'
S~

+'
S~

K'DI" c +gk'e—' h, cb+gKV' 'H, cs I'ge' 'csc, —. — (5.2)

Because of the nilpotency 5~ ——0 of the BRS transformation, W„ is by itself BRS invariant. Now by mak-

ing a change of variables corresponding to the above BRS transformations in the functional integral repre-
sentation of the generating functional, one obtains

, 5A," 5h, 5II& 5c, 5c,f '"& '" si +" si ++'
m.

+ si~' ~' si &= ' (5.3)

where the symbol ( ) denotes the vacuum-to-vacuum amplitude in the presence of the sources. This equa-

tion can be easily translated into the one in terms of the 1PI generating functional I . Namely we have
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5r 5r 5r 5r 5r 5r 5r 5r 1 5r+
5A„'(x) 5g&(x) 5h, (x) 5k, (x) 5H, (x) 5E,(x) 5c,(x} 51,(x) a '

5c, (x)
=0.

(5.4)

E, =(ZZi)' ZH
' E g,

l, =Z3' l g .

(5.5)

The Ward identity remains form invariant. [We
shall therefore omit the subscript R and consider
Eq. (5.4) as already renormalized. ] In particular
one may choose 5.v and 5V of Eq. (2.16) so that
the gauge-fixing term (1/a)F, retains the same

rm:

To make Eq. (5.4) finite we need to perform the re-
normalization transformation listed in Eq. (2.15)
and in addition the following rescaling of the com-
posite sources:

a 1/2 a
Ep —Z Epg,

k, =(ZZi)' Zg
' k,g, 5r 5r 5r

ga—verba i 5k5X. 5kb

5r—gaVeb, I—
b

(5.7)

Using this one can show that the quantity I de-
fined by

r=r+ ' fd (z. )'
2a

(S.S)

when expressed in terms of the renormalized quan-
tities. The Ward identity should be supplemented
with another informative equation, i.e., the equa-
tion of motion for the ghost fields. It reads (in re-
normalized form)

[B„A," ga(—rt, t'v ) —ga(X, t'V )]-a (5.6) satisfies a more compact BRS Ward identity

5I 5I 51 5I 5I 5I 5I 5I
5A„'(x) 5K,"(x) 5h, (x) 5k, (x) 5H, (x) 5X,(x) 5c,(x} 51,(x)

(5.9)

Equations (5.7) and (5.9) are the fundamental equations that we shall utilize below.
Let us begin by showing that the li ht ghost field ci remains light. Consider the first component of the

ghost equation of motion and apply d y5/5ci(y). After setting all the sources to zero, we obtain

5 I'
4 5~r

(5.10)

The power-counting theorem dictates that

fd4 5I
5c i (y)5k 3(x)

can be at most of O(v}. This gives us

msl, ——O(v ) . (5.11)

Thus the light ghost field ci remains light.
Next we shall show that the same is true for the light Goldstone field g3. For this and later purposes we

must express the Ward identity (5.9) in terms of the tree-level diagonal fields. (For F13 this is clearly enough
for it does not mix with other fields —its mixing with A i is irrelevant for its mass. Further, as was shown
in Sec. III, it suffices for our subsequent analysis of LPI generating functional. ) The result of the appropri-
ate rotations is
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5r 5r 5r 5r 5r+ + COSH]
5A„'(x) 5E1'(x) 5c.(x) 5/. (x) 5r/1(x)

5r 5r—SIH i 5k, (x)

5r . 5r+ cos82 +sin82-
5r/2(x) 5X1(x)

5r . 5r+ cos82 —sin82
5X1(x) 51/2(x)

5r 5r 5r
5k2(x) 5r/3(x) 5k3(x)

+

5r
M1(x)

(5.12)5r . 5r 5r 5r 5r+ cos81 +sinH& + =0.
5Xp(x) 5r/1(x) 5&2(x) 5X3(x) M3(x)

/(hat we need to prove in fact is the Goldstone theorem~2 for the p3 f1eld. Let us apply fd4y[5/
5g3(y)]5/5C1(z) to Eq. (5.12) and set the sources to zero. Many terms seem to be produced but thanks to
the index conservation discussed in Sec. III all except one term vanish. We thus obtain

fd4x d'y
52r

51/3(y)5r/3(x) 5c1(z)5k3(x)

Using the translation invariance, this can be written as

f

�5
I'

d4 5I
5r/3(y)51/3(0) 5c1(x)5k3(0)

Since

52r
5c1(x)5k3(0)

has a nonzero tree-level contribution it cannot vanish and we get the Goldstone theorem

f 5I
5r/3(y) 5r/3(0}

Recalling Eq. (5.8) this implies

52r 52

5g3 y 5r/3 0 5r/3 y 5g3 0 2u
sources =0

(5.13)

(5.14)

(5.15)

(5.16)

i.e., the mass of the Goldstone boson r/3 is not renormalized and a fortiori r/3 remains light.
Demonstration of the smallness [O(U/V)] of the light-heavy mixing angle requires slightly more compli-

cated analysis. This time we apply to Eq. (5.12) the operation

d4 d4 5 5 5
5 /3(y) 5r/ (Z) 5C1(u)

then set all the sources to zero. Again most of the terms vanish due to the index mismatch and to the
Goldstone theorem just proved, and the surviving terms are

fd yd zd x cos82 —sin824 4 4 5r . 5I 5 I
5'gz(z)5't/2(x) 5F/2(z)5X1(x} 5't/3(y)5c1 (u)5k2(x)

5I 5I+
5Q&(z)&/3(y)5r/3(x) Sc1(u)5k3(x)

5'r
+ cos82

5r/2(z)5X1(x)

5I 5I—sin82 =0 . (5.17)
5~2(z)5r/2(x) 5g3(y)5C1(u)5K1(x)
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In momentum space this is a relation between various Green's functions at zero momentum. %'e shall use
obvious notations such as I v, k for3c1 2

d4 d4 5 I
5z)3(y)5ci(u)5kz(x)

'

etc. From the power-counting theorem we know that

r„...,,=O(1), r„„„=O(V), r„,, =O(v), r„Z —0(vV), r„...,, =O(1). (5.18)

But the reflection symmetry under h, ~—h„v~ —v, k, ~—k„ tells us that I „-„„cannot be of 0( V) but
'l2'l3'l3

only of 0(v), and likewise the symmetry under H, ~ H„—V~—V,K, + EC—„d—ict taesthat I v, k can

actually be at most of 0 (v/V). Putting all the information into Eq. (5.17), we can deduce the order of mag-
nitude of the two-point function I ——. Fromii2ii2'

0= I „„-cos8z —0(Vv)sin8z 0(1)+0(v)0(v)+[0(Vv)cos8z —I „-„sin8z]0 (5.19)

we get

I'„„=0(v') . (5.20)

gI LPI gI LPI l gI LPI—sin82 + I'i(x)—
5z)z(x) 5&i(» & 5c, (x)

As a matter of fact 5I " '/51 i(x) identically vanishes for the following reason: The ghost-number conserva-
tion requires that the nonvanishing Green's function one can obtain from 5I Lpi/5l1 (x) is of the general

OA11

(5.21)

This then is enough to secure the smallness of the full mixing angle and justifies the discussions of Sec. III.
What remains to be done is to derive the BRS Ward identity satisfied by the 0(1) part of the LPI generat-

ing functional I' ' which, as was shown in Sec. III, is nothing but the 1PI generating functional I'* for the
effective light-particle theory. The Ward identity for I is obtained by setting all the heavy-particle
sources to zero in Eq. (5.12). We obtain

0= d4x
$PLPI gI LPI $I LPI gI LPI gI LPI gI LPI gI LPI gI LPI

+COS82 +
M„'(x) 5E", (x) 5c&(x) 5I&(x) 5z)z(x) 5kz(x) 5&3(x) 5k3(x)

g2n+2I LPI

51,(5c, ) (5c,5c, )"
(5.22)

T»s, howler, is incompatible with the index conservation. [Total index number for (5.22) is 1, npt zerp. ]
Furthermore, the next to the last term in Eq. (5.21) can also be eliminated since it is down by v/V: Ghost
number and the index conse~ations dictate that the allow% Grmn's function pf lowest dimension involving
5r" '/5&i is (5'r" ')/(5z)35ci5&~), which by the power-counting theorem, is of 0 (1). Green's functipns
with more legs are also at most of 0(1). Therefore, the presence of sin8z-0(v/V) allows us to drop this
term within the accuracy of our approximation.

With the above-mentioned two terms eliminated thus, I', the 0(1) part of I ', satisfies the equation

5r' 5r 5r* 5r' 5r' 5r* 1 5r+ + F) x—
5A„'(x) 5g", (x) 5z) (x) 5kz(x) 5z)3(x) 5k3(x) a 5c,(x)

=0. (5.23)

For completeness let us record the relevant light ghost equation of motion below [obtained from the first
component of Eq. (5.7)]:

5r* 5r'=Bp )
—go!V

5c~ (x) "5E&'(x) 5k3(x)
(5.24)
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As we may have anticipated, these are identical in form to the BRS Ward identity and the ghost equation of
motion for O(2) gauge theory known as Abelian Higgs model. These equations must be satisfied, in particu-
lar, by the effective light-particle Lagrangian (or more accurately the tree action). By writing down a most
general light-particle action of dimension zero and substituting it into the above two equations (we leave this
as an exercise to the reader), we can easily fix the structure of the action of the effective theory. The result
can be conveniently cast into the following form:

0
1 v1

1/2
n3 3

, [z„~(rl2+U') +z„,rii ]

(8~A i
—gtrUY/s) —z cia ci —nish cici —txgg Uz(zv /zv ) ~cici7/2

(zs /zs ) k2rlsci+zg (z~ /zv ) ks(i)2+o

+counterterms defined at zero momentum . (5.25)

(5.26)

(5.27)

(5.28)

LPi
(gyve PpPv)~1+gpvrt2 ~

lM v

z3 —iri ~&
—p=O(1)

(5.29a)

(5.29b)

(5.30)

In the above equation various parameters and finite
wave-function renormalization constants can be
precisely identified in the full theory in terms of
LPI Green's functions and their derivatives at zero
momentum:

2 ' * 2*2
7'~ = 2A, Z~ V (5.35)

Thus we see that all the light particles remained
light. One can of course bring W' into the stan-
dard form (i.e., without the finite z factors) by
making appropriate finite rescalings. Note that
counterterms of the effective theory are the ones
corresponding to zero-momentum subtractions, in

spite of the fact that the full theory is renormal-
ized by minimal subtraction. This is due to our
procedure of separating O(l) and O(1/M) parts at
zero momentum. If one wishes to obtain the light
theory which is renormalized also by minimal sub-

traction, all one needs to do is to simply make a
finite renormalization within the light-effective
theory.

This completes the demonstration of all the
three results announced in the Introduction.

(5.31) VI. DISCUSSIONS AND COMMENTS

~,„=—r, ,LPI
C)C)

m 'zPPlgh Z~

agg vzzz
'

=O(u ), (5.32)

(5.33)

2 +2 iIt2
7tlg =g Z~ V

1 2
(5.34)

The masses of A&', and ii2 [those of ris and ci are
already given in Eqs. (5.16) and (5.32)] can be read
off from Eq. (5.25) as

In this final section we shall discuss an impor-
tant application of our result, namely the renor-
malization-group equations governing the heavy-
mass dependence of the effective parameters.
There have been many discussions on this subject
but our emphasis will be on the all-order aspect,
especially a systematic method of computing the
appropriate boundary conditions, which results
from our analysis of previous sections. Also in-

cluded in this section is a comment on the gauge-
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fixing procedure recently proposed by Weinberg'
in the context of the effective Lagrangian.

As was described in the previous section, our
general analysis has enabled us to make a precise
identification of the parameters of the effective
theory in terms of the zero-momentum values of
appropriate LPI Green's functions of the full
theory. Among other things this will in turn allow

us to write down exact renormalization-group
equations satisfied by these effective parameters.
Although conceptually clean and unambiguous,
direct execution of this procedure is not quite prac-
tical due to the fact that the effective theory, as
was derived in the last section, is the one renormal-
ized at zero momentum. Specifically, in such a
scheme the effective parameters contain two dif-
ferent types of logarithms, namely (lnM/m)" and
(lnM/p)", and this makes the integration of the
equations cumbersome. For the purpose of actual
computation, it is more advantageous to work with
the effective theory made finite by minimal sub-

traction (especially the so-called MS scheme's),
which can be obtained through finite renormaliza-
tion within the effective theory.

Now a point we wish to make here is that there
exists an algorithm to go directly from the full
theory to the minimally subtracted effective theory
without going through the intermediate stage of
zero-momentum subtraction. Let us briefly
describe this algorithm. Suppose one wants to
compute an effective coupling constant, call it gI,
in terms of the coupling constants g; of the full
theory. With gI are associated appropriate LPI di-
agrams of the full theory. [For example, if gI is
the coupling constant A,

' of our model O(3} theory,
the relevant diagrams are LPI four-point graphs
with four g2 particles in the external legs.] At the
tree level gI is simply the sum of the relevant tree
graphs evaluated at zero momentum. (Of course
we may need to extract appropriate tensor struc-
ture before setting the momenta to zero depending
on the type of the vertex. This procedure will al-

ways be tacitly understood when we say "evaluate
at zero momentum. ") At the one-loop level, we
shall do the following: Take the sum of all the
one-loop LPI diagrams relevant to gz, renormalize

(via minimal subtraction}, and evaluate it at zero
momentum. At the same time we use the effective
Lagrangian previously obtained at the tree level to
compute the relevant 1PI Green's function, at zero
momentum, to one-loop order with renormalization
performed also via minimal subtraction. The
difference of the two then gives gI at one-loop lev-

el, which we shall denote by gI '". To obtain gI '"',
in general, repeat the same procedure as above ex-

cept (i) that we must use the effective Lagrangian
obtained up to n —1 loop level (with

gt =gt ' '+gU'"+ g i'" ", etc.) and (ii) that
"n loop" contribution to be subtracted is defined

by the compounded loop number, i.e., including the
loop number associated with the coupling con-
stants, masses, and the wave-function renormaliza-
tion factors, in addition to the actual number of
loops of the diagrams. One can easily convince
oneself that the above procedure precisely effects,
order by order, finite renormalization relative to
the effective theory constructed previously by
zero-momentum subtraction.

Now an important feature of minimal subtrac-
tion algorithm is that the infrared structure of the
full theory is precisely inherited by the effective
theory due to the purely ultraviolet nature of sub-
tractions. This manifests itself in the fact that the
contribution to the effective parameters come sole-

ly from the ultraviolet region of the overall loop-
momentum space and hence they are free of singu-
larity as m ~0. In other words they do not con-
tain logarithms of the type (lnM/m)"; they are
functions only of dimensionless coupling of the full
theory and (lnM/p)"'s.

Another point of immense significance is that in
the minimal scheme decoupling takes place irre-
spective of the magnitude ofp pmay be tak—en as
large as one likes. (The only requirement is
M» p;,m .) This is in sharp contrast to the
momentum-subtraction scheme, where p must
also be much smaller than M to have decoupling.

With these understandings in mind we can for-
mulate how to compute gI by renormalization-
group equations to any desired accuracy. Let us
start from the statement of decoupling at low ener-

gy for an arbitrary Green's function. We have

I'Lpi(I p ) Ig. J M, I m. j p)=zrI'~ipi(I p J I gI J I mt I p)+O(1/M)

where z~ is a finite wave-function renormalization factor, and the starred quantities are those for the effec-
tive theory. (We have suppressed the dependence on the gauge-fixing parameter, which is inessential for
subsequent discusssions. ) By the standard procedure we can derive the renormalization-group equations sa-
tisfied by I i.pi and I ]pi viz. ,
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~g' (j QM Q ~m' 5
p +p +p +p +fp I zpi=0

5 &BI' 8 &~I' 8
p& +p&, +p &,+Tr

Sp Sp q~,
* Sp a~,*

(6.2)

(6.3)

where y~ and y~ are the usual anomalous dimen-
sions associated with I Lp& and I &p&, respectively,
and we have used the symbol 5/5p to indicate that
the derivative is taken in the effective theory.
Now by substituting Eq. (6.1) into (6.2), we obtain
another equation for I &p& valid at low energy.
This equation can be compared with Eq. (6.3)
above, after using simple chain rules such as

8 5 ~81 8 Bm
p

ap
=p

np
+p

ap gg,
* +p

ap gm,

(6.4)

I

the gauge-fixing procedure recently proposed by
Weinberg. '

Consider a scenario in which a simple gauge
group G is spontaneously broken down to a smaller

group 6 by a large vacuum expectation value V
along a certain direction in G. Now it would cer-
tainly be nice if the effective action I for the light
particles, obtained after "integrating out" heavy
fields, is gauge invariant under G. Weinberg con-
tends that it can be done by choosing the gauge-
fixing term for the heavy gauge bosons to be in-

variant under G. Namely he proposes to choose

and this gives us renormalization-group equations
satisfied by the effective parameters. The one sa-
tisfied by gt' reads

aM a . 5gt*

pap+p~p eg,-+pap m ~'=p
np

~heavy ~ ~ ~ 2~ gauge fixing ~ ~ A
2g

Fw (8„5att+——gott, A„')Ag+t gg(V t'qsS) .

(6.7)

(6.8)

(6.5)

This, however, is nothing but

P gt =Pi
dp

(6.6)

where d/dp is the total derivative and g is the P
function computed in the effective theory As em.-

phasized before, in the minimal-subtraction
scheme, decoupling is independent of p and Eq.
(6.6) is exact for any p. Thus it is a matter of sup-

plying the correct boundary conditions to integrate
Eq. (6.6) and the previously described algorithm
precisely allows us to do so to any desired accura-
cy. To be a little more specific, we shall choose to
make contact with the full theory at a scale
@=M', which is of the order of M. [It does not
matter whether one chooses M'=M or M'= 2M as
long as lnM/M' and g;(M') are small so that the
perturbation theory is reliable. ] We then apply the
minimal-subtraction algorithm to compute
gt'(M')'s in powers of g;(M)'s and use them as the
boundary conditions in solving Eq. (6.6). To our
mind this is the most systematic and unambiguous
method of computation.

Finally in connection with the effective light-
particle Lagrangian, we shall make a comment on

Z ~g cE o (6.9)

Since Eq. (6.9) is ill-defined, we appeal to the
well-known trick of inserting the expression

1=a(A„)Igdgg5[F. (A'„)—C.] (6.10)

in order to extract out the field independent infini-

Here capital (small) Latin indices refer to broken

(unbroken) generators, g is the gauge-fixing param-
eter, fzs, is the structure constant, S is a scalar
field, and tzs is a generator in the representation of
the scalar S. It was then argued that the Fad-
deev-Popov determinant

~

5F /58t3~:—~M & ~

(Greek indices refer to both broken and unbroken
generators) associated with this gauge fixing effec-
tively factorizes into a product of determinants

I
M,s ~ ~

Mqz
~

where
~
Mzs

~

is invariant under

6, and that this ensures invariance of I under G.
This apparently nice procedure, however, is

correct only for (=0. To see the inapplicability of
Weinberg's prescription for nonzero g, it is better
to start from the very beginning, i.e., the Faddeev-
Popov procedure. For clarity of argument let us

suppress all the fields except the gauge field and
study the generating functional
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ties. Here A& denotes a gauge transform of A&
and C~ is an arbitrary function. [Later we shall
operate

fAC~exp — (C~) d x

to get the usual covariant gauges. ] Due to the
gauge invariance of the measure gdg, h(A&) is

gauge invariant. To compute b, (A&) we perform
infinitesimal transformations around the configura-
tion defined by F~(A&)=C~. Then we have

5F (Aq)
1 =a(A„)f+de'g5 F.(A„)+

r

5F (A„)=b,(A„)fgd 8~+5 ep
P a

If we perform the integration all at once we of course get the usual result:

5F~(Aq )
b(A~) =det "—:

I
M p I

.
50p

(6.1 1)

(6.12)

(6.13)

Using the second set of 5 functions first, we get

1=6,(A„)f /de /de g5(M, 8 +M, 8 ) g5(e +M 'M „8„)
b B a AB

h(Aq) fg—deb+5(M. be, M.,M—, 'M„-e, )
IM~a I b

Instead, the idea of Weinberg is to separate out the indices corresponding to broken and unbroken generators
and to factorize the above determinant. So let us write

1=+A„)fgde"gde'g5(M. »+M:8.)II5(M. 8 +M-e. ) .
b B a

=~(A, )a IM~a I I
Mab™aBMBD MDb I

~

Thus we obtain a factorization form

~(A~) =
I M~B I I Mab MaBMBD MDbl (6.15)

This is a completely general result. Now if we
choose the Weinberg's gauge, Fz transforms co-
variantly under the broken group, i.e.,

QF
MDb = = fnabFa . —

Mb
(6.16)

If the gauge-fixing condition were Fz 0, which——
corresponds to the Landau-type gauge (/=0), this
vanishes and hence we obtain b, (A„)= I M~ii I

I M,b I
as Weinberg advocates. But for (@0,we

must take F~ ——CB and integrate over CB with a
Gaussian weight. Then Eq. (6.15) does not simpli-

fy and one can only achieve block diagonalization
of ghost sector at the expense of introducing an
unpleasant, if not disastrous, nonlocal object such
as Mg)b

What if we use the Landau-type gauge? There
are still some complications worth mentioning.

(6.14)

I

First the nonlinearity of the gauge makes renor-
malization program more tricky: As was shown

by a recent study, in quadratic gauges it is not
possible to renormalize the theory without breaking
BRS invariance. Second, at least in the context of
our formalism, it is not useful, since the ghost and
the Goldstone fields, in particular the ones associ-
ated with heavy gauge fields, are no longer mas-
sive. This makes proper diagrammatic separation
of heavy and light sectors difficult to perform.
Besides, one would have to take due caution for in-
frared divergences with such massless particles
present in the theory.
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In this section we shall establish the power-counting theorems P1 and P2 quoted in Sec. IV. First let us
classify the type of vertices that occur in a renormalizable theory with bosonic fields, such as our model.
(Inclusion of fermions is straightforward but we shall not bother to do it here. ) From the point of view of
power counting, Lorentz and group indices are irrelevant and we only need to distinguish heavy (H) and
light (L) fields. Then different types of vertices and the number of such vertices occurring in a given di-

agram can be denoted by

Nonderivative

(Single) derivative

TYpe
~pg —ml m

(~n-mL ~)

No. of vertices

~.m (0&m &n &4)

(0&m &n &3) (Al)

In addition to these ordinary types of vertices, we have special vertices corresponding to the composite
operators that appear in connection with the BRS Ward identities discussed in Sec. V [see Eq. (5.2)]. For
the purpose of power counting, however, we can treat them as ordinary vertices provided we count the
dimension-two sources E&,k', E',l', as L and allow them to appear only as external legs. We shall also
employ the following notations:

P~(PL, ) =number of heavy (light) propagators,

8~(BL ) =number of heavy (light) external legs .

Now by counting the number of heavy and light fields, respectively, we obtain topological relations

4 3

2PH+8~= g (4—m) V4~+ g (3—m)(V3gg+D3yg),
m=0 m=0

4 3

2PI +81 ——g m V4~+ g m ( Vi~+Ds ) .

(A2)

(A3)

(A4)

The maximum power of M coming from the
overall high-loop momentum region is intimately
related to the superficial degree of divergence d of
a graph. Noting that

4

No. of 5'~' functions= g V4
m=0

3

+ g(V& +D& ),
m=0

pearance of powers of external momenta. )

To count the maximum power of M, we must
examine every possible subintegration —both high-
momentum (-M) and low-momentum ( «M) re-

gions. Let us start with the tree graphs.

1. Tree level

3

No. of derivatives= g D&~,

No. of integrations=8~+Pl,

d is easily computed to be

3

d =4 (&H+&1. ) QV—im . —

(A5)

(A6)

Let the maximum power of M be denoted by ni,
where I signifies low momentum. We must attach
M to every three-point nonderivative vertex, except
for the completely light-particle vertex L s, for
which the coefficient can only be of order m. (One
can check this either explicitly or by recalling the
reflection symmetry of the theory under h,

h„u~ —u, k, ~——k, .) Clearly ni is given by
m=0

(This of course is the maximum possible superficial
degree of divergence. The actual degree may be
lower due to gauge irivariance and/or explicit ap-

2

ni= g Vi 2P~ . —

Using Eq. (A3), we may rewrite (A7) as

(A7)
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4 2

nI=BH —g (4—m)V4~+ g (2—m)V3
m=0 m=0

3

+ g (3—m)D3~ &B~ .
m=0

(AS)

For the low-loop-momentum region, counting is
identical to the tree case and (A8) holds without
modification. For high loop momentum, except
for L vertices, counting should go by naive di-

mension counting. (In other words, each derivative
should contribute a power of M.) In this way we

get

as =4 (BH+B.-) V», - (A9)

where the subscript h stands for high loop momen-

tum. Let us examine the special case where

BH =0. Then ns &0 only for two- and three-point
functions. For a two-point function, the %'ard

identity tells us (see Sec. V) that it is actually of
0 (m ) when all the relevant diagrams are added.
On the other hand a light three-point function can-
not have a power of M due to the reflection sym-
metry which has been mentioned many times al-
ready. Thus for light Green's functions, ns &0.
For the general case, similar consideration shows
that ns &B~. Combining this with (A8) we obtain

n =maxI n(, ns I &BH . (A10)
I

The equality holds only when the diagram consists

of vertices of type L,L,(L )d, HL alone. In
particular for light-particle graphs (i.e., BH ——0),
nI &0 holds.

2. One-loop level

3. Two-loop level

m=0

+ g (3—m)(V3 +D3~)
m=0

+aV, +bb, (Al 1)

where V, +b s is the number of vertices of type
H'L (here it is one}. Now the maximum power
of M for the reduced graph is

The two-loop level presents a new situation, the
understanding of which will then lead immediately
to the all-order formula. I.et the loop momenta be
I& and lq. There are three regions of momentum
space: (i) I &, Iz «M. Here we may apply overall
low-energy counting, which is the same as the
tree-level counting. (ii) l~, lq-M. This is the
overall high-momentum region and the counting is
the same (including the use of Ward identity and
the reflection symmetry) as for ns in the one-loop
case. (iii) I

& « 12-M (or Iz « I& -M). This is
the new situation alluded to above. Here the
counting should go as follows. First do the high-
momentum counting for the subdiagram through
which I2-M flows. Shrink this to a point with

n~ (l2)
the power M " ' attached and then perform the
low-momentum counting for this reduced graph.
Suppose the effective vertex is of the type H'Lb.
Then nI, (12)=a The. topological relation of type
(A3) for the reduced graph gives

2 4 3 2

a+ Q V3~ 2I'II BH — —g (4———m)V4~+ g (3—m)D3 + g (2—m)V3
m=0 m=0 m=0

(A12)

n(BH . (A13)

which is identical to Eq. (A8}. Putting all three
cases together, we easily obtain

4. Higher-loop level

It should now be clear how to proceed. A par-
ticular hierarchy of loop momenta corresponds to a

I

FIG. 10. A typical (I.PI) light function. Shaded
blobs represent 1PI functions.

I
/I

'. M

FIG. 11. The only nontrivial four-point I.PI light
function at the tree level.
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--, g«M
I

r~ x ) &&M ~-~ 2&&Mr~
\ I I '}

I

'o

FIG. 12. Illustration of how power counting is done
for the case in which low (&~M) momentum flows

through a light propagator. 0' 0 0 0

g'( —) dU8 tO QV&FSUbtf'OCtlOfl
1

M

particular way of reducing the diagram. At every

s;age of reduction, counting is always n &BH for
each subdiagram reduced. This persists through-

out the entire procedure and hence we have n (BH
for any 1PI Green's function.

This result can be readily extended to LPI
Green's functions. A typical LPI graph is depicted
in Fig. 10. It consists of LPI blobs and heavy pro-
pagators connecting them as in a tree graph. Let
each 1PI blob be of the type H 'L '. The number
of heavy propagators appearing in the diagram is

1

clearly —,(g,o; —BH ). Since each blob can carry,
according to the result obtained above, maximum
power a;, the maximum power of the whole graph
is given by

1$a; —2X —, $a; —Brr BH . —— (A14)

n=4 —BI . (A15)

This shows that for BL & 5 the graph is already of
O(1/M} without any subtraction. Now there ex-

This completes the proof of Theorem P1.
Remarks: (i) The power counting should best be

done by Wick-rotating the integrals into the
corresponding Euclidean version. (ii} Renormaliza-
tion subtractions do not interfere with our power
counting. This is because we have been counting
the maximum possible powers of M without any
resort to "improvement" which might arise from
such subtractions. (Besides in minimal subtrac-
tions, such improvement does not occur. )

Proof of Theorem P2. The spirit of the proof is
quite analogous to that for Theorem Pl just
described. We must examine all the regions of
loop-momentum space, this time with oversubtrac-
tions taken into account. Let us organize the argu-
ment in the form of a mathematical induction in
the number of loops.

Tree level. Let the maximum power of M of a
graph be n. A LPI tree graph with at least one
heavy line does not contain any light propagators.
Therefore we may apply simple dimension count-
ing to get

FIG. 13. Illustration of why an "oversubtraction"
does not upset the power-counting procedure depicted in

Fig. 12. The key point is that the subtracted piece is of
order O(1/M). Thus, the right-hand side of the top line

is O(1/M).

ists no two- and three-point relevant graphs at the
tree level. The only four-point function is the one
shown in Fig. 11. For this, obviously an extra sub-

traction at zero momentum renders it to be
O(1/M ). Thus the assertion is proved for tree
graphs.

Inductive proof to all orders. Suppose the
theorem is correct for up to n-loop graphs and let
us study an arbitrary n +1 loop graph. If the
graph consists entirely of heavy propagators, there
is only one relevant scale, namely M and the naive
dimension counting Eq. (A15} applies. For Br ——2,
3, and 4 (the actual n is zero because of previous
arguments), an oversubtraction performed to the
whole graph renders it to vanish as M~ ao. If the
graph contains (at least one) light propagator, they
must occur in loops. (Remember we are dealing
with a LPI graph. ) A useful classification of the
loop-momentum space is as follows: (a) the mo-
menta flowing through these light propagators are
all very large, -M. In this region, from the
power-counting point of view, they may as well be
regarded as heavy and the argument reduces to
that for the case already discussed. (b) We are left
with the case in which there is at least one light
propagator through which a small momentum
flows. In this case, however, as far as the power
counting goes, we may split open such a graph into
two pieces illustrated as in Fig. 12. The number of
loops is now reduced to n and we may apply the
induction hypothesis. One may wonder if oversub-
tractions applied to those partition elements which
contain the particular loop split open might upset
the result. This does not happen because what one
is subtracting is a piece which is already of
O(1/M). This is illustrated i'n Fig. 13. We have
thus proved the validity of the theorem to (n + 1}-
loop level and hence to all orders by induction.
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