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Given a simple self-dual quantum Hamiltonian H =KB +I B, where K and I are cou-

pling constants, and the condition that [B,[B,[B,B]]]=16[B,B], then we construct an

infinite set of conserved charges Q2„, [H, Qi„]=0. In simple models, like the two-

dimensional Ising or Baxter eight-vertex, these charges appear in the associated quantum

theories and are equivalent to those which result from the transfer-matrix formulation

and exact quantum integrability of the system. The power of our result is that it is an

operator statement and does not refer to the number of dimensions or the nature of the

space-time manifold: lattice, continuum, or loop space. It is suggested how the establish-

ment of this link between duality and integrability could be used to exploit the Kramers-

Wannier-type self-duality of the four-dimensional SU(N) gauge theory to find hidden

symmetry.

I. INTRODUCTION

Kramers-Wannier duality is a far-reaching
powerful property of certain statistical systems. It
may be used to connect strong- and weak-coupling
phases from model to model and in the case of
self-duality within the same model. It is striking
that many of the theories possessing this property
are also exactly integrable, i.e., interacting theories
in which the number of constants of motion is
equal to the number of degrees of freedom. The
inverse-pro- blem method of describing completely
integrable quantum systems has brought together
the transfer-matrix formalism, the exact solution
of the Ising and Baxter models, infinite sets of
conserved charges, the Bethe-ansatz solution of
quantum field theories, and the diagonalization of
quantum Hamiltonians. '

In this paper we propose to adjoin self-duality to
this remarkable collection, as a step in elucidating
the hidden symmetry and subsequent integrability
of gauge theories. The intriguing fact that closed
strings have proven to be the appropriate choice
for the fundamental excitation in descriptions of
both the infinite set of conserved cur- rents"' (or
integrability) and the 't Hooft self-duality relation
led us further to develop the concept of a connec-
tion between these two properties.

Since two-dimensional models have provided a
solid base for solvability, we begin in Sec. II with a
discussion of hidden symmetry, integrability, and

duality in some standard systems of statistical

mechanics and field theory and how these concepts
may be used in discussing integrability in gauge
systems. In Sec. III, we prove the main result of
this paper: Given a self-dual quantum Hamiltoni-
an H =KB+I 8 (where K and I are coupling con-

stants and 8 is the operator dual to 8; 8 =8) and

the one condition

[8,[8,[8,8]]]= 16[8,8]

(conservation of the first charge), then there exists
an infinite set of conserved commuting self-dual
charges Q2„——K( Wq„—W2& 2) +I (W2„
—W2„2) where W2„————,[B,[8,W2„z]]
—W2„ i and Wo=B, Qo=H, n =1,2, . . . .

The power of this result is that it is an operator
statement and does not depend on the dimension of
the system or the nature of the space-time mani-

fold, i.e., lattice, continuum, or loop space. Exact-
ly integrable systems are characterized by the num-

ber of constants of motion being equal to the num-
ber of degrees of freedom. In several specific
models, the charges are seen to equal those found
as a consequence of the exact integrability of the
system.

In Sec. IV, we outline how our result might be
used to improve understanding of both the choice
of the appropriate non-Abelian dual transformation
and the explicit form of the hidden-symmetry con-
servation laws for the four-dimensional gauge sys-
tem. In any case, the result proved in Sec. III es-
tablishes a rigorous connection between simple
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self-duality and an infinite set of constants of mo-
tion. It provides a framework in which self-
duality may be exploited to uncover extra symme-
try.

II. INTEGRABILITY AND DUALITY

points takes on a continuous range of values,
—ao &xk & 00, and let

n

(xj —xj )) ~ +cd xj2 (2 2)

n —1

Z t (x x )=f g dxke
k=1

(2.1)

where the fundamental variable xk defined on site
k of a one-dimensional lattice k =0, 1,. . . ,n of n

Classical statistical mechanics in d dimensions is
transparently connected with quantum field theory
on a (d —1)-space-dimensional lattice via the
transfer-matrix formalism. " This formalism
has led through a rather circuitous path to the
complete integrability of quantum systems. '

Since the transfer matrix is perhaps more familiar
to statistical mechanicians then to particle physi-
cists, we review it here with the purpose of expos-
ing those properties we believe may be useful for
gluon dynamics.

In d = 1 dimension, define a classical lattice par-

tition function to be

The initial. and final configurations xo ——x and
x„=x' are not summed over. For comparision in
the one-dimensional Ising model, the fundamental
variable is s (k) =+1 and the classical partition
function is

1 1

Z — $ . $ e~~
s(1)=—1 s(n) =—1

where

(2.3)

A = —J g s(k)s(k —1) . (2.4)

The transfer-matrix formalism follows from the
definition of the measure of the Feynman path in-

tegral. Equation (2.1) can be written in terms of a
zero-dimensional operator T, the transfer matrix:

Z,"~'(x,x')
~ p ~~~

—— dx~ . dx„~exp — co x'
4A'

4A'

=exp — co (x' —x ) (x'
~

T"
~

x ),
4A

(2.5)

where

E 2

(xk
~

T
~
xk ~ ) =exp — (xk —xk ~)

—+ (xk +xk ~ )
1 N

2' 2 2
(2.6)

and

T=exp
2 6'N
x exp — p exp — x (2Me) '~

2A 4A
(2.7)

Here the zero-dimensional operators x and p are canonical, [x,p]=i', and act in the following space of
complete states:

I
eiPx/fi

2W'" ' (2.8)



25 CONSERVED CHARGES FROM SELF-DUALITY 1589

so that

x' exp — p x 1

27TA6

' 1/2

exp — (x —x )
22' (2.9)

For periodic boundary conditions, x'=x, and we can sum over x to define
00

Z",~'(periodic b.c.)
—= dx Z',&'(x,x)=TrT" . (2.10)

The space of states described above is familar from the derivation of the path-integral representation of
the kernel. For H—= —,p + —,co x,

n ~ n —1 n

( 'l '"l &=li (2efi) "f pe; f gd p
—g ~p;(; ;—)——(p + '; )

i =1 k=1 j=1
e~O

= lim (2m')
—1

n/2

E' g dxkexp
k=1

n

(xj.—xj )) ~
+co xi

2A J

=N fDx(t)exp ——f dt( ,'x + , co —x )—
(2.11a)

(2.11b)

Equation (2.11b) is the sum over paths [the normalization factor N depends on the normalization of the
measure Dx (t)] and Eq. (2.11a) tells us how to compute it.

As an aside, we remark that the sum over paths (2.11) is also what appears in the proper-time'~ represen-
tation of the four-dimensional propagator. For free-particle amplitudes, in Euclidean space, we have, in
analogy with (2.8),

( —0+m )G(x —x')=5 (x —x'), G(x —x')=(Ol Tp(x)q&(x')
l
0&

—= (x
l
6 lx'&,

&x lx'&=5'(x —x'» xplx&=x, lx& I", II &=p, lp& (2.12)

(x lp„ l

x'& =fd q 5 (q —x) — 5 (q —x') = i 5(x——x') .
Bq& ax~

Then

(pqp~+m )G=I .

Equation (2.13) follows from

&x
l
(I-'+m')6

l

x'&= fd'y&x
l
p'+m'ly&6(y —x')

fd y( 5@5@+m )5 (x y)6(y —x )

=(—0„+m )6(x —x')=5~(x —x') .
From (2.13),

(2.13)

(2.14)

G= —, d~exp ——p +m (2.15)

so that

(x
l

6 ly&=6(x —y)= —,f dr(x le 'ly&
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(2.16)

(0 trpexp fA di 0)=6[i]
as a sum over not paths but surfaces. Thus the appropriate transfer matrix for gauge theories will operate
not between points or rows of spins, etc., but between closed paths.

To return to our previous discussion of the transfer matrix, from Eqs. (2.11) and (2.1), we see that

= —,
' f dec '~N fDgq(t)exp —,

'
—fdt's

where H = ,p —+—,m and gz(t) is a path through four-dimensional space-time connecting x with y,
gq(0) =x„,gq(r) =yq

For gauge systems it has been suggested ' that the analogy of this proper-time expression be used to de-
fine the string propagator

n/2

(x'~e ~" ~x}= lim (2rrh') " Z 1'(x,x')2m.fi

n —+ ao
(2.17)

The transfer matrix (2.7) is therefore seen to be

essentially the time evolution operator between ad-

jacent discrete times on a Euclidean lattice.
In any number of dimensions, we can associate a

(d —1)-space-dimensional quantum Hamiltonian

on the lattice with a d-dimensional statistical sys-

tern. It turns out that although T is a Hermitian

operator, it is not in general local; however, lnT sa-

tisfies the locality requirement. Furthermore, for
certain problems, the r-continuum (r~0) limit'

of I,= —(1/r)lnT (w—here r is a function of the

couplings) is a less complicated Hamiltonian than

H, itself, but can still be used to discuss various

properties of the d-dimensional partition function
such as its critical phenomena. For the one-di-

mensional example above [Eq. (2.7)] consider the

operator

or T=e
fi

Since x and p do not commute, even with the use

of the Baker-Hausdorff identity' it is difficult to
find a closed form for 1nT. The r-continuum lim-

it, however, is simple and is in fact (2.18):

~ $ A P Q)
A2

lim ——lnT= + x =H .
@~0 6' 2 2

(2.19)

Equation (2.17) gives the connection between the
one-dimensional classical statistical system [with

given by (2.2)] and the lattice approximation to
the zero-space-dimension quantum field theory
(one-particle quantum mechanics) governed by

(2.18)

Clearly, if T or inT or any other operator which
commutes with T can be diagonalized, then the
classical partition function Z',~'=TrT" can be
solved. Onsager, ' and later Shultz, Mattis, and
I.ieb, used this observation to solve the statistical
mechanics of the two-dimensional Ising model.
Baxter' identified a one-parameter family of com-
muting transfer matrices in the (two-dimensional)
eight-vertex model which enabled him to solve it
along with the eigenvectors of the associated one-
dimensional (lattice) XFZ Hamiltonian. Thus for
statistical mechanics, the transfer matrix is a
powerful tool for solving the partition function.
For lattice quantum field theory, it can lead to the
derivation of the eigenstates of the Hamiltonian
and eventually the quantum inverse method for ex-
act integrability of the quantum system.

Before discussing these two models with regards
to their solvability and duality transformations, we
make a brief digression on complete integrability '

and the infinite set of conservation laws in
(1 + 1)-dimensional systems: classical, quantum,
and on the lattice. These three cases differ in the
questions answered and subsequently in the roles of
the various components such as the conservation
laws. The classical inverse scattering method'
(CISM) solves the following problem: Given speci-
fied initial-value data P(x,O) and a nonlinear evolu-
tion equation for P(x, t), the CISM solves for that
state at a later time. It presents a linear eigenvalue
problem (the scattering problem) whose integrabili-
ty condition is the equation of motion of the non-
linear system. The CISM (1) maps the initial-value
data P(x,O) into the scattering data (the spectrum
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t dt's(x, t) = d. 'p(x,—t)+2cp'p' .

This has the associated scattering problem

(2.20)

and asymptotic behavior of the eigenfunctions of
the linear problem) (direct problem), (2) coinputes
the evolution of the scattering data, and (3) at any
later time, inverts the mapping to give the solution
P(x, t) (inverse problem). This mapping is a canon-
ical transformation from P(x, t) and its conjugate

(x, t.) to action-angle variables P(k, t) and Q (k, t).
This is to say, the Hamiltonian (whose equation of
motion is the evolution equation) can be expressed
as a function of only P(k, t), so that P(k, t)=5H/
5Q(k, t) =0. Therefore, a power-series expansion
in k of a function of P(k, t) gives rise to an infinite
set of commuting constants of the motion.

As an example, we outline the classical (repul-
sive, c & 0) nonlinear Schrodinger equation (NLSE)

Given P(x,O) and (2.22a), we can determine (2.22b)
from (2.21). Since k =0, we can also determine
a (k, t) and b(k, t) from P(x,O) only. It is found
that

a (k, t) =a (k,O),

b(k, t)=e " 'b(k, O) .

The action-angle variables are

P(k, t)= ln
~
a(k, t) ~,

1

c

Q(k, t)= argb(k, t) .l

(2.23)

(2.24)

The NLSE has

H =f dx[a„ya„y'+c(y'y)'] . (2.25)

In order to write the equation of motion (2.20) as a
set of Hamilton's equations, define the Poisson
brackets as

oP

dL,p

dj
=[L,p, M,p], B,ql = —M,p+,

where

(2.21a)

(2.21b)

I~,B]=i "dy
5@y t) 5p'(y, t)

5B 5A

5$(y, t) 5y'(y, t)

Then, for ir:iP', —

(2.26)

lB

Vc t))'(x t)

gi(x, t)

$2(x, t)

v c P(x, t)

gi(x, O;g=k real)

$2(x,O;k) 0

and M,„ is defined such that the eigenvalues have
(=0. Then the scattering data of (2.21) depends
only on P(x,O) not P(x, t). The scattering data (at
time t =0) are the functions a (k, O) and b (k,O)

where

~= IH, n. ] =—
(2.27)

and

In(x, t),$(x,t)] =5(x —y)

IP(k, t), Q(k', t)] =5(k —k') .

and (2.27) is equivalent to (2.20). The transforma-
tion from (P(x, t), n (x, t) ) to ( Q (k, t),P (k, t) ) is
canonical:

and

(2.22a) The equations of motion (2.27) in terms of (P,Q)
are

a(ko)e' ",
$2(x,O;k) b (k,O)e

5P(k, t))
'

P(k, t) =0 .
(2.28)

(2.22b) The infinite set of conservation laws is given by
M~, the moments of P:
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or

00

lna(k, t)—:—ic g Mt
I=0

Mt = f dk P(k, t)k'.
1T C

(2.29)

where

—g/2 —v cP
V2 and ql=

I

(2.32)

Note that M2 H. ——Since a(k, t)=0, all Mt=0.
Since [P(k, t),P(k', t)I =0, all IMI,M„]=0.

We remark that the classical nonlinear o. model
(NLo M), although integrable in the sense that
there exists a linear problem'

can be written as a path-ordered exponential

(2.33)

%(x,t) =:Pexp i f —dz Q(z, t;g=k) %(y, t):
y

N+1
lim Q L„(k)ql(y, t):,

N~ ao

a„——„'e„.(a"+a") y(x;X) =0
where

p~o
Ne=x —y

whose integrability condition (B„BA=Op„g) is
BpA"=0 (the equations of motion for
W=trB~&'g ', A"—:g 'cog), has not been solved
in the sense that given g (x,0) we can compute

g (x, t). This is due to the fact that the scattering
data a (k, t), b (k, t) for this linear problem remain
constant for all time. The quantum NLoM may
be easier to solve. '

The quantum inverse scattering method '

answers two questions: the direct problem diago-
nalizes the Hamiltonian and the inverse problem
solves for the operators and Green's functions. In
the example of the quantum NLSE, P and 4 be-
come operators. Although the scattering data
a (k, t), b (k, t) are complicated functions of P and
P', a and b have simple commutation relations
among themselves and the Hamiltonian: [H,a] =0
and [H,b]-b. Thus a (k, t) generates an infinite
set of quantum charges and b (k, t) creates energy
eigenstates which turn out to be the same as those
derived from Bethe's ansatz. [The NLSE equation
is the second-quantized form of the S-body
quantum-mechanics problem with a 5-function po-
tential:

L„(k)=exp[ —ieg{y (n——1)e,t;k)] .

(2.34)

&+I A(k) 8(k)' '—= C(k) D(k)n=1
(2.35)

then, on the lattice, T is the trace of W(k) a func-
tion of the scattering data: T-A +D.

For example, in the XYZ niodel

T( V) =tr g 9'„(V) .
n=1

(2.36)

As Thacker3 has pointed out, Eq. (2.33) mo-
tivates the lattice quantum inverse method and its
relation with the transfer matrix. For, on the lat-
tice, the classical partition function is expressed in
terms of the transfer matrix T(Z=TrT ) and T
can sometimes itself be written as the trace of a
product of matrices. That is to say, if we define
from (2.33) the 2X2 matrix

g2

, +c g 5(x —x. ) .
i=1 ~+i i (J

(2.30)
(2.37)

Here W„(V) is a 2 X2 matrix with operator entries
and the trace is now in the 2&2 space:

4

W„(V) = g urn&i(n)crt .
j=1

g-exp —g ~xg —xi ~
(2.31)

This solution was extended to the field theory by
Thacker. ] In the NLSE, the solution to the ap-
propriate linear eigenvalue problem

Bethe's guess was that the N-particle wave func-
tion P(x&, . . . ,x~), where HP=EP, took the form

Z=ge ~
a11N.

(2.38)

This comes from the underlying (d =2)-dimen-
sional classical statistical mechanics of the sym-
metric eight-vertex model. ' A comprehensive
treatment of dual transformations, commuting
charges, quantum lattice integrability, and the
transfer matrix can be made in this model. The
partition function is
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where each site (no, n
~ ) of a rectangular lattice has

an associated energy ej depending on the vertex
configuration (see Fig. 1 and Ref. 16 for more de-

tail}. Assume periodic boundary conditions. Now

$M0 $MN

~ '~ ~ ~ ~ ~
8

4 = QNJe~ . (2.39}

$10 ~ ~ ~ ~ ~ ~ 1N

)l
no

8

QNJ NM——. (2.40)

Here NJ is the number of vertices of type j in an
allowed configuration:

~ ~ ~ ~ ~ 0 $0N

SOO S01 fl1 =0,1,2;--N

no 0.1.2. M

Also define

an =(an ]»an iy ) &0 P 0
(2.41)

FIG. 2. Rectangular lattice for two-dimensional Ising
model.

where an n =+1 represents a single vertical latticenon1

link. From (2.38), Z can be expanded in terms of
the direct-product vector states

[T(V),T( V')]=0 . (2.45)

where

0 1
l anon&&= 1

or

Then

a„,„&, (2A2)

(2.43)

The remarkable existence of a one-parameter fami-
ly of commuting transfer matrices led to the diago-
nalization of T, a set of conserved commuting
charges ' (C„ for Hxrz), and the diagonalization of
Hgyz since

+M
(al I Tl a2& ' ' ' &aM I Tl ai&

(2.44)

and

gn+1
C„= lnT( V)

a Vn+' (2.46)

where T is given by (2.36) and wj are functions of
16j'
Baxter' found a parameterization of wz in terms

of three parameters V, g, 1 such that for fixed g
and I,

A
Co ——— Hxrz +const,

,sn 2,1

where

N 3

axe= ——, g g J.&.(n)&.(n+1)
n=1 a =1

(2.47}

(2.48)

M ~

~ ~ ~

2 ~ "
a1

0 ~

~ ~
J„ Jy

Jz
' '

Jz
=cn(2(, l ),

" =sn(2(, 1) .

Also

(2.49)

~ ~

0

1

ll
o ~ i& ~ ~ ~ no

[&,(n), &b(m)] =2ie,b, &,(n)5n

&,(n)&b(n) =5,s+ i E,s,&,(n) .

(2.50}

FIG. 1. Rectangular lattice for eight-vertex model.

The integrability of (2.48) via the transfer matrix
in a way follows the standard inverse scattering
method. The equations of motion are
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pi(n):—o 1(n)=o3(n),

p2(n) =cr2(n) =—cr2(n),

p3(n)—:cr3(n) =o 1(n) .
Then

(2.51)

o, (n)=i[H, &,(n)] .
We then wish to find action-angle variables so that
the equations of motion can be linearized and ex-

plicitly solved. The transfer matrix T(V) is like
the action variable since [HxYz, T( V)]=0, HxYz
can be reexpressed in terms of T( V) [(2.47)], and

T(V) generates the set of conserved charges. In
some sense we could say we are lead to the ap-
propriate variable by the transfer-matrix formula-
tion. In a loop-space formulation of gauge sys-

tems, a transfer matrix which acts between loops
might be used to generate the functional symmetry
currents.

A Kramers-Wannier dual transformation in the
eight-vertex model is reflected in HxYz as follows:
Define a dual transformation on the operators
&,(n):

In d =2 dimensions, we define the classical (lat-
tice) partition function of the anisotropic Ising
model to be

(S„„I =—1

(2.53}

(2.54)+ ~1 npni np 1n1}—.
For periodic boundary conditions (sp„=sM„,
snop=sno~, spp —sMp ——spiv =sMiv) the lattice is a
torus and all nearest-neighbor interactions are ac-
counted for in A above. Then (2.53}can be writ-
ten as

Z= g &sMITI si& . &sM 1ITI sM)
s

1 M

where the fundamental variable s„„,defined onnon& ~

site (np, n 1 ) of a two-dimensional square lattice (see
Fig. 2), takes on the discrete values s„„=+1and

M N

g (P2S„„,S„„
no ——1 n

1
——1

HXYZ(JisJ2tJ3i&) HXYZ(~3 ~2 ~1 P) (2.52) =T1T (2.55)
and Hxrz is self-dual under (2.51). The inter-
change of high and low temperature, or here the
exchange of couplings, is the general feature of du-

ality transformations, and it is one of the proper-
ties that make them so useful. Self-duality is not a
general feature, but occurs only for certain
theories.

It is the purpose of this paper to exploit this

property in the search for hidden symmetry. To
do so, we first describe one more theory, the some-

what simpler Ising model which has all the
features of Hxrz necessary for this Pursuit.

» Pn, 1V )

s 1) 8 8 Is„,iv) (2.56)

is the state which describes a set of spins for one
row (np).

~ s„,) is a direct-product vector space
of the basis states

~
s„„)which describe a spin

for one site, i.e., either (p) or (1). The operator T
which is the transfer matrix of the Ising model is a
function of the couplings pi and p2.

N

T(pi, I12)=(2sinh(2pi)} exp pi g &1(n) exp p2+ &3(n)&3(n+1)
n=1 n —1

(2.57)

Here o, (())=&,(&) and tanhpi =exp( —2p&) or equivalently tanhP1 ——exp( —2P1) or sinh(2P1)sinh(2P1) =1.
Equation (2.57) has the form T=c exp(piA )exp(p2B). Clearly any symmetrized version [e.g.,T'=c exp(p2 —B)exp(pjA )exp( —p2B)] gives rise to the same Z [see (2.55)]. Given the form of A and B
from (2.57), however, it is difficult to find a one-parameter family of commuting transfer matrices, ' which
could then be used to construct a set of commuting charges.

Nevertheless, first observe the duality transformation in this model. On the partition function it is

Z(pi, p2) =Tr(T'(pi, p2) }

t dual transformation

= —,(sinh(2p2)} ~ (sinh(2pi)} r Z(p2 pi) . (2.58)
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From the self-duality property of Z, it follows that if we define an operator dual transformation (away from
the end points ):

pi(n) =o i(n) =—03(n)crq(n +1), ps(n) =cps(n) =cr&(1) cri(n),

then the dual transform on the transfer matrix T' is

(2.59)

(2.60)

That is to say, Tz(P„I32) gives the same Z as T'(P zP i), apart from an overall spin-independent factor.
2

To associate a (d =1)-dimensional simple quantum Hamiltonian with T, consider the r=e '=A, 'P2
—+0 continuum limit. Then,

A. N

lim ——lnT=H, M ———g [A&3(n)&i(n +1)+&i(n)] .
n=1

(2.61)

(2.62)

and (2) the XI' model where

So that, although diagonalizing HiM does not lead
to a full solution of Z since [T&H]iM+0, we can
discuss, within the context of HiM itself, duality,
and commuting charges.

In Sec. III, we prove our main result, that for
certain self-Qual quantum Hamiltonians
H =I( 8+I 8, there exists a set of conserved
charges [Q2„,H] =0, by the explicit construction
of Q2„. As stated in the Introduction, the power
of this result is that it is an operator statement and
it does not refer to number of dimensions or the
nature of space-time manifold, i.e., lattice, continu-
um, local, or loop space; Q2„ is thus a form useful
for gauge systems.

To make our result more familiar, however, two
specific examples of it are (1) the Ising model
where

N N
B = g &s(n)&3(n +1) and B= g &i(n),

n=1 n=l

I

of certain interacting systems shared with free sys-
tems (the set of conserved integrals says that the
interactions in some sense preserve the symmetry
of the free system) so too the connection between
self-duality and integrability will hold in the fully
interacting system.

We make this statement since it is well known
that H&M and Hzz are equivalent to free-fermion
lattice theory via a Jordan-Wigner transformation.
Also it has been suggested that the three-
dimensional Ising model is equivalent to a free-
fermionic string theory. The three-dimensional
loop currents for Z(2) gauge theory might be used
to linearize the loop-space equations of motion (via
the Kramers-Wannier transformation) of the Ising
model.

Thus although the sample models are in some
sense expected to be integrable, we believe the ideas
developed here will be applicable to more compli-
cated theories and may open the way to hidden
symmetries in four-dimensional gauge systems.

N

B = g &s(n)&s(n +1)
n=1

and the dual transformation is

(2.63)

III. CONSTRUCTION OF AN INFINITE SET
OF CONSERVED CHARGES

(2.64)
N

B=g &i(n)&i(n+1) .
g=l

In both cases, our extra condition (the conservation
of the first charge, [B,[B,[B,B]]]=16[B,B]) is sa-
tisfied and the set of commuting charges Qz„are
those which result from the exact integrability of
the system. This holds since the charges in both
models can be obtained from C„of the XYZ
model.

Although the full XYZ model does not fit con-
veniently into our calculation, it is reasonable to
assume that just as integrability itself is a property

In this section we shall construct an infinite set
of charges for a specific class of self-dual theories,
namely those whose Hamiltonians can be written
in the form

(3.1)

where E and I are coupling constants and 8 is
some operator. The form of the dual transforma-
tion need not be specified beyond that it is a linear
operation which changes B to 8 and 8 to 8. Only
one additional condition is needed to guarantee the
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existence of an infinite set of charges. The charges
are given by

Q2. = «W2. —W2. 2)

+1(W2„—W 2n 2), n =1,2,3,. . .

for 1 & n & N. We shall prove (3.5) inductively for
all N. In order to perform the induction in N it is
easier to consider (3.5b) with n ~n —1.as the na-
tural partner to (3.5a), i.e., we shall prove the fol-
lowing set inductively for all N:

where

Win+i=——
g [»[»Win]i —Win

(3.2)

(3 3)

[8 W2 l =[»W2 —2],
[8 W2n —2]= [»—W2n 2l-

for 1 & n &N. First, consider n= 1:

(3.6a)

(3.6b)

[Qziv. H] =o (3 4)

and 8'0=8, n=1,2,3,. . . . The charges have been
labeled with positive even integers in order to
match as closely as possible the notation of Ref. 7.
In order for Q2& to be a conserved charge,

[8 W ]=--.[8.[8,[8,8]]j-[8,8].
We see that (3.6a) will be true only if

[8,[8,[8,8]]]= 16[8,8] .

(3.7)

(3.8)

it is sufficient to show that

[8,W2n ]=[8,Win —2] ~

[»W2.1=—[» W2. ]

(3.5a)

(3.5b)

This we shall have to assume as an auxiliary condi-
tion to (3.1). Equation (3.6b) is seen to be trivially
satisfied for n= l. Going on to n=2, we observe
that

[8,W4]= ——,[»[8,[8,W2]]l —[» W2l

= —[B,[B,[8,[8,[8,8]]]]]—[8,W2]

= —'[8,[[8,8],[»[»8]ll]+ ~ [8 [»[»[8 [»8]]ll]—[»Wz]

= —[[8,8 j,[8,[8,[B,B]]]]+—[8,[8,[8,[8,[B,B]]]]]—[8,W2] .

Using (3.8), we find

[8,Wg] = —,[8,[8,[8,8]]]—[»W2]= [» W2l

so (3.6a) is valid for n=2 and

[»W2]= ——,[»[»[»8]]l=——,[»[»[»Bl]l=—[» W2l

so (3.6b) is also valid for n =2.
It will be useful to consider an alternative formula for W2„+2, valid when (3.6) is valid for a given n.

From the definition (3.3),

(3.9)

(3.10)

(3.11)

W2niz =——,[»[»Wznl] —W2. = , [[»B—l—W2.] , [»[»——W2n]1 Wzn . — (3.12)

Applying (3.6), we obtain

W2 +2 8[IBB]W2 l

——,[8,[8,W,„,]]—W,„,
W2n+2 = g[[»8]—W2. l+ W2n 2. -

Equation (3.14) can be extended to n =0 by defin-

ing

(3.15)

It can be further extended to n &0 by defining

(3.16)

for r= 1,2,3,..., as can be seen by taking the
dual. of (3.14). Thus if (3.6) is valid in the range
1 & n & N, (3.14) will be valid in the range
—X —1&n &X.

Instead of proving only Eqs. (3.6), it will be con-
ceptually easier to prove a more general equation
(3.17). Furthermore, proof of (3.17) results in not
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Only [H, Q2„]=0 but alSO [Q2n, Q2~] =0, i.e., the
conserved charges all commute, a hallmark of ex-
act integrability. We will prove

[~21& ~2n —21 —2] [II 21 —2s ~2n 21—] (3.17)

for all n & 0, l & 0. The equation then follows for
all 1, since if we let l =n +p in (3.17),
@=1,2, . . . , and take the dual of the equation we
obtain

n =N 0&l &N

n=N —I, 0&l&N —I,
n=N —2, 0&l&N —1,
n=N, 0&l&N,
n=N —4, 0&l&N —2,

1 1n=N —k, 0&l&N —zk= z(N+n),

(3.23}

[~2.+2p ~-2p-2]

=[~2ni2p 2~~ 2p] -p=1»» (3.18)

which is (3.17) with l =—p. It then also follows
for n & 0 since with use of (3.16},(3.17) is
equivalent to

n =2,

n=1,
n=0,

0&i & —,N+ I,
1 10&l & —,N+ —, ,

0&l & , N (n a—nd l are integers) .

[ I —21 —2~ ~ 2n+—21] [~—21~ ~—2n+21 —2]

(3.19)

Equation (3.17) has already been shown for N=2.
This will serve as the base level for the induction.
We now must prove (3.23) for N~N + 1, i.e., we
must show (3.17) to be true when

Letting n'= n, I'= —l—, and taking the dual of
(3.19), we have

[~2l'~ ~2n' 21 2]—='[—~2l' —2~ ~2n' 21 1~— '

(3.20)

which is valid for n'&0, —oo &l'& ao. Thus if
(3.17) is proven for n & 0, l & 0 it will also be true
for all integral n and l. If we set l=0 in (3.17), we
obtain

n =N+1, 0&l &N+ I,
n=N, 0&l&N,

n=N —1, 0&l(N,
n=N —2, 0&l&N —1,
n =N+1, 0&l &N+1,
n=N —4, 0&l&N —2,

(3.24}

[8,8'2„2]=—[8,W'2„], (3.21)
1 1 1

n =N —k, 0&1&N , k+ —,= ——, (—N+Ii+I),

which is (3.6a) plus (3.6b). When (3.17) is added
together for l=1, l=2, . . . , l =n —I, the result
ls

n =2,

n=1,

1 30& I & —,N+ —, ,

0&l & —,N+1,

[~2. 2,W=[»~2. -2] (3.22)
n=0, 1 10&( & 2N+ 2 .

which is (3.6b). Thus it is sufficient to prove the
more general equation (3.17).

For n=0, (3.17) is trivially valid for
—ao &1 & ao. The case (n = 1, 1=0,1) follows from
(3.8) as shown earlier. We also have proven the
case (n=2, 1=0,1,2} explicitly: (3.10), (3.11). We
now prove (3.17) by induction. Assume (3.17) to
be true for

Note that in addition to adding a new level to the
induction [the first equation of (3.24), n =N + 1]
we must also raise the limit on l on half of the pre-
vious levels. The proof will consist of three parts.
First we will prove (3.17) for n =N + 1, 1 &l &N.
Then we will extend this to l=0 and l =N+ I.
Finally we will raise the limit on I for the previous
levels, n &N.
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Part I. We now begin with the first part of the proof. Commute ——,[B,B] with (3.17) for n =N:

8 [[B»B]»[@zl»~2N —21 —2]]= 8 [[B»B]»[~21—2» II 2N —21]] .

Then

—
8 [[[»Bl II 2I] ~2N —zl —zl —

& [~2I [[»Bl ~2N —zl —2]]

(3.25)

g [[[»Bl » ~2l —2 ]» II 2N —21]——,[II 21 —2 i [[»B]i II 2N —21]]

For 0& I &N, (3.14) allows us to write

[~2142»II 2N —21 —2]+[IIzl —2»II 2N —21 —2]+[~21»II 2N 21] [~—zl»~2N —21 —4]

[~2I» II 2N —21]+[ II 21 —4» ~2N —21]+[ II 21 —2» ~2N —21+2 ] [~zl —2» II 2N —21 —2 ] ~

With the assumption (3.23) for n =N —1, Eq. (3.27) gives, for 1 & l &N —1,

2[ ~zl» ~2N —21] [~21+2 i ~2N —21 —2 1 +[~zl 2» ~2N ——21 +2 ]

(3.26)

(3.28)

Each of these equations is the sum of two adjacent equations in the desired set [(3.17) with n =N +1].
Equation (3.17) with n =N+1 and 1 (I &N is a system of N equations in N+ 1 unknowns (it states that all

of the considered commutators are equal). Equation (3.28) is a set of only N —1 equations in the same
N+1 unknowns. The former set implies the latter set. To prove (3.17) (with n =N+1, 1&1&N) from
(3.28) we therefore need one more condition. There are two cases, depending upon whether N is odd or
even.

Case l. N is odd, N & 3. We now prove the additional equation [WN+ I, WN I]=[B,W2N]. From the

assumption (3.23) with n =N,

[»II2N —zl=[~iV i ~X I] ~—
Then,

—
s [»[»[»~2N —2]]]=—

~ [B»IB»[~&V—»IIN —I]]] i

[B» II 2N]+[» ~2N —2]= —
~ [»H» ~N —I]» II N —I]]—8 [»[~iv I»[B» ~i—v —I 1]] i

[Bi~2N]+[» ~2N —2] [~N+I ~N»—1] s [[B~N»—1]»[» ~iV —1]l

(3.29)

(3.30)

(3.31)

(3.32)

where we have made use of the Jacobi identity, definition (3.3), and the assumption (3.23) with n = , (N —1). —

Using this same assumption again me obtain

[Bi~2N]+ [BiII 2N —2] [~X+I» ~N —1]+[~X—1»IIN —3] .

Finally using the assumption (3.23) with n =N —1, 1 = —, (N —1), we get

[»~2N] =[~++I ~)V I]-
(3.33)

(3.34)

(3.35)

which is an equation derivable from (3.17) with n =N+1, 1&l &N, and independent of (3.28). Together
(3.28) and (3.34) prove (3.17) with n =N+ 1, 1 & I &N, N odd. The crucial step in this proof is the cancella-
tion of the second term on the right-hand side of (3.32). If we had chosen an arbitrary equation from (3.17)
as our starting point, instead of (3.29), then the corresponding term would not have canceled.

Case 2. N is even, N &2. For this case, the extra condition derived is [B,R'2N] =—[B,fY2N]. To prove
this we first show an intermediate result, based on assumptions (3.23):

8 [[B»~21»i» [B»~ziti —2I» —2]] (P + 1)([B»~ztt»]+ [B» ~ztt»] )

for integral p 0 & 2P &I —1 and 1 (m &N. First we show (3.35) for p =0:
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—,[[B,B],[B,Wz 2]]= ,—[B—,[B,[B,Wz 2]]]——,[B,[B,[B,Wz 2]]]

=[B,Wz ]+[B,Wz ], (3.36)

where we have used the fact that [B,Wz~ z] is anti-self-dual (ASD) as a consequence of the assumption
(3.23) with n =m —1. Since (3.35) is true for p =0 and all m, 1 & m & N, the desired result is true for m = 1

and m =2 (for these cases p is restricted to the value zero). We shall now prove (3.35) inductively in m.
Assume (3.35) for 1 & m &J —1 for some E, 3 &K & N and show it is true for m =E. We assume p y 0,
since the result for p =0 has already been shown, and also that the restriction on p following (3.35) holds:

8[[»Wzpl [»WzK zp-2]] = —~[[»[»[»Wzp zll], [B,W2K z, 2H

8 [[B»W2p —4]«[B«W2K —2p —2]]

= 64[[ «[ «Wzp —2]l«[ «[ «W2K-zp-2]ll

[B [[B [B W2p —2]] [»WzK —2p —2]l]

s [[B«W2p —4]» [B«W2K —2p —2]] ~ (3.37)

If p & 2, then we can apply (3.35) with m =EC —2, to the last term in (3.37). It can then be shown to be zero

by the appropriate assumption in (3.23) [specifically in the form (3.6b) with n =E —1]. If p =1 this term is

zero, since W —2= B. Ther—efore,

s [[ «2p]«[B«W2K 2p 2]]= 8 [[B«W2p 2]«[B«W2K 2p]]+ 8 [[B«W2p 2]«[B«W2K 2p 4]]

+ 64 [B«[[ «W2p —2]»[B«[B«W2K —2p —2]l]1

[B«[B«[ [B«W2p —2 1«[B«W2K —2p —2 ]]]]

+ 44 [B»[[B»W2p —2]«[B»[B»W2K —2p —21]11 (3.38)

We can apply (3.35) with m =K —2 to the second term, since 2p —2 &J' —3, the condition for applicabili-

ty, follows from the restriction on p for m =K: 2p &E —1. The second term is then zero by (3.23). Simi-
larly, the fourth term is zero by (3.35) with m =K —1 and (3.23) with n =K. Also note that the third and
fifth terms are the duals of each other. So we can write

s [[B«W2p ]» [B»W2K —2p —2 ]1 8 [[B«W2p —2 1»[B«W2K —2p 1]

[B [[BW2p —2] W2K —2p]] ——,[»[[»Wzp —2] W2K —2p —211+dual

where dual indicates the dual of the expression. Consider the right-hand side (RHS) of (3.39):

8 [B»[W2p —2«[B«W2K —2pl]l 8 [B«[B»[W2p —2» W2K —2p]l]

—
8 [[»Wzp-2] [»W2K-zp-41] —

g I [»[»Wzp-2ll WzK-zp-z1+«»

As before the third term is zero:

(3.39)

(3.40)

RHS= g[[»Wzp-41[B WzK zp z]]+—,[Wzp-z [»[»WzK-zp-z]]1

[ [ zK zl]]+[Wzp W2K-zp 2]+[Wz, -z.W2K-zp-zl+«» ~

Again, the first term vanishes. Consider the fourth term:

[W2p» W2K —2p —2 1 = [W2K —2p —2 «W —2p —2 1

Let I =K —p —1, n =K —2p —1. Then

[W2p «W2K —2p —2 ]=[W2l » W2»» —21 —2 ] ~

If we eliminate p, then

(3.41)

(3.42)

(3.43)
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1=—,(E+n —1) & —,(N+n —1) .

Since n &N (3.43) is therefore covered by the assumption (3.23) which implies that it is ASD:

[Wqq, W2x 2q 2]+dual=0 .

The fifth term of (3.41) is also ASD by (3.23) with n =E—1. So

RHS= —[W2, 2 W2z 2p] —[W2, -2 W2x 2, 2]+[»W2x]+[»W2s-4]+dual.

(3.44)

(3.45)

(3.46}

(3.47)

If we add this equation for successive p's: p= 1,p=2, etc. up to p =q and use (3.35) for p =0, m =E, we

get

The first term can be disposed of in the same fashion as (3.42). The second and fourth are ASD by assump-
tion (3.23). Therefore, recalling the left-hand side (LHS) (3.39) we have

g [[»W2p] [»W2x —2p —2]]—g [[»W2p —2] [BW2x —2p]] =[»W2z]+ [» W2x]

—,[[B,W2q]&[B» W2x 2q 2]]=(q+ 1)([B,W2x]+ [B,W2x])» (3.48)

which is (3.35) for m =E. Thus the proof by induction of (3.35) is complete.
Returning to the main proof, we are considering the case when N is even. As the additional equation

from the set (3.17) with n =N + 1, for the present case we choose to prove

[»W2N] =—[»W2N j

j.e., that [B,W2N] is ASD. This is linearly independent of the equations (3.28). Consider the quantity

[WN, WN], which is ASD by construction:

(3.49)

[WN&WN] g [[B&[B&WN—2]]&WN] [WN —2»WN] (3.50)

The second term can be reduced to [B,B]—by assumption (3.23) with n =1, I = , N, , N —1—,. . .—,1. We

can therefore write

—
g [[B [B WN —2]],WN]=ASD, (3.51)

—,[[B,WN 2]»[B» WN]] ——,[B,[[B,WN 2],WN]]=ASD .

The second term is

g [B»[[B» WN —2]& WN ] g [B»[»[WN —2» WN ]l ]+ g [B»[WN —2» [B» WN ]]]
= —

g [»[»[»W2N —2]]]

+ g [[B» WN —2] [» WN ]l + , [WN 2» [B& [B»—WNj j j—

= [»W2N ]+[» W2N 2]+ g [[»WN —4]»[» WN 2]l——

[ WN —2» WN] [WN —2» WN —2] ~

(3.52)

(3.53)

(3.54)

With use of (3.35) with 2p =N —4, m =N —2, on the third term of (3.53} and (3.23) again on the last two,
(3.53), except for the first term, can be shown to be ASD. Thus, returning to (3.52), we find

—,[[B,WN 2],[B,WN] j+[B,W2N]=ASD .

The first term can be reduced with the help of (3.35) with 2p =N —2, m =N:

( —,N)( [B,W2N]+ [B,W2N j )+[B,W2N ]=ASD .

Adding to (3.55) its dual, we obtain

(N + 1 )( [BiW2N ]+[B& W2N] }

(3.55)

(3.56)
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Therefore, we have proven (3.49). Together with (3.28), (3.49) implies (3.17) with n =N+1, 1(l&N, N
even. Part I is now complete.

Part II. We now extend this result for n =N +1 to include 1 =0 and l =N+ 1. Since (3.17) with
l =N + 1 is just the dual of (3.17) with / =0, there is only one equation to prove, namely n =N + 1, / =0,

[» Wzx+z] = [»—WzN I

or, with the result just established

[8& WzN+2 I = [8&WzN] ~

We expand [8,Wzn+z] in the by now familiar manner:

[»Wzn+z I = ——,l»l»[» WzN]I] —[» Wz~j

= —
g l»[[»8] Wzxjj —

g [»[»[»Wzxjl1 —l» Wz~l

= ~ [»[[»8][»[»Wzx —z]]]]+8 [»[[»81 Wzx —z]]+[»Wzx —z]

where (3.23) has been used for n =N, f =0, i.e.,

[8& Wzn] =[8,WzN z] .

The first term on the right-hand side of (3.59) is

(3.57)

(3.5S)

(3.59)

(3.60)

fj4 [8 [lB8] [8 [8& W2% —z]]]I 64 [[8&IB&8]]&lB&lB&W2N —2]]]+64 [lB8] [8 [8 [8 Wzx —2]jj]
= —~ [[8,[8,[B,B]]],[B,Wz~ z]]+ ~ [8,[[B,[B,B]],[8,Wz~ z]]]

I l Wzx]l —
~ [[» ] [»Wzx —z]]

= ——.[[»8][»W2N —2]]+ ~ l» [»[[»81 [»W2N —21]]1

64 [8&[[8&8]&[»[8&W2N —2]]]] 4 [[»81&[8&W2N —21]

~ l»[»( —l»[»[ Wzx —z]]1—[ [»l» Wzv —zjj])]1
—~ l»[[»81[»l» W2N —2]ll I

g [»[»([»WzN]+ [»Wzx —z I+[»Wzxj+ l» Wzn —zj)]1

—~ [»[[»81 [»[»Wztt zj]]] . (3.61)

The first term in (3.61) is zero due to the assumptions (3.23) and (3.56). Therefore, we have shown that
the expression on the left-hand side of (3.61) is equal to its negative and is therefore zero. Returning to
(3.59) we may now write

[B,WzN+z] = —,[8,[8,[B,Wz~ z]]]——,[8,[B,[B,WzN z]]]+[B,Wz~ z]

(3.62)= —[» Wzx —4]+[»Wzx]+ [»Wzx —z ]=[»Wzx] .

l WzN+2&8] [W2N —z&8]+[WzN&8]+ [W2N& Wz]

Thus (3.58) is true and (3.17) holds for n =N + 1 and l =0 or 1 =N +1.
Part III. The final step involved is to raise the limit on l for n =N —1, n =N —3, . . . . Commute

——,[8,8] with (3.17) with n =N, / =N to obtain (3.27) with / =¹
[ W2N &8]+ [W2N —4 &81+[W2N —2 & Wz ]+[W2N —2 &8] . (3.63)

Using the results of the previous sections [(3.17) with n =N+ 1, I =N+1, and l =N] and the assumption
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(3.23) with n =N —1, I =N —1, we find

[W2N W2]= [W2N —2»1 (3.64)

which is (3.17) with n =N —1, l =N. Thus we have obtained the desired result for n =N —1. The same
procedure can be applied to the lower levels, namely, if we commute ——,[B»]with (3.17) with n =k =N

1

2j—for integral j, 0 &2j &N —1, and for I = —,(N +k) =N —j we get (3 27) with N~k, l~—,(N +k):

[W—N+k+2 Wk N -21+-[WN+k 2 Wk N-21+[WN+k Wk Nl -[W—N+k Wi N -41-

[WN+k & Wk N I+[ W—N+k —4» Wk N I +—[WN+k 2& Wk —N+21 —[WN—+k 2» Wk —N 2]—'—
The right-hand side can be seen to be zero from the assumption (3.23} with n =k +1, I =N jan—d
n =k —1, l =)V —j—1, leaving

[WN+k~2 & k N 2]—[WNpk&Wk N]= —[WN+k»Wk N 4]—[WN+k 2»Wk N 2] . (3.66)

The left-hand side [of (3.66)] is zero if (3.17) with
n =k+1, 1= , (N+k)—+1=, [N+—1+(k+1)]is
true. The right-hand side is zero if (3.17) with
n =k —1, 1=—,(N+k)= —,[N+1+(k —1)] is
true. If we add Eq. (3.66) times ( —1V for
j=0,1,2,...,q successively (recall k =N —2j) we
get

[W2N+2»—] [W2N»]—
= (-I)q(-[W,„„,W „,]

+ [W2N —2q —2» W—2q —21)

(3.67)

[(W2„—W2„2),( W2 —W2 2)]=0

and

(3.70)

[(W2» W2» —2 }»(W2m W2n& —2)1

Consider [W2„,W2 ]. By (3.16}and (3.17}

[W2n» W2m I = —[W2n» W—2m —21

I

charge in the set, i.e. Q2, is conserved.
In addition to the conservation of charges

[Q2„,H] =0, it is also possible to show that the
charges Q2„commute with each other. [Q2„,Q2 ]
will vanish if

for 0 &q & —,(N —1). The left-hand side is zero by
(3.62). Thus

[W2N —2q» W —2q —4] [W2N —2q —2» W—2q —2]
Also,

[~& W2n —2m —2] (3.72)

(3.68)

for 0 & q & —,(N —1). Setting n =N 2q —1, —
I =N —q in (3.68} we get (3.17) for n =N —2q —1,

1
I = —,(N+n +1):

So,

[W2n —2» W2m —2] = —[W2n —2» W—2ml

[~» W2n —2m —2]

[~& W2n —2m —2] ~ (3.73)

[W2l& W2n —2I —2]=[W2l —2» W2n —2ll . (3.69}

Looking at (3.24) we can see we have achieved the
desired result, i.e., raising the integral limit on l by
one for n =N —1, N —3, . . .(0 or 1). This is
equivalent to raising the half-integral limit on l
given by I = , (N +n) by —,—forall n & N. All en-

tries in (3.24} have now been derived. The proof
by induction of (3.17) is complete.

Thus, (3.17) holds for all n and I and charges
Q2„defined in (3.2) are conserved for all n

(n= 1,2,3,...,). This result requires only two as-
sumptions. The first is that the Hamiltonian can
be written in the self-dual form (3.1). The second
assumption is (3.8), which states that the first

[W2n& W2m] — [W2n —2» W2m —2] ~

By a similar argument (3.17) shows that

[W2n & W2m —2 I = [W2n —2» W2m ]

[W2n —2» W2m ] ~

(3.74)

(3.75)

[Q2. Q2 ]=o
for a11 n, m, 1 (n & ao, 1 (m &.Do.

(3.76)

Together (3.74) and (3.75) prove (3.70). It can easi-

ly be checked that (3.17) implies that all four of
the commutators in (3.71) are ASD, thus (3.71) is
satisfied. Therefore,
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IV. GAUGE THEORIES

Loop-space Green's functions can then be defined

as

&0I t f[ki]t 4[k]
and expressed in terms of the "string propagator"

G[(]= (0
l trP[g] l

0) .

It has been suggested ' that once the propagation
of free strings is described, knowledge of the hid-

den symmetry of interacting strings could be used

to restrict the Green's functions and thus solve

gluon dynamics, in analogy with this chain of
events in the nonlinear 0. model.

So far, the only example of interacting string

symmetry is in three dimensions. In this case, the
equations are similar to the chiral model, where it
is known that a Kac-Moody infinite-parameter

subalgebra is responsible for the nonlocal currents.
It is not unreasonable to speculate that this
abstract Lie algebra can also be realized in the
four-dimensional theory, but the explicit form of
the conserved charges has remained well hidden.

The ultimate goal of our investigation is to ex-

ploit the suggested self-duality of the four-dimen-

sional gauge system in pursuit of the conservation
laws. 't Hooft introduced path-dependent opera-
tors for the gauge system in order to concentrate
directly on the formation of flux tubes like mag-
netic monopoles which could drive a magnetic
Higgs mechanism resulting in electric confinement:

A(C) = —, trPexp if A dx

Bip (4.1)

The relevant framework for studying nonpertur-
bative effects in non-Abelian gauge systems ap-
pears to be a nonlocal reformulation. Instead of
the local Lagrangian W(x) = ,F„'—(x)E„'„(x),the
theory is described by a functional formalism
whose fundamental variable is the element of the
holonomy group

T

P[g]=P exp fA.dg

The dual operator 8 (C) measures electric flux and
was defined by its commutation relation with A:

A (C)B(C') =8 (C')A (C)e (4.2)

where N is from SU(N) and n= 1,2,.. ., is the
number to times the closed path C' encircles C.
Furthermore, the operator 8 (C) can be derived
from A (C) also by a partial Kramers-Wannier
Z(N) dual transformation. That is to say the
operator A (C), an element of SU(N), can be ex-

pressed in terms of matrices of the factor group
SU(N)/Z(N) and of the group Z(N). A transforma-
tion similar to Kramers-Wannier duality for Z(N)

gauge theories then results in the disorder parame-
ter 8(C). Also, in treatment of the whole theory,
the four-dimensional SU(N)-gauge-theory partition
function has been noted to reflect a self-duality
property similar to the two-dimensional Ising
model.

In order to generate conserved charges with our
result, the fundamental operators must satisfy the
extra condition [B,[8,[B,B]]]=16[8,8] If we.

define 8 =A (C) and B=B(C'), then

V. CONCLUSION

In this paper we have developed a rigorous con-
nection between simple self-duality and a set of
commuting conserved charges. For a finite lattice,
the set is finite. For an infinite system, the set is
infinite. The number of charges equals the number
of degrees of freedom of the system, the charac-
teristic of exact integrability. In the XZ and Ising
models, our charges coincide with known results.
For the family

[A (C), [A (C), [A (C),8(C')]]]
=A (C)(1—e '"r

) [A(C),8(C')] . (4.3)

That is to say, with this choice of B and B, the
first charge is not conserved and we cannot gen-

erate the infinite set.
This may be due to the fact that 8(C') is only a

partial dual of A (C). In this way, we can think of
the extra condition as a guide in choosing the
correct duality transformation. It of course must

also have the property that A =A.

N
Hk= & g o'i(n)cr2(n+1) o2(n+k)cri(n+k+1)

n=1

+ I g ( —1)"cr3(n)o2(n+1) ~ o2(n+k)cr3(n+k+1)
n=1
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the first charge is conserved and we can generate a
previously unknown set of conserved charges.

The advantage of our result is that it does not
depend on the lattice formulation or the number of
dimensions. Although the self-dual formulation of
four-dimensional SU(N) gauge theories in terms of
A (C) and 8 (C') operators does not fit exactly into
our calculation, the ideas in this paper seem valu-
able for gauge theories as well in that they estab-
lish a connection in simpler models which may be

reflected in Yang-Mills theory, and thus provide a
new tool with which to search for symmetry.
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