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A procedure based on the piecewise perturbation treatment of the Schrodinger equation is developed. The

procedure is shown to be convergent for any bounded perturbation. A simple way to construct the algorithm is also

developed, which can be used for any potential of polynomial form. Our procedure is further particularized for the

anharmonic-oscillator potential 'Utx) = m'x'+ 2ilx' IA, &0 and integer a &2) and applied to produce highly

accurate numerical values for its energy levels. The experimental results also show that this procedure exhibits

almost equal efficiency for all relevant values of the principal quantum number n, mass parameter m', coupling 2, ,
and anharmonicity a.

I. INTRODUCTION

It is well known that for the anharmonic-oscilla-
tor problem, i.e.,

(„"=[~(~)—~„]c„,

~(~) =m'x'+2~x", x~ (-~, +~),
lim g„(x)=0,

with integer &» 2, the perturbation theory, in
which m g is taken as the reference potential and
2Xx' as a perturbation, diverges for all positive
X no matter how small. This fact, which has first
been proved in Ref. 1 for the case 0' = 2, has stim-
ulated many efforts to search for alternative pro-
cedures for accurate computation of the problem
(1.1).

acid, ~ for instance, performed variational calcu-
lations based on the harmonic-oscillator basis to
obtain the first 25 eigenvalues of Eq. (1.1) with
m'= 0, & = 2, and X = & to 12 significant figures.
Biswas et al.' were able to compute the first eight
eigenvalues for m = 1, & = 2, and various A, in the
range 0&X» 50 by using the Hill determinant
method. Hioe and Montroll~ and Hioe et al. ' con-
sidered the problem for various values of &. For
each they first delimited three regimes of the
values of the quantum number n and the anharmon-
icity constant X, called the near harmonic, near
pure anharmonic, and boundary layer regime, re-
spectively, and next devised suitable procedures
in each of the three regimes. Banerjee et al.' used
an appropriately scaled basis for the eigenfunc-
tions to obtain the eigenvalues as the zeros of some
function of energy which is constructed by means
of some recurrence procedure. In the case of
quartic anharmonicity & =2, which is discussed
there in great detail, the recursion formula is
very simple, so that the computation of a single
step in the recurrence procedure is carried out
very fast indeed. Nevertheless, since the number

of steps is roughly proportional to n, this proce-
dure becomes less and less efficient with increas-
ing n. Finally, note the approach of Caswell' who

tried to revigorate the standard perturbative ap-
proach by replacing the original parameters m'
and X by some "effective" parameters M' and ~,
and then transformed the perturbation series in the
original coupling X into one in the effective cou-
pling ~. He tested his procedure on low-lying lev-
els (n - 10) from various values of o' and X, with

good results. A novelty in Ref. 7 is that it also
gives numerical results for the double-mell an-
harmonic-oscillator problem, i.e., of the same
form as in Eg. (1.1) but with negative m'.

All the procedures mentioned above have in com-
mon the capability of being successful for low-ly-
ing energy levels. When n increases some of these
methods (Refs. 2, 3, and 6) become less and less
efficient, while the behavior of the method of Ref.
7 at large n is not yet investigated. As for the ap-
proach developed in Refs. 4 and 5, this is probably
uniformly efficient for any n, but this is achieved
at the expense of actually choosing between three
different algorithms, each valid in a certain re-
gime of values of n and X.

In this paper we devise an alternative procedure
which consists of a unique algorithm and which ex-
hibits almost equal efficiency for all relevant val-
ues of n, m', &, and X. Our procedure is based
on the perturbation theory but not with m'x' as the
reference potential and 2A. x' as a perturbation.
We use instead a piecewise perturbation technique
in which the reference potential is adjusted at will.

Procedures based on this idea have been investi-
gated intensively in the last decade, but with par-
ticular emphasis upon their numerical aspects;
see Ref. 8 for a review paper. The main novelties
brought by the present paper refer to the mathe-
matical conditions under which the piecewise per-
turbation technique is convergent and also to the
manner of constructing the expressions of the per-
turbative corrections. All these are treated in
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Sec. II. In fact, in Sec. IIA, it is shown that the
piecewise perturbation technique based upon the
constant reference potential (which we prefer to
use, due to its simplicity) is convergent under the
very relaxed condition that the perturbation is
bounded. In Sec. IIB we give a new, general, and
simple-to-use procedure for obtaining the formu-
las of the piecewise perturbative corrections in
any order. We show namely that these corrections
are some linear combinations of elementary func-
tions, viz. , sin, cos, sinh, or cosh. We also show
that in the case when the potential is a polynomial
in x each correction consists of a finite number of
terms with polynomial coefficients.

The potentialities of such a procedure to solve
the anharmonic-oscillator problem, as well as
some related practical aspects, are discussed in
Sec. III.

In Sec. IV we report on numerical results from
several test cases. The sample covers most of the
relevant situations, viz. , & between 0.01 and 100,
e = 2, 3, and 4, m' positive or negative, and n be-
tween zero and 10000. We find out that the com-
puter time needed to compute the eigenenergy &„
with some preset relative error is practically in-
dependent of the values of m2, &, and ~, but slight-
ly increases with n to approach values which are
approximately as large as the ones required by the
standard WKB method, see Fig. 2.

II. THE PIECEWISE PERTURBATION THEORY

Consider the Schrodinger equation

t)" (~)=[U(~) —&]4(~), ~&(o'~ —,p-+ ), (2.1)

and suppose that the interval (o.,p) can be divided
into three intervals (n, a), [a, b], and (b, p), so
that in the extreme intervals (&, a) and (b, p) the
solution can be calculated with sufficient accuracy
by some asymptotic procedure such as the WEB
method, for instance. The solution on the whole
(n. , P) is the sequence of the piecewise solutions
on the three subintervals, properly matched at
their mesh points a and 5.

The actual problem then is the solution on [a, b].
For sake of simplicity we introduce the current
variable 5=x —g and denote h=b —a. Then, the
Eq. (2.1) on [a, b] reads

y (b)=[V(b) Z]y(b), b~[O, h], (2.2)

where y (6) = g (a + &) and V(5) = 'U (a + &).
Specifically, our aim is to construct the two lin-

ear independent solutions u and v of Eq. (2.2) which
obey the initial conditions: y(0) =1, y'(0) =0 for u,
andy(0) =0, y'(0)=1 for v. (Note that the Wronski-
an of u and v is equal to unity. ) In fact, once u and
v are known, the further treatment of Eq. (2.2) re-

duces to some simple algebraic manipulations.
For instance, if we have to solve the initial-value
problem associated with Eq. (2.2) in which the val-
ues of y (0) and y'(0) are given, the solution and its
derivative at any ~ can. be written in simple matrix
form

t'y(&)
~ ~ (&) .(&)~ ~y(0))

ky'(~) J Eu'(~) v'(~)) (y'(0)J
(2.3)

while when the initial conditions are specified at
the point h, one has

t h

V= —
I V(5) db .h. (2.5)

Now we present details concerning the perturba-
tion scheme. First we recall that the propagators
u(&) and v(&) of the constant potential V are'

cos(IF I'~'6) if E& 0,
u(6) =g(F, 5) = ' (2.6a)

~

~

~

cosh(F'~'&) if &&0,

and

(y(~) & t'u(~) v(&) ) f v'(h) -v(h)& (y(h) l

ky'(5)1 (u'(&) v'(&)l ( -u'(h) u(h) ~ (y'(h)1

(2.4)

The same is also true in the case of two-point
boundary problems. Indeed, when the Strum-Liou-
ville conditions A,y (0) +B,y'(0) = 0, &,y(h) +&,y'(h)
= 0 (I+0 I

+

Italo

I
+ 0 I+i I

+ Ili
I

+ 0) are imposed,
then the eigenvalues of Eq. (2.2) are given by the
roots against E of some linear combinations of the
propagators u and v and of their derivatives u' and
v', each taken at h. If, for instance, BO=B,=O,
then the eigenvalues are simply the roots of v(h).

To construct the propagators u and v we make
use of perturbation theory We as.sume that V(&)
is a real, integrable function of & on [0, h] and that
E is a real parameter. There is, however, no

difficulty in extending our approach in the complex
case.

A real constant potential V is taken as the ref-
erence potential of our perturbation scheme. As
for the actual value of this constant, there is no
serious restriction because, as we will see in
Sec. IIA below, the scheme is convergent for any
finite V provided V(&) is bounded. Nevertheless,
if V is chosen such as it fits the given V(&) on

[o, h], the procedure becomes more efficient, in
the sense that fewer perturbative corrections must
be retained in the perturbation series for u and v

to obtain them with the desired accuracy. Accord-
ingly, we adopt for V the following recipe'.
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p(~) -p, (8)+p, (~)+p,(~)+ ~ ~ ~, (2 7)

where the kth correction p, (&), k = 1, 2, . . . , is the
solution of the equation

p,"=Ep +av(&)p, „p,(o)-p,'(o)=o, (2.8)

with an V(&) =- V(&) —V. Here P means either u or u

according to the starting quantity in the set (2.8):
if Po(&) =u(&), thenP=u, while if Po(&)=v(&), then

[E( ' 'sin((E('/'&) if E&0,

g(8)=q, (E, 8)-=a if E=O,
E-1/ 2 sinh(E1/ 2 8) if E)0

(2.8b)

where I" =V-E.
Each of the propagators u and e, which we look

for, can be written as a perturbation series

u,"= &V(&)u~„u, (0) =u,'(0) =0, (2.9)

with uo( &) = $ (E= 0, t)) = 1. For the proof we use
the following auxiliary equation:

u~' =Cu„~(&), u„(0)=u~'(0) =0, C~ 0,
with the same starting quantity ufo(&) =uo(&) =1.
It has the solution u~ (5) =C'6"/(2kt), i.e., the
series

ence coefficient and 4V(&) as a perturbation, the
validity of the whole approach depends actually on

the ratio of these two contributions, cr = b, V//E.

Accordingly, the most unfavorable situation for
the convergence of the perturbation series (2.7)
would occur when F =0, i.e., when E = V. We

prove below that even in this case the series is
convergent.

Consider in detail the case p =u. The Eq. (2.8)
reads

A. Convergence of the perturbation series (2.7) uc(&) =u(&)+uf (t))+umc(~)+ ~ ~ ~ (2.1o)

We prove now that the series (2.7) is uniformly
and absolutely convergent if the perturbation 4V
is bounded, i.e., I&V(&)I ~C on [O, h].

We start with the identity V(&) -E=E+ b, V(&).
As the perturbative procedure takes & as refer-

is uniformly convergent for any C~ 0; its sum is
actually uc (&) = cosh(C'/ ' &). Now choose C
= max I AV(6)

~
on [0,h] and verify that each u~c is

an upper bound for u, (&)
~

of Eq. (2.9). For k =1,
we have

() t'Om d 62 5 52

(«, (n)l= an, ), «v(n, )an, = an, lnv(n, )lan, = f an f can, =«, (n),
0 0 0 0 0 0

for k = 2 we have

5 52 d 52 5 62

l«, (n)I= an, v(n, )«, (n, )an, f an, 'lnv(n, )((«, (n, )lan, -«an, f c«', (n, )an, =«, (n)
0 0 0 0

and so on; this completes the proof for the conver-
gence of u. The same procedure can be repeated
word by word for e. The only differences are that
the starting quantity is vo(&) =go(E= 0, &) =&, and

the analog of Eq. (2.10) is vc = sinh(C'/'6)/C'/ '.

B. Construction of the perturbative corrections

8$(E, 8)
( )~0 t

n(, ) (E~)85

s)I,(E, 5) = 5)7, ,(E, 6), s = I, 2, . . . .
(ii) Differentiation with respect to E:

(2.12)

We introduce the following functions:

n, (E, ~) = [~~(E, ~) n.(E,~)]/E, -
n, (E, 8) = [~'n. .(E, ~) (» —1)n. ,—(E, ~)]/E,

s = 2, 3, . . . . (2.11)

Some properties of the functions g, g»)I„)I„.. . ,
are listed below.

(i) Differentiation with respect to &:

s((E f)),
( )

8

Bq, (E, 5) = Iq„,(E) &)
n

s = 0, 1, 2, .. . .
(2.18)

7J (E, 8) = 2a8 a+~ g g g(n/(2q + 2s + I) I

qe0
(2.14)

(iii) The series expansion of q, in powers of Z
-=&&~ reads
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with

1 if s=0,
(q+1)(q+2). ~ (q+s) if s&0.

P, (5) —C,"(5) if s=0, 1, 2, . . . , S,
-C,"(5) if s=S+1,S+2, . . . .

(2.21b)

(iv) The asymptotic behavior of q„which is
actually valid when Z» —,

' s'(s+1)', is

q, (E, 5)-
5~"

g (E, 5)/Z"'" ' for odds,
(25~ q, (E, 5)/Z'~ ' for even s .

Now proceed with the construction of the 0th cor-
rection p~ to the propagator p. To this aim we as-
sume that the inhomogeneous term in Eq. (2.8) is a
linear combination of the functions $ and q„'q„
'gay. . . y 'ggy Vlz. )

~V(5)p, ,(5) = q(5)&(E, 5)+P.(5)n.(E, 5)

+P, (5)n, (E, 5) + ~ +Ps (5)ng (E, 5),

(2.16)

where Q, P„P„P„.. . , Pz are polynomials in 5.
Now search for p~ of the form

p" Ep =2Cog(E, 5)+(C,"+2C',5+2C,)q, (E, 5)+ ~ ~ ~

+ [C," + 2C'„,5+ 2 (s+ 1)C„,]
xq (E 5)+ ~ ~ ~ . (2.16)

This should be equal to Av(5)P~, (5). Then, upon
identifying the coefficients of $, q„q„q„.. . of the
expressions (2.18) and (2.16), one gets

2C'(5) = Q(5), C,"+2[C'„,5+ (s+1)C„]=P, ,

s = 0, 1, 2, . . . , S (2.19a)

C,"+ 2[C'„,5+ (s+ 1)C„,] = 0, s = S+ 1, S+ 2, . . . .
(2.19b)

These equations can be solved iteratively; for
C0 one simply gets

6

Co(5) =-,' Q(5,)d5, ,
0

while for C, (5),C,(5), . .. , we get

(2.2Oa)

p, (5) =C,(5)n, (E, 5)+C,(5)n, (E, 5)+... , (2.17)

and show that this sum has a finite number of
terms and that the coefficients C, (5), s ~ 0 are
polynomials in 5. In fact, differentiate Eq. (2.17)
twice with respect to 5 [use Eq. (2.12)] and form
p~ -I"p, . One gets

These can be particularized at onc e for the case
when Q, P„P„.. . , Pz are polynomials in 5.

I et us denote the degree of a polynomial A by
the corresponding lower case character a. The
Eq. (2.20a) implies that C,(5) is a polynomial
whose degree is c,=q+1. In turn, M, (5) is also
a polynomial, viz. , M, (5) =P",.o0(MO), 5', with m,
= sup(po, co) = sup(po, q —1), so that C~(5) which re-
sults fro'in Eq. (2.2la) is a polynomial of the same
degree, viz. ,

C, (5)= Q (C,),5' with (C,), = (. )
(M,), .

juP

(2.20b)

The iteration goes on to higher s with the formulas
Sg

C, (5) = g (C,),5' with (C,), = (. )
(M, ,), .

(2.20c)

The degree of the polynomial M, , is m, ,
= sup (P, „c,",) = sup (P, „c,, —2) for s ~ S+ 1, but
%2 y c y c y 2 for s & S+ j-. The latter implies

denoting the integer part of 2e~„by 8, it results
that C, (5) = 0 for any s &S+S+1, i.e., the last
term in the sum (2.17) is C~,g„(5)g~;~„(E,5).

Up to this point we have shown that if &V(5)p~, (5)
is of the form (2.16) then p~(5) results in the form
(2.17) with a finite number of terms, and also that
the coefficients are polyn. omials in & which can be
calculated by Eqs. (2.20a)-(2.20c). The only re-
maining question is whether the ansatz (2.16) is
valid. The answer is positive provided V(5) is a
polynomial in 5. In fact, for k =1, Eq. (2.16) con-
sists of a single term. This is the first term, with
Q(5) =Dv(5) (which is a polynomial as V is) for
p =u, and the second term, with P,(5) =av(5) for
p =v. This guarantees that p, will be of the form
(2.17). In turn, b, VP, will also be of the form
(2.16), and so on.

As an illustration of how to apply our procedure
we take a simple example. Consider the potential

v(5) = v, + v, 5+ V,5', «[0, h j,
with constant V„V„and V'„ for which we search
for the first-order correction to u.

To this aim, first form V by Eq. (2.6) and av.
These read

6

C, (5) = —'5 ' 5,' 'M, ,(5,)d5, ,
0

where

(2.21a)
T'= ~0+-,'~, h+ 3V,h',

&v(5) = v~(5 —ah)+ V2(5' —sh') .
Next form av(5)po(5), see Eq. (2.16). As p, (5)
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=u(6) =$(&, ~), see Eq. (2.6a), the right-hand side
(RHS) in Eq. (2.16) contains only the first term and

Q(&) = Av(&). Then, Eq. (2.20a) gives directly

C (6) = —'V, (5 —5h)+ —'V (53 —6h ) .
Now form M, (5) = -C", (6) = —~ [av(5)]'= ——,'V'(6), i.e.,
m, =1, (M,),= —2v„and (Mo), = —V, . The Eq.
(2.20b) then leads to

c,(6) = —,'v, —,'V,6.
This is the last nonvanishing coefficient in the HHS

of Eq. (2.17). Thus the formula of the first-order
correction is

——,'(V, + V,5)q, (E, 5) .
To summarize, the results of this section are

that the proposed piecewise perturbation procedure
is convergent provided AV(&) is bounded, and that
the procedure becomes particularly practical if the
potential V(&) is a polynomial in &. Clearly, the
anharmonic-oscillator potential automatically
meets this condition. Yet, our procedure remains
suitable also for any other well-behaved V(&). In

this case an extra stage is necessary, in which
this V(&) is approximated by a polynomial. This
can be achieved easily through some standard fit-
ting procedure such as, for instance, the least-
squares procedure.

III. THE ANHARMONIC OSCILLATOR

Our task is now to convert the anharmonic-oscil-
lator problem (1.1) into a form which is suitable
for the piecewise perturbation theory. This is
achieved in two stages.

The first stage is the reduction of the domain
(-~, + ~) to [0, +~). To achieve it we start froin
the remark that the eigensolution g„of the problem
(1.1) is either symmetric (for even n) or antisym-
metric (for odd n) with respect to x. Therefore,
the eigenvalues of the original problem (1.1) are
identical with the ones of the same Eq. (1.1) on the
half-axis [0,+m), if in the latter case the following
conditions are imposed at the origin; g„(0)= 0 for
odd n, and g'„(0) = 0 for even n.

The second stage is to find a suitable value for
the cutoff point b. As this b must guarantee that
the errors of the eigenvalues obtained are within
some preset level, we choose the following proce-
dure. We introduce two auxiliary potentials which
underestimate and overestimate the given U(x) on

[0,+~). These are

(„"= ['U(x) —E„]P„, x c [0,b], (3.3)

i.e., with the same 'U(x). The difference is in the
boundary conditions. In fact, the conditions at the
origin are the same for the two cases, namely,
$„(0)=0 for odd n and g„'(0) =0 for even n, while at
h one should impose g„(b) =0 for EP but g„'(h)
+k„g„(b)= 0 for E„"",with k„=[0(h) —E„]' '.

The problem (3.3) is manifestly suitable for the
piecewise perturbation procedure, and two altern-
ative versions might be equally used. One of them
would be to take the whole [0,b] as a single inter-
val [i.e., h =h, under the notation in Eq. (2.2)].
Such a way seems to be particuarly useful when

up yl - —5'p»)

y /OW

see Fig. 1. Their eigenvalues E„""and E„"' are ob-
viously the lower and upper bounds, respectively,
for the eigenvalues E„of 'U(x) which we look for.
The problem is then reduced to the computation of
these E„' and E„"'. Specifically, let us assume that
we want to compute the energy spectrum under
some E . A natural condition for b is that this
should lay somewhere in. the classically forbidden
region, i.e., b X, where X is the turning point
corresponding to E, that is the positive root of
the algebraic equation 'U(X) =E

To locate b more precisely we are helped by
qualitative estimates emerging from the %KB
approach. In fact, if one assumes that this ap-
proach works well enough around b, a simple re-
lationship between E„"~ and E„""exists, namely,

Euy E low P (Elow) (3.2)

where P (E) = exp(-2 f» [V(x) —E]~'dx). This rela-
tionship provides us with a practical way to com-
pute the suitable 5 in terms of the desired accura-
cy in the results.

In conclusion, E„" and E„"are the eigenvalues
of the problem

glow (x)
'U(x) 0~x ~ b

~(h), x&h,

~"'(x)= ~(x), 0-x-h
x&b,

(3.1)
FIG. 1. The anharmonic-osci11ator potential g (x) and

its two approximations 'U" (x) and 'U' "(x)
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one is interested mainly in obtaining approximate
but closed formulas for the eigenvalues. However,
in this paper we are more interested in the com-
putation of eigenvalues with high numerical accu-
racy and this would imply a rather large number
of perturbative corrections to generate the propa-
gators N and v. Another version is then suggested
which consists of partitioning [0, b] in several
(V, for example) elementary intervals. In each
interval the algorithm (2.7) with a preset (but
small) number of corrections is used. These
piecewise solutions are finally matched at the
mesh points to obtain the solution over the whole

[0,b]. This was our preferred version. The num-
ber of corrections has been fixed at two. The
step sizes of the elementary intervals are adjusted
automatically in terms of the desired accuracy, as
explained in Ref. 9.

IV. NUMERICAL RESULTS

Our computations have been carried out on a
computer (IBM 370/135) in double precision arith-
metic, i.e., with sixteen decimal figures in the
mantissa. We measure the accuracy in eigenval-
ues by p, which is the number of exact figures
after the decimal point (ADP figures). The
maximal p is limited by the word length of the
computer used. In fact, the computation in-
volves the difference "U(x) —E. Then, if p„ is the
integer part of log, a[sup ~'U(x) ~] on [0, b], the max-
imal p available is p =16-p„.

The program proceeds as follows:
(a) It reads the input values of m', X, &, n „,

E ~=E„, and p„,„, (this is the maximal number
of ADP figures achieved by the data of the tables
compared) All the. se are taken from Refs. 5 and

V, see below.
(b) Next, it computes b from the condition

P(E „}=10-",and p, .
(c) Now p ~=16-p„ is compared with p„„,.

There are three cases; p ~~p„,„,+2, p =p„,„,
+1, and p ~~p. „„,. The value of p is accordingly
set as pfzpQ$+2y PfzyQt+1, and p~~, respectively.

(d) The partition of [0, b] is chosen such as to en-
sure the computation of the eigenvalues with p ex-
act ADP figures.

(e) Now the program computes E„""and E„"'for
eachn=0, 1,2, .. . , n . Next, it examines how
many figures are identical in E,""and E„"'. In all
cases investigated, full coincidence has been ob-
served in all p ADP figures. This ensures that E„
searched for is correct within the same accuracy.

(f) The execution goes back to (a) with newer
parameters, if any.

In Table I the following tables of eigenvalues
have been checked out with our procedure: Table

III of Ref. 4 (m'=1, o.'=3, yg =5, and 29 values
for X between 0.0001 and 20000 i.e., a total of 174
eigenvalues); Table IV of Ref. 5 (m'=1, +=4,
n =3, and the same 29 values for X, i.e., 116
eigenvalues); Table II of Ref. 7 (m'=1, a. =2,
n =10, and five values for & between 0.01 and
100, i.e., 55 eigenvalues); Table IV of Ref. 7 (m~

= -1, + =2, g ~=10, and four values for ~ between
0.1 and 100, i.e., 44 eigenvalues). To preserve
the same scaling as in these tables, the eigenval-
ues of our Eq. (3.3) are finally divided by two
Note also that all eigenvalues are measured from
the bottom of the potential; this is particularly
relevant for the case m'= -1.

By the value assigned to p, our results are typi-
cally more accurate by two figures than the re-
sults of these tables. The only exception takes
place for the case X = 0.01 of Table II (Ref. 7) for
which p„,„,=15 while P ~=14. As for the practi-
cal efficiency of our procedure, note that the num-
ber N of steps of the partition whic h r esulted from
stage (d) is of about 30 for p = 5 and about 200 for
p =14. It does not depend significantly on the val-
ues of yg', n, or ~.' The central-processor-unit
(CPU) time to compute the propagators u and v

(with two corrections included) in each elementary
interval, namely 7'„, , is about 5 msec.

As for the computational effort per eigenvalue,
namely v, this is given by the product Mv'„, ,
where ~ is the number of iterations on energy re-
quired by the shooting procedure to locate each
eigenvalue with the desired precision. Typically,
the values of I areI=4 andI=7 for p=5 and p=14,
respectively. Thus the estimated values of v are
r =0.6 sec and r = 7 sec, respectively, and these
are in good agreement with the experimental tim-
ings.

From the total of 389 eigenvalues checked out,
41 have been found in error. Some of the errors
are manifestly misprints while the others are sys-
tematic, namely the ones corresponding to the
largest n and intermediate values of X in the case
of Table III, ' and to n= 2 (and, to some extent, also
to n = 4 and n = 5) in the cases of Tables II and IV.'
The smallness of the systematic errors, however,
suggests that these should be assigned to some
machine or programming restrictions, rather than
to the limitations of the very methods of these pap-
ers. In fact, they look as if they are simply the
result of the influence of the round-off errors
and/or of the presumably too early cut in the itera-
tion procedure (to save the computer time).

The results reported so far referred to only the
low-lying energy levels (up to n = 10, at most) but
it is equally interesting to see how our method
works for higher eigenvalues. To this aim we take
the case m'= 1, X = &, and + = 2, and a representa-
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TABLE I. The eigenvalnes of the anharmonic-oscillator potential'o(x)=m x +2Ax2~ of Tables
III, ~ IV, ~ II, " and IV, "which have been found in error by means of the piecewise perturbation
method developed in this paper.

E c En'

0.0005

2.0

3.0

4.0

5.0

10.0

20

50

100

100

200

300

300

400

400

500

500

1000

1000

3000

2.522 24
2.522 400 0

21.1187
21.186 913
23.352 3
23.352 140
25.033 2
25.032 586
26.425 4
26.424 756
31.294 8
31.294 638
37.106 7
37.106 512
46.537 1
46.536 946
55.269 1
55.268 900
40.989 3
40.989 128
65.664 9
65.664 627
72.640 0
72.639 679
53.856 0
53.855 778
78.037 4
78.037 082
57.854 5
57.854 304
82.500.5
82.500 218
61.1611
61.160853
98.069 1
98.068 677
72.695 9
72.695 661
95.623 2
95.622 827

Tabj.e IV~(~= 4, m = 1)

Table III~(+=3,m =1)

0.1

1.0

10

10

100

100

100

0.1

0.1

0.1

1.0

1,0

1.0

10

10

10

10

100

100

100

Table II"(n = 2, ~ 2 1)
2 3.138624 308 493 (3)

3.138624 308 498 11
2 5.179291 681 3 (12)

5.179291687 639
2 10.347 055 532 (8)

10.347 055 592 46
5 29.211484 84 (1)

29.211484 859 7
2 21.906 897 97 (2)

21.906 898 149 0
4 47.707 205 93 (3)

47.707 205 885 1
5 62.281 237 93 (3)

62.281 237 969 9

le IVb(o, =2, m2=-1)
1.634 85 (3)
1.635188 9
3.683 582 (3)
3.683 567 34
4.913652 (3)
4.913658 66
4.253 571 28 (4)
4.253 571 584 6
9.564 090 26 (3)
g, 564 090 201 3

12.594 620 94 (3)
12.594 620 980 4
9.894 742 35 (2)
9.894 742 494 7

15.522 245 (2)
15.522 450 18
21.736 540 08 (2)
21.736 540 040 6
28.442 236 44 (2)
28.442 236 467 2
21.694 679 67 (4)
21.694 679 888 0
47.392 920 07 (2)
47.392 920 009 0
61.921 91104 (2)
61.921 911086 0

0.01 4.881 2
4.881 617

~ Reference 5.
"Reference 7.' Upper entries original values, lower entries corrected values.

tive sample of eigenvalues with n ranging between
zero and 10000, a ease also investigated in Ref. 6.
For comparison we take the method of Banerjee
et al. ' and the standard WEB method; both are
known as very efficient and, in addition, can be
programmed easily. The three methods have been

used to compute the eigenvalues with seven signifi-
cant exact figures and the dependences of the com-
putation time per eigenvalue versus n are plotted
on Fig. 2. One sees that for the method of Ref. 6
this increases by three orders of magnitude from
n = 0 to n = 10000, while for our method by a factor
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exact figures only for n~ 800. The computational
effort per eigenvalue required by this method is,
however, somewhat larger than for our method.

One can thus conclude that our method exhibits
almost uniform efficiency for any value of n.
Moreover, in each subinterval of the n range, its
efficiency is approximately as high as that of the
best placed one from the other methods on that
subinter val.

V. CONCLUDING REMARKS

Q1—
I ~ I ~ I ll II

01 10 roy oooo &0000 ~

FIG. 2. Computer time per eigenvalue requi. red by
three methods (Banerjee et al. in Ref. 6, standard WKB,
and the method of this paper) to compute the eigenvalues
of the anharmonic-oscillator problem, Eq. (1.1), with
seven exact significant figures. All computations have
been carried out on an IBM 370/135 and the parameters
used in Eq. (1.1) were m =1, X=&, and a=2.

of approximately 3 only. Note also the linear be-
havior of the curve at large values of n for the
first method, in agreement with the qualitative
predictions emerging from the nature of that meth-
od. Figure 2 also shows that at small n (up to 60
or so) the method of Banerjee et al. is faster than
ours. One should, however, mention that what
makes this algorithm so fast in this test is the fact
that it explicitly takes advantage of the quartic
shape of anharmonicity. In contrast, our algo-
rithm remains the same for any type of anhar-
monicity. As for the %KB method, this is ex-
pected to yield accurate results only for large val-
ues of n. Indeed, it yields eigenvalues with seven

The chief point of this paper is the perturbation
procedure developed in Sec. II. The difference be-
tween such a procedure and standard perturbation
theory (i.e., perturbation theory as it is typically
used to solve problems of quantum mechanics)
consists in the domain for x on which they are ap-
plied. Indeed, the standard perturbation theory
calls for the whole domain of Eq. (2.1), while our
approach means essentially the application of the
perturbation formalism on a finite (properly se-
lected) subdomain of the equation. Because of

this, the convergence of the perturbation series,
which is often questionable in the case of the
standard perturbation theory, becomes safe in the
case of our formalism. This recommends our
procedure as an appropriate tool for accurate
mathematical investigation of a large class of
physical phenomena, namely the ones which are
described by linear second-order differential
equations.

Seen in this way, the accurate numerical compu-
tation of the eigenvalues of the one-dimensional
Schrodinger equation with the anharmonic-oscilla-
tor potential, which was our main concern in Secs.
III and IV above, should be taken as only one of the
possible applications of this piecewise perturbation.
procedure.
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