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Simple calculation of the level splitting
for the double-well potential
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It is shown that for the double-well potential three similarly constructed pairs of solu-
tions of the Schrodinger equation can be derived which are such that they can be linked
in regions of common validity. Evaluating the boundary conditions satisfied by the even
and odd wave functions at a minimum, several analogous transcendental equations are
obtained from which the splitting of (asymptotically degenerate) eigenvalues can be de-
duced.

I. INTRODUCTION

The nonrelativistic treatment of the double-mell

potential has attracted considerable interest in re-
cent years in view of its adaptability as a model for
illustrating some deep and nontrivial physical phe-
nomena which play a significant role in field-
theoretic or other considerations. Some of these
phenomena are symmetry breaking as a result of
degenerate vacuums, semiclassical tunnelings be-
tween these vacuums, which are generally treated
under the name of instantons, ' and the existence of
long-range order in statistical systems related to
the critical behavior at a phase transition. The
nonrelativistic treatment of the double-well poten-
tial has recently also been the subject of rigorous
mathematical investigations. '

One aspect of the double-well potential which is
generally not particularly easy to deal with is the
explicit calculation of the splitting of the asymp-
totically degenerate energy levels. The root of this
difficulty is that this splitting is exponentially
small, representing effectively a large-distance ef-
fect, and thus can be obtained by perturbation
theory at best indirectly.

In the following we develop a straightforward
method for estimating the splitting of asymptoti-
cally degenerate energy levels. The method is for-
mulated along the pattern of a previous investiga-
tion of the Mathieu equation. The present case,
however, does not possess the exceptional simplici-
ty of the corresponding considerations of the
Mathieu equation. In particular we demonstrate
that three pairs of eigensolutions of the Schrodin-
ger equation can be derived which all belong to one
and the same expansion of the eigenvalue. The
solutions can be linked in regions where they over-

lap and the physically relevant even and odd solu-
tions can be constructed. By continuing the latter
to the domain of a minimum of the potential and

applying the appropriate boundary conditions, cer-
tain transcendental equations are obtained from
which the splitting can be deduced.

The level splitting for the double-well potential
has also been considered by Damburg and Propin.
Compared with our approach their procedure is
much less systematic, and, in particular, since they
do not employ the nonintegral parameter q that we
are using (which turns out to be a particularly con-
venient quantity to use here) their calculations are
cumbersome.

II. THE FIRST PAIR OF SOLUTIONS

%e consider the equation

P"+ [A, —V(x)]/=0

fol

V(x)= —ax (b x)(b +x),—

where a, b ~ 0. The minima of V(x) are located at
x =xo ——+b/2' . The approximate behavior of
the eigenvalues A, can be estimated by expanding
V(x) around xo. The potential is then approxi-
mately harmonic and we obtain

A,=V(xo)+ —,qh

where h = [2V' '(xz)]'~, and q is approximately
an odd integer (i.e., not exactly because of the fin-
ite height of the central hump of the potential or
the finiteness of xo). We write

A, = V(xo)+ —,qh +5,
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where 6 is a remainder to be determined by pertur-
bation theory.

Inserting (3) into (1) and setting
A (x)=, exp ——,qh . (10)

1 i q
& dx

z(x)'~ z x

z (x)= [V(x)—V(xo)]'~z

we obtain

P"+[ , qh +—b, z(x—)]/=0 .

Setting

Q(x)=p(x)exp + f z(x)dx

we find that P satisfies

P"+2z(x)P'+[ , qh +b—+z'(x)]/=0.

(4)

(7)

The higher-order contributions to the solution
and its appropriate eigenvalue (this is given in Ref.
7) can be obtained in our standard way by using
the relation &q Aq+j JAq+j %e do not go into
further details here. %e thus obtain the solutions

P~ (x)=A (x) exp + f z (x)dx

Pq (x)=A(x) exp —f z(x)dx

where A (x)=As(x)+O(1/li) and A(x) =A ( —x).
These solutions are valid in the domains

We observe that one of the solutions (6) can be ob-

tained from the other by changing the sign of x
throughout. It is therefore sufficient to consider
only the upper of equations (7). Since

z(x)= —,Ii (x —xo)+O((x —xo) }

in approaching xo, we have

ix+xo i
&O(1/h),

which clearly exclude the neighborhoods of +xo
and ensure that in (7)

~

P"
( &&

~

2z (x)P'
~

as in

the well-known WKB procedure. Of course,
z(x}=—,h (x+xo) +O{(x+xo) } only at the lower

boundaries of these domains.

III. THE SECOND AND THIRD PAIRS
OF SOLUTIONS

where

4z(x) d 2z'(x)
h2 d~ h2

The solution A~ of &s"A~ =0 is (apart from an
overall constant)

We now derive two further pairs of solutions;
these involve Hermite functions, and are valid
around the minima of the potential.

In the first of the two equations (7) we change
the independent variable to z(x). The equation
then becomes

1 V'(x) d P V, V"(x) (V'(x)) dP i &z &
V'(x)+ V'x+

4 z dz 2z 4z dz ' 2z
+ —,qh +6+ (12)

Next we change the variable to

w(x)= —z(x) .2
h

(13)

I

overall constant)

B (w(x))= 2'~+"~ I {—,(q+1))

Then near xo where w =h(x —xo)+O{(x—xo) }
Eq. (12) becomes

)(H ~&+i~yp(w), (16)

8 s '(w)P(w)=O
h

(14)

where

d2&' '= —2 —2w —(q+1) .
dw

(15)

The solution Bs of &s 'Bs =0 is (apart from an

where H*(w) =( i) H (iw—) is essentially a Her-
mite function of an imaginary variable, and the
other factors have been inserted for convenience.
Again the higher-order contributions to the solu-
tion P and its appropriate eigenvalue can be ob-
tained in our standard way by using the recurrence
relation of Hermite functions and the relation

q Pq +j J+q +j Vfe thus obtain the solution
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x
fi)(w(x))=B(w(x))exp + f z(x)dx

I

where

B(w(x))=Bs(w(x))+0 1

h

(17)
where

C{w(—x))=C (w( —x))+0—1q h

valid for

is valid for ~x —xp &0(1/h). We also obtain an
associated solution fz by changing the sign of x
throughout. Thus

gi) {w(x))=B(w (x)) exp —f z(x)dx

where B(w(x)) =B(w( —x)) is valid for

1
ix+xp i

&0—

1ix+xp
I
&0

and the associated solution

4c(w(+x)}=C(w(+x))
X

X exp —f z(x)dx

where C(w(+x))=C(w( —x)) valid for

1
ix —x() i

&0—

(23)

We can find another solution of (12) by chang-
ing the independent variable to

2
w( —x)=—z( —x) .

h

Then &q ' is replaced by

d2&( '= —2 +2w —(q —1)
dw

(20)

The two pairs of solutions defined above, one for
the neighborhood of each minimum of the poten-
tial, have been constructed from the standard solu-
tion of Hermite s equation and its linearly indepen-
dent partner. The coefficients inserted in (16) and
(21) are such that B~ and C» satisfy the same re-
currence relation.

and the solution of &q 'Cq ——0 is

H(q —i)n(
C~{w(—x)}= " 'l ( —,(q+3))

Proceeding as before we arrive at the solution

X
gc(w( —x))=C(w( —x)) exp + f z(x)dx

(21)

(22)

IV. LINKAGE OF THE SOLUTIONS

We now demonstrate the matching of our solu-
tions in domains where they overlap.

ExPanding gz(x} and 17&(x) close to xp, we ob-
tain

exp[ 4h (x —xp) ] ),2 2/
' 1/2 i 2 2

h (x —x, ) s( +1)/2 e

' 1/2

Qg(x)= (x —x()) exp[ ——,h (x —x()) ]e
2 (q —1)/2 l 2 +h Xo /4

h
(25)

Expanding Pi)(w(x)) and fc(w ( —x)) around xp and using the asymptotic relations

2' +" 1(—,(q+1))
w(s+ ()/&

(q —1)/2
C~(w) =

2" ""f'(—( +3))

1+0 1

w

P

1+0 1
(26}

we obtain
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2"+""l{4{q+1» -s" 'i4
ys{w(x)}- '

e ' exp[ —,h2(x —xp) ],
(h (x —xp))'~+"

(h (x —xp))' " '
s&x, 'i4

yc{w(x)}—,e exp[ —4h (x —xp) ] .
2' " &(—(q+3))

(27)

Thus in their common domains of validity

Pg ——ygz or A =yB

and

A=yfc «A=yC

(78)

(29)

2's+""r(-,'(q+3))
1+0

I {q+})/2 I

(31)

and

I (q —})/2 1y-, 1+0
~~41.{ (q+1}}

(30)

V. THE SPLITTING OF EIGENVALUES

The even and odd solutions 1(+(x) are most easi-
ly defined in terms of solutions which are pure
functions of x. Thus we write

P+(x)=A (x) exp + f z(x}dx +A(x)exp —f z(x)dx

=yB(w{x))exp + f z(x)dx +yC(w(x))exp —f z(x)dx (32)

on using (28)—(31). The latter of expressions (32) represents the continuation of the defining expression into
the region of x =xp. We now require the solutions g+ to satisfy the boundary conditions

(xp) =0, Bg (x)
Bx Xp

=—1 P+(xp) =+1 . (33)

These conditions are such that the Wronskian of g, f+ is + 1.
To leading order in h the first two conditions imply

and

yBq(0) /g2g 2/2=e
yCq(0)

y B&(w)
d

dW h xp2/2=—e

y Cs(w)
d

Inserting the expressions

n'~ n , (q+1)) sin( , ir(q ——1))—
Bq(0)=—, , Cq(0) =

&( —,(q+3))

and

~1/2

1'( —,(q +3))1 ( ——,(q —3))

(35)

(36)

BCq

BW p

R = (2n.) cos( , n(q —1)), —.
Bw

(2~)'"
&( —,(q +3))&(——,(q —1))

(37)
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(R meaning "real part of"), we arrive at the
expressions

tan[(m/4)(q+1)] ~
'

hqe

cot[(qr/4)(q+1)1 2 I-( —,( +1))
(38)

q —hx /2
2 h'e

q —qp~+2
r(-,' (q, +1))

(39)

the upper sign referring to P with qp ——3, 7, 11,
. . . and the lower sign to g+ with qp ——1, S, 9,

Repeating these calculations for the last two
of the boundary conditions (33), we again arrive at
(39), this time, however, with qp= 1, 5, 9, . . . for

where tan applies in the case of f and cot in the
case of g+. Expanding the tangent about qp ——3, 7,
11, . . . and the cotangent about qp ——1, 5, 9, . . .
and retaining only the first nonvanishing term we
obtain aA,

A(q)=A(qp)+(q —qp)
Bq qo

(40)

From the eigenvalue expansion (3) it can be seen

that (BA,/Bq)» is positive. Hence for any qp the

level of the symmetric state lies below that of the
antisymmetric state, the splitting being to leading
order in h:

- 1/2 q P2& 2/t2
2 h 'e "'

BA,

1 ( —,(qp+1)) ~q qp

and qp
——3, 7, 11, . . . for f+ M. oreover, an

additional term arising from +1 on the right-hand
side of the last two conditions (33) and having a
lower power of h is neglected. Thus, the result
(39) holds for all values of qp, the upper sign refer-
ring to g, and the lower to g+.

In order to obtain the corresponding energy
eigenvalues we expand A,(q) of Eq. (3) in the neigh-

borhood of qp. Then
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