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Bohr-Sommerfeld quantization with the effective action variable
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The effective action variable with its attendant modified potential is applied herein to
the bound state, for which it is hypothesized that the Bohr-Sommerfeld whole-integer

quantization is correct. Results for various one-dimensional potentials support this hy-

pothesis. Finite turning points for bound-state effective action integrands do not exist.
Also, it is shown that the modified potential for bound states is not unique.

I. INTRODUCTION

Old quantum theory was discarded because the
Bohr-Sommerfeld quantization, Nh, of the classical
action variable was inconsistent with observation.
The semiclassical quantization of the WKB ap-
proximation, which includes the additional half-
integer term —,It as a first correction, remains

nonetheless limited by its asymptotic character.
Recently, the phase-integral approximation has
been modified by incorporating a first-principles
modified potential whose expansion to various ord-
ers has been investigated. ' In one dimension x,
this modified potential U is determina1 from the

potential V by the nonlinear differential equation'2

fP U" Sfi
'+8P E-U+32p E-U = V(x),

where E is the energy, A is Planck's constant, and

p is the mass. For V(x) remaining finite for finite
x, the boundary condition for Eq. (1) for bound
states is that U(x) &E for all finite x and that
U(x)~E asymptotically from below as x~+ ao.
Equation (1) had been previously derived' by sub-

stituting for the wave function P an ansatz of the
form

z 2pf(x)=[E—U(x)] ' exp +i f [E—U(x')]

' 1/2

dx

into the one-dimensional time-independent
Schrodinger equation in order to generate an equa-
tion for our new unknown function U(x). An ef-
fective action variable J is defined as follows:

J=f I2p[E —U(x)]I '~ dx, (2)

where the integral path is over one period (either
libration or rotation). An effective momentum p is
defined by the integrand of Eq. (2)—i.e.,
p =[2p(E U)]

The objectives of this exposition are three in
number. The first objective is to extend the effec-
tive action variable to bound states (libration). An
initial application of the effective action variable to
cases of rotation has already been given where for
Bloch quantization the effective action variable for
periodic boundary conditions renders accurate re-
sults. ' The second objective is to examine the hy-

I

pothesis that the Bohr-Sommerfeld whole-integer
quantization is correct, that is J=Nb where E is
specified to be the ¹henergy eigenvalue (ground
level E is specified by N =1) of the potential. And
the third objective is to demonstrate that the modi-
fied potential is not necessarily unique.

From the boundary conditions for Eq. (1) for
V(x) remaining finite for finite x, the existence of
finite turning points of the integrand of Eq. (2)
(i.e., p =0) are precluded in principle for a com-
plete solution of the modified potential. Even for
simple one-dimensional potentials, closed-form
solutions for the modified potential are regrettably
not known. Asymptotic series expansions of the
modified potential, which were successful when ap-
plied to a nearly free electron in a periodic poten-
tial, are degraded in application to bound states,
especially for ground states. Furthermore, any ad-
dition of the general solutions to the particular
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solution for the expansion of the modified poten-
tial (to demonstrate the nonuniqueness of the
modified potential) necessitates that the consequent
effective action variable be evaluated numerically
[this numerical procedure is not competitive with a
Runge-Kutta solution of Eq. (1}]. Nevertheless, we

report but do not show herein that the results for
these series expansions with Bohr-Sommerfeld

whole-integer quantization do compare with WKB
results with half-integer quantization.

In Sec. II, we present our analyses. The sup-
porting numerical analysis is reported in a supple-
ment. In Sec. III, we present a discussion that in-
cludes both a development of a modified Hamil-
ton-Jacobi representation and a process to recover
the Schrodinger wave equation.

II. ANALYSES

%(x)=[E—U(x)] '~ sin I [E—U(x')]2p

Since the wave function in one dimension is real (except for an unimportant phase factor), we may
choose a trigonometric representation for our ansatz such that

1/2

dx

in order that %(x)~0 for bound states as x~+ ao. When this trigonometric ansatz is substituted into the
time-independent Schrodinger equation, we still obtain Eq. (1). Our trigonometric ansatz will have %(x)~0
at x~ 00 if for energy eigenvalues E for the potential V(x) we have that

1/2

dx =Km; X=1,2, 3,. . .

which is the Bohr-Sommerfeld whole-integer
quantization. We now demonstrate that this
Bohr-Sommerfeld whole-integer quantization is
consistent with our nonunique solutions to Eq. (1)
for the modified potential U(x).

In the absence of closed-form solutions for the
modified potential and the degradation of asymp-
totic series expansions for bound-state modified po-
tentials, we herein numerically substantiate the
Bohr-Sommerfeld whole-integer quantization hy-
pothesis by applying the Runge-Kutta method to a
transformation of Eq. (1}in order to compute
nonunique modified potentials. We first test the
quantization hypothesis on the one-dimensional
harmonic oscillator. This oscillator is a most
stringent test for Bohr-Sommerfeld whole-integer
quantization since the WKB half-integer quantiza-
tion, which explicitly has its quantization in exact
opposition, fii2, with respect to the mantissa for
modulo h vis-a-vis the Bohr-Sommerfeld quantiza-
tion, fortuitously renders exact results. To show
that the harmonic oscillator is not a unique case,
we apply this numerica1 procedure to other one-
dimensional potentials including a symmetric bi-
linear potential, a quartic potential, and a nonsym-
metric Morse potential. This numerical analysis is
developed in the supplement. 3 Convergence to

whole-integer quantization of the effective action
variable for various nonunique modified potentials
extends down to the ground state. The relative er-
ror of this numerical process, which has been
driven to the limits of our machine, is of the order
of 10 . Furthermore, the rate of convergence,
until limited by rnachine round-off, is consistent
with the expected rate in accordance with Runge-
Kutta step size and supports Richardson extrapola-
tion. For modified potentials that are numerically
derived by the Runge-Kutta method, finite turning
points for the effective action integrand for bound
states do not exist. This condition removes any
need for the traditional encumbrance associated
with turning points such as connecting formulas,
Stoke's phenomenon, and contour path selection.
In all cases investigated, U(x) numerically ap-
proaches E asymptotically from below both as
x~+ ~ in a manner which suggests critical-
point behavior of the stable-node class and as
x~ —(x) in a manner which suggests unstable-
node behavior. This stable-node behavior of U
may be substantiated for x~ 00 by considering
that for sufficiently large x in the classically for-
bidden region [i.e., V(x) &E], there exists an xp (x
with xo also in the classically forbidden region
such that we may approximate U(x) by
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U=E E—[V(x) —E]exp —f 4 [V(x') —E]
x 2p

&0 g2

' 1/2

dx

where E is some arbitrary positive constant if (for
sufficiency only) (d/dx)lnV(x)-O(l/x). This ap-
proximation improves as xo~ Oo. The analogy for
x —+ —00 is similar.

Three sample numerical modified potentials
U(x), which are developed in the supplement, for
the ground-state harmonic oscillator
V(x) =@co x /2 are exhibited in Fig. 1. We report
port in the supplement but do not exhibit on Fig.
1 that nonsymmetric modified potentials [i.e.,
u'(0)+0] which also rendered the whole-integer

quantization of Eq. (2) were also generated for the
ground state of the harmonic oscillator. The
behavior of the modified potential is exhibited for
the lowest three energy eigenvalues of the harmon-
ic oscillator in Fig. 2. Note the nodal behavior of
Vasx~+~ in Figs. 1 and 2.

By numerical analysis in the supplement, it is
also shown that the effective action variable has
nearly the same functional dependence upon E as
that for the classical action variable.

III. DISCUSSION

The convergence of the numerical results for the
various cases and the consistent rate of conver-

I

gence as a function of Runge-Kutta step size
strongly support both the hypothesis that the
whole-integer Bohr-Sommerfeld quantization is
correct for the effective action variable and the
fact that the modified potential is not unique.

The modified potential method has been applied
to wave propagation where a rigorous theory of
geometric ray propagation, which is innately
dependent upon wave number by an effective index
of refraction, has been developed for continuous
media from first principles. Essentially this appli-
cation has extended the Hamilton-Jacobi theory to
the domain of propagation of waves of finite
wavelength. For WKB quantization it is reason-
able to attribute the missing half-wavelength to ex-

ponential penetration by the wave into the classical
forbidden region beyond the turning point in this
semiclassical theory. In the case of a known modi-
fied potential the correct orbital trajectory (or ray
path with its associated known effective index of
refraction) is also known. Thus the need for com-
pensation for penetration beyond the turning
points, which have receded from finite x space for
known modified potentials if V(x) remains finite
for finite x, does not exist. Consequently the
Bohr-Sommerfeld quantization stands.
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FIG. 1. Some of the various modified potentials for
the ground state of the harmonic oscillator are
represented by solid lines. Label A. identifies the curve
that is generated from the set of conditions that
U(0) =0 and U'(0) =0; B, from U(0) =0.25fico and
U'(0) =0; and C, from U(0) =—0.25Aco and U'(0) =0.
The actual potential for the harmonic oscillator is
represented by the dashed curve.

0
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FIG. 2. Modified potentials for case A [generated
from the set of conditions that U(0) =0 and U'(0) =0]
for the ground state and first two excited states of the
harmonic oscillator are represented by the solid lines.
The actual potential for the harmonic oscillator is
represented by the dashed curve.
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Consistent with the correspondence principle, we

see by Eq. (1) that if p~ ao, E~ oo, or Ii ~0, then
U —+ V. Equation (1) makes the adjustment in one
dimension so that the Hamilton-Jacobi theory may
be extended into the quantum domain by using the
modified potential as the continuation of potential.
Here instead of stressing the wave properties of the
particle and solving the wave equation, we adjust
the potential for the wave character of the ideal
but unrealizable infinitesimal test charge (i.e., a
generalized charge consistent with the particular
field) used for establishing the field associated with
the potential. This procedure ensures that the test
charge itself in the infinitesimal limit would not
distort the field. As this infinitesimal limit can-
not be realized, workers have extrapolated the par-
ticular field from measurements with small but
finite test charges. The modified potential corrects
for the errors innate to this extrapolation.

Bohr-Sommerfeld quantization is limited to
periodic or multiply periodic systems. The modi-
fied potential is not so limited. However, determi-
nation of the consequent stationary trajectories
must include the effects of the Heisenberg uncer-
tainty principle at the end points. Had we been
somehow given the initial conditions for both the
effective momentum and its derivative at a posi-
tion anywhere along the trajectory (or orbit) in ef-
fective phase space (i.e., space formed by effective
momentum coordinates and spatial coordinates},
we would have determined the modified potential
as an initial value problem so that Huygens's con-
struction of wave fronts (albeit of one spatial di-
mension} could be achieved in the immediate
neighborhood (for Huygens's construction of wave
fronts in three dimensions with an effective index
of refraction, see Ref. 7) and the effective momen-
tum could be determined at all other points of the
trajectory (or orbit). For example, case A of Fig. 1

represents the initial conditions U(0) =0 and
U'(0) =0 for the ground state of the harmonic os-
cillator.

We can recover the Schrodinger wave function 1(

through the ansatz. For the ground state of the
harmonic oscillator, we could choose U to be case
A [generated from the set of conditions that
U(0) =0 and U'(0) =0] of Fig. 1. If U is only
known approximately, then an approximation P for
f may be expressed for the ground state as follows:

r

P=Ci(E —U} '~ cos I —[2p(E —U)]'~ dy0

where C~ is the ground-state normalization. The

actual ground-state wave function f is then ex-
pressed as

—prox 2

2A
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FIG. 3. The fractional error for the recovered wave
function of the ground state of the harmonic oscillator
is exhibited on semilogarithmic format for modified po-
tentials derived with a Runge-Kutta step size of 0.001
X (&/@co)' . The leading contribution to the fractional
error is due to machine round-off.

Let the normalization be Ci ——co ~ iii '~~ for the
ground state. Then P(0)=g(0). For a Runge-
Kutta step size of 0.001 (A'/@co)'~, the two frac-
tional errors [P(x)—P(x)]/f(0) and

[P(x)—P(x)]/f(x) are exhibited semilogarithmi-
cally as a function of

l
x

l
on Fig. 3. The excel-

lent accuracy through the WKB turning point and
well out into the tail may be compared to the
WKB results of Froman and Mrazek, 9 which blow

up at the WEB turning points.
Let us briefly discuss the cost for obtaining a

bound-state energy eigenvalue. At first glance, the
cost here appears to be prohibitive relative to tradi-
tional means where in order to determine the ener-

gy eigenvalue of V one must solve a second-order
linear differential equation (i.e., the Schrodinger
equation) subject to certain boundary conditions.
Here we solve a second-order nonlinear differential
equation [i.e., Eq. (1)] subject to similar boundary
conditions and subsequently the solution to Eq. (1)
must be applied to Eq. (2} in order to determine
the energy eigenvalue. However, there are two cir-
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cumstances that alleviate this apparent prohibitive
cost. First, the nodal behavior of U(x) as x~+ 0o

allows us to satisfy the boundary conditions of Eq.
(1) trivially (the Schrodinger wave function does
not enjoy a similar critical-point behavior that
trivially satisfies its boundary conditions). And
second, as the effective action variable nearly mim-

ics the behavior of the classical action variable as a
function of energy, we may easily converge to the

energy eigenvalue by employing shooting tech-
niques to Eq. (2). In actual practice when numeri-

cal techniques are needed for one-dimensional wave
mechanics, our technique as described herein be-
comes competitive.

For the record, the quantization advanced herein
differs from Dunham's whole-integer quantiza-
tion'

f ghJS&dx =mh (m =0, 1,2, . . .),
l 2K ~

p

where SJ is an element of the WKB asymptotic
series: So ——[2p(E —V)]'~, etc. Note that
Dunham's quantization is related to the finite
WKB turning points. The evaluation of fhSI dx

gives the half-integer quantization, which mani-
fests the usual WKB amplitude factor, and higher
odd-j terms vanish" when integrated around the
closed contour. Thus Dunham's asymptotic quant-
ization becomes the usual"

00f gh IS2t.dx =(m 4- —, )h (m =0, 1,2. . . ) .
l 2' J p

Had we so chosen to manifest the amplitude factor
of our ansatz for P of Ref. 2 as a logarithmic term
in the exponent in order to develop our analogy to
Dunham, then Eq. (1) would remain valid and our
analogous quantization would become a half-
integer quantization expressed as follows:

[2p(E —U)]'~ + ln[2p—(E —U)]'~z dx =(N ——, )h (N =1,2, 3, . . .),

where the branch points are x =+ Oo and where the logarithmic term would contribute the half-integer term.
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