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Relativistic Newtonian mechanics for particles with spin
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Conditions for Lorentz invariance are derived for Newtonian equations of motion for
particles with positive mass and nonzero spin. Additional equations are obtained for
two-particle forces when it is assumed that sums of two-particle forces satisfy the
Lorentz-invariance conditions for three-particle systems. These imply that the two-

particle forces satisfy separately the nonlinear and linear parts of the Lorentz-invariance

conditions. Lorentz transformations justified by the linear parts are used to obtain the

general forms of the two-particle forces, as functions of the momentum of the source par-

ticle, in terms of the forces in the rest frame of the source particle. These have to satisfy
the remaining nonlinear equations.

INTRODUCTION

One of the more interesting characteristics of re-
'i

lativistic Newtonian mechanics is that in a system
of more than two particles the force on a particle
generally cannot be the sum of two-particle forces.
The reason is that the conditions for Lorentz in-
variance of Newtonian equations of motion are
nonlinear equations for the forces. ' As soon as
these conditions were formulated' it was evident
that the nonlinearity makes it impossible to use
sums of two-particle forces, but a proof was pub-
lished only recently. The proof' was for particles
with positive mass and zero spin. It assumed that
the two-particle forces satisfy the Lorentz-
invariance conditions for systems of two particles
and that sums of these two-particle forces satisfy
the Lorentz-invariance conditions for systems of
three particles. It showed that then a particle can
be accelerated only by forces from particles that do
not accelerate.

When one or more of the particles has zero
mass, this statement is typically but not generally
true. There are exceptional cases where these as-

sumptions allow two-particle forces with accelera-
tion of both particles; they are based on equations
of motion for the momenta and the fact that for
particles with zero mass there are more variables
for momenta than for velocities.

Are there any exceptions for particles with spin?
Are there any two-particle forces that escape this
implication of the nonlinearity so that forces in
systems of more than two particles can be sums of

these two-particle forces? As before, exceptions of
only a technical nature, that are not particularly
meaningful physically, might be interesting because
they would indicate what could and could not be
proved in more sophisticated formulations. We
shall find there are exceptions but they appear to
be limited.

Here we first formulate relativistic Newtonian
mechanics for particles with positive mass and
nonzero spin. Leaving aside more difficult prob-
lems involving equations of motion for particles
with spin, we just consider Newtonian equations
of motion for a simple but adequate choice of posi-
tion and spin variables, and find the conditions for
these equations of motion to the Lorentz invariant,
assuming altogether that they are Poincare invari-
ant.

Then we find the equations two-particle forces
have to satisfy, in addition to the Lorentz-
invariance conditions for the two-particle systems,
if sums of these two-particle forces are to satisfy
the Lorentz-invariance conditions for three-particle
systems. These imply the two-particle forces satis-

fy separately the nonlinear and linear parts of the
Lorentz-invariance conditions. The linear parts are
the simplified Lorentz-invariance conditions we
would have for the force on one particle in a two-

particle system if there were no force on the other
particle. By making a Lorentz transformation
from the rest frame of the other particle—
calculated according to the simplified Lorentz-
invariance conditions, as if there were no force on
the other particle —we obtain the general forms of
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the two-particle forces, as functions of the momen-
tum of the other particle, in terms of the forces in
the rest frame of the other particle. These have to
satisfy the remaining nonlinear equations. The sit-
uation that results is summarized at the end of the
paper. Some limited solutions of the nonlinear
equations will be found in a subsequent paper.

(1.3)

w"=(u "0+m, ) '(u" s")u"+m„s", (1.4)

We choose units such that c=1.
The spin variables we use are those for which

the Pauli-Liubanski four-vectors are '

I. EQUATIONS OF MOTION

u n [(un)2+ m 2]1/2 (1.2)

Consider a classical-mechanical system of N par-
ticles described by positions x", velocities
v"=dx "/dt, and spins s", for n=1,2, . . . , ¹ We
assume each particle has positive mass m„and use

relativistic momenta

u"=m„v"/[1 —( v") ]'

so that v"=u"/u"0, with

so that

s"=m„'[w"—(tt "0+m„) 'w "11u"] . (1.5)

They correspond to the ordinary quantum-
mechanical spin operators that have angular-
momentum commutation relations and commute
with the position and momentum operators. We
assume the length

i
s "i is fixed, so only the direc-

tion of s" is variable.
We consider equations of motion of the form

n/dt Fn( 1 2 N 1 2 N 1xpxp ~ 1 ~ p x) u pup ~ ~ ~ pu ps ps p ~ ~ ~ ps
~n ~1 ~2 ~N ~S1 ~S2 ~&N)

(1.6)

(1.7)

for n = 1,2, . . . , N, where t is ordinary time and F"
and G" are functions of the positions, momenta,
and spins of the different particles at one time. To
keep

i
s "i fixed we must have

~S,GN p

I

has coordinates

x "(t)=(t, x"(t))

and

x'"(t')=(t', x '"(t'))

(2 2)

(2.3)

for n= 1,2, . . . , N We make .the equations of mo-
tion invariant for time translations by not letting
F" or G" depend explicitly on time, for space
translations by letting F" and 6" depend on the po-
sitions only through the relative positions x"—x,
and for rotations by letting F" and G" be vector
functions (that rotate when x',x, . . . , x,
u', u, . . . , u, s', s, . . . , s rotate). Lorentz in-

variance remains to be considered.

in the two reference frames, which are related by

x'"(t') =Ax "(t) . (2.4}

It follows that

u'"(t') =Au "(t) (2.5)

for the energy-momentum four-vector
u"=(u "O, u"). We assume the four-vector transfor-
mation

II. CONDITIONS FOR LORENTZ INVARIANCE w'n(t'} =Aw "(t) (2.6)

x'=Ax . (2.1)

Consider a Lorentz transformation from time-
space coordinates x=(t, x} to x'=(t', x '). Let A be
the four-by-four matrix for this transformation of
four-vector coordinates, so that

also for the Pauli-Lubanski four-vector
w"= (u1 "0,w").

The combination of position and spin variables
we use is not one of those described by Pryce for
which

We assume a point on the world line of a particle x')& u"+ s (2.7)
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is the particle's total angular momentum cor-
responding to the quantum-mechanical operator
that is the generator of unitary transformations of
the particle's wave function for rotations. For
that, the spin variables we use would have to be
paired with the Newton-Wigner position' which
does not transform as part of a four-vector. 10, 11

We assume the equations of motion (1.6) and
(1.7) are Lorentz invariant. This means that after
a Lorentz transformation the equations of motion
are the same, with the same functions F" and 0",
in terms of the variables of the new reference

frame at one time in that frame.
We assume the world line of every particle and

the particle's spin at every point on the world line
are determined by the equations of motion from
the initial values of the positions, momenta, and
spins. Then x", u'", s '" at t'=0 are functions of
x", u", s" at t=0. They are also functions of the
parameters of the Lorentz transformation, the
velocity P of the new frame relative to the old.
We use a bracket-generator symbol [,K] for the
derivative with respect to P at P =0, so to first
order in P we write

l~&1 ~&2 ~iN ~i1 ~i2 ~ ~N ~ ~1 ~ i2 ~g~1 ~2 ~N ~1 ~2 ~N ~1 ~2 ~N)X s X p ~ ~ s X s U s u p ~ ~ p u s S f S p ~ ~ ~ p S J X ) X p ~ ~ ~ p X ) u ) u p ~ ~ ~ p u s S j S p ~ ~ ~ p S

n =1j=1

for the change in a function f of the position, momentum, and spin variables from the old frame at i=0 to
the new frame at t'=0. The building blocks are the particular cases where f is just one of the variables
From our assumptions of four-vector transformations it follows that

[x~J~Kk ]=x ko ~ =x ku /u

[u",,Kk] =x "kdu", /dt 5;ku "p x "—kI'"; 5——,ku "o ~—
[u p,Kk]=x kdu p/dr —u k =x ku 'F /u p

—u

[l8 J,Kk]=x kdw J'/dr —5Jkw p,

[ "o Kk]=x "kdip "o/dt ui"k-
[s"J/Kk]=x"kds"J/dr+(u "p+mg) 'u "Js"k—(u "p+mg) '(u" s")5Jk

=x"kG"J+(u p+m ) u Js k
—(u p+m~) (u s )5Jk

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

for n=1,2, . . . , N and j,k=1,2,3. In each case the first term is the effect of changing from t=O to t'=0
which on the world line of particle n means t =P x"

Altogether we assume the equations of motion are Poincare invariant. This means the Lorentz transfor-
mations must fit in with the other transformations of the Poincare group. Using bracket-generator symbols
[ gI] and [,P] for the time and space translations, ' and using the Lie bracket relations of the Poincare
group, ' we get

[[u" Hl Kkl=[[u" Kk] If]—[u" [Kk ~]]=[[u" Kk] H] —[u",. Pk]

and similarly

(2.15)

(2.16)

Since the momenta and spins are invariant for space translations we have

(2.17)

(2.18)

Then for the changes Lorentz transformations make in the time derivatives of the momenta and spins we
get
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[du "1/dt, Ek] =d [u'J,Ek]/dt,

[ds "J/dt, Kk] =d [s"J,Ek]/dt

(2.19)

(2.20)

which we can calculate by taking the time derivatives of (2.10) and (2.14).
Using the latter to transform the left sides of the equations of motion, and using the former equations

(2.9), (2.10), and (2.14) to transform the right sides as in (2.8), and requiring that the changes are the same
for both sides, we find that the conditions for Lorentz invariance of the equations of motion (1.6) and (1.7)
are

g g (x" x„—)(E,BF" /Bu, .+G tBF" /Bs, )+ g g (x" —x )(u, /u )BE"./Bx
m =1I=1 m =11=1

+ g u,BE",/Bu,
m=1

N 3

+ g (u~p+m ) ' (u s )BF"1/Bs k
—ps ku tBF"JIBs~t

m=1 1=1

(2.21)

for n=1,2, . . . , N and j,k=1,2,3.

+E"1
u

"k/u "p—5jk(u" F")/u "p=o,

g g (x" —x „)(F,BG" /Bu, +G,BG" /Bs )+ g g (x" —x )(u, /u )BG" /Bx
m =11=1 m =11=1

3

+ g u,BG",/Bu, + g (u, +m )-' (u's )BG",/Bs, —ps, u, BG",/Bs,
m=1 m=1 E=1

+G"Ju "klu "p+F"Js"k/(u "p+m„)+G"ku"/J(
'u+pm) —u "Js"k(u" F")/u "p(u "p+m„)

—51k(s" F")/(u "p+m„)+5jk(u" s")(u"'F )/u p(u p+m„) —5Jk(u 'G )/(u p+m )=0 (2.22)

The fixed values of the
~

s "~ and the conditions (1.8)
that keep them fixed are consistent with Lorentz in-
variance. Lorentz transformations do not change

~

s "~

because

I

tions for two-particle and three-particle systems,
we find that

/

w"
f

z —(ip'p)i=m„~
[
s'

/

III. TWO-PARTICLE FORCES IN
MANY-PARTICLE SYSTEMS

3

g (E;BF""/Bu",+G",BF""/Bs",)=O,
/=1

3

g (E,BG""/Bu",+G",BG""/Bs",)=O
1=1

(3.2)

Suppose the force on each particle is a sum of
Poincare-covariant two-particle forces, so that

N
~n ~ ~nrem ~n ~r ~n ~n ~r ~r

r=1re
N~n ~ ~nrem ~n ~r ~n ~n ~r ~r

r=1
r+n

(3.1)

where F"',6"' and F,G are rotational-vector
functions that satisfy the Lorentz-invariance condi-
tions (2.21) and (2.22) for a system of two parti-
cles. By comparing the Lorentz-invariance condi-

for r+n, s+r, and sQn. By considering three-
particle systems in which particles n and s cause
identical forces, and assuming F and 6 are con-
tinuous functions of x',u', s', we conclude that
these equations (3.2) hold also for s =n, so they
hold for all rQn and sQr.

Then F"' and 6""satisfy separately the nonlinear
and linear parts of the Lorentz-invariance condi-
tions (2.21) and (2.22). Ingarticular, the linear
parts satisfied by F""and G""are the simplified
Lorentz-invariance conditions (2.21) and (2.22) that
we would have for the system of two particles n
and r if F and G were zero.
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IV. CONSTRUCTING TWO-PARTICI. E FORCES

The last observation suggests a way to construct
F""and G"" as functions of u'. Let F"'and G""

be F""and G"' for u"=0. That is what we have in

the rest frame of particle r. To go to other frames,
for nonzero u', we use Lorentz transformations
with

p= —u/Qo

and get F""and G"' as the Lorentz transforms of
F""and G"'. In calculating these Lorentz

transforms we can let F and G"" be zero, and
therefore let u' and s' be constant in time, since
the Lorentz-invariance conditions for the system of
two particles n and r are satisfied with zero F
and G . Lorentz invariance means the Lorentz
transforms of F""and G"' are the functions F"'
and G""of the variables u", s", x"—x', u", and s'
for the new frame. ' Let u", s", x"—x', u',
and s" be the inverse Lorentz transforms of u",
s", x"—x', u", and s', also calculated as if u'and

s' were constant in time. These are the variables
for the rest frame of particle r on which F""and
OG"' can depend. They are functions of u", s",
x"—x', u', and s'. Of course u'is zero.

From F""and G""given as functions of u",

tions of u", s", x"—x', u', and s" that satisfy the
simplified Lorentz-invariance conditions (2.21) and
(2.22) that we would have for the system of two
particles n and r if F and G were zero. Con-
versely, any solution of these simplified Lorentz-
invariance conditions must have this form for
some functions F"' and G"'. This provides the
general solution for the linear parts of the
Lorentz-invariance conditions. Then from the
Lorentz-invariance conditions only Eqs. (3.2)
remain to be satisfied, since they imply that the
nonlinear parts of the Lorentz-invariance condi-
tions are satisfied for systems of either two or
more particles.

More specifically, consider the Lorentz transfor-
mation (2.1) given by

t'=(r —x.P)/(1 —P ')' ',
x'=x+I (x.p/p )[1/(1—p )'~ —1]—r/(1 —p )'i I p .

At t'=0 on the world line of particle n we have

t=x"(r) p

so for the position of particle n in the new frame at t'=0 we get

x ~n xn+(xn. P/P2)[(1 P2)1/2 1]P

(4 2)

(4.3)

(4.4)

This is a consequence of the four-vector transformation (2 4) for the time-space coordinates of particle n
The four-vector transformation (2.5) gives

g'"0—(u "0—u".p)/(1 —p )'

u'"=u"+I (u" P/P')[1/(1 —P )' —1]—u" /(1 —P')' IP
(4.5)

for the energy-momentum of particle n in the new frame at t'=0 The four-. vector transformation (2.6) of
the Pauli-Lubanski variables is the same as (4.5) with each u replaced by the corresponding m. From these
and Eqs. (1.3)—(1.5) we can calculate the spin s '" of particle n in the new frame at r'=0 Of course th. e
same equations hold with n changed to r. In all these equations the position, momentum, and spin variables
of the old frame are at time t corresponding to t =0, as given by (4.3), but that is a complication we can
avoid almost completely. We let the origin for the position coordinates be at x"(t=0) for this calculation.
We can do so without loss of generality because we only use differences of positions in translation-invariant
functions. Then t =0 on the world line of particle n is at t=O, so the variables of particle n are all at t=O.
We treat u" and s" as constant in time. That leaves only x' at 1+0, and it is easy to relate x" at the value
of r corresponding to r'=0 to x" at t=O, since the velocity u"/u "o of particle r is constant. Thus, writing
everything in terms of variables for the old frame at t=0, and substituting

p =u "/u "0

for the Lorentz transformation to the rest frame of particle r, we get
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u"= u"—u'[u "p/m„—u" u"/(u "p+m„)m„],
u "p——(u "pu "p —u" u")lm, ,

~s"= s"—u"(u". s")(u "p—m„)/(u "p+.m„)(u"pu "p+m„m„—u".u")

+u"{s".u")/(u "pu "p+m„m,—u".u")

—u "(u" s"'[(u "p+m„)(u'p+m„)—2u" u"]/(u".p+m„)(u"p+m, )(u "pu'p+m„m„—u" u')

—u"( s" u')(u "p—m„)/(u'p+m, )(u "pu "p+m„m„—u" u'). ,

u". s"= u? "p——[u "p—u" u'/(u "p+m„)]u"s "/m„—s" u"m„/m„,
x"—x"=x"—x"+u'(x" —x').u"/(u "p+m, )m„,

'u'= 0
0 r ~r

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

One can check that

( s")'=( s")' . (4.13)

To get F""from F""we calculate du'"/dt' at t'=0 by taking the derivative of the right side of Eq. (4.5)
with respect to t and dividing by

dt'Idt =(1—P u"Iu "p)/(1 —P )' (4.14)

calculated from Eq. (4.1). We let the origin for the position coordinates be at x'(t =0) again, so t'=0 on
the world hne of particle n is at t=0. Now we interchange the roles of the two frames. We let the old
frame be the rest frame of particle r where we have pu" and pF"" for u" and du "Idt We d.rop the "prime"
label for the new frame and write u" instead of u '". Thus we get

du /dt = F""(1—P')' '/(1 —P'u"IPu "p}+I
('F"'.PIP')[1 (1 P')'~']
—u" F" Ipu "p]p/(1 —p u"/ u "p) . (4.15)

(4.16)

A similar calculation for d s "/dt yields

Then substituting P= —u"Iu "p for the Lorentz transformation from the rest frame of panicle r, we get

pu p u u )/u pm +[ F "'u /u pm„—F " u"/(u "p+m„)m„]u".

G""= G"'(u "pu "p—u".u') /u "pm„+F""[(u". s ")(u 'p —m„)/( u "p+m„)—( s ".u")]

X(u pu p —u 'u )/u pm&(u pu p+m+m& —u 'u )

—u "(u". G"")(u"p—m, )(u "pu "p—u" u")/u "p(u "p+m„)m„(u"pu "p+m„m„—u".u")

—u "(u". G"")[(u "p+m„)(u"p+m„)—2u".u'](u "pu "p—u".u")

X 1/u pm (u "p+m„)(u"p+m„)(u"pu p+m„m„—u"'u")

—u "( s" F"")(u"p—m„)(u"pu'p —u" u")/u "p(u "p+m„)m,(u "pu "p+m„m„—u" u')

+ u "{u" F"')( s ".u")/u "p(u "p+m„)(u"pu "p+m„m„—u".u")

+u"(u" PF"")(s" u")[u "pu'p —u" u"—u "pm„)

X 1/u pm„(u p+m„)(u"p+m, )(u "pu'p+m„m„—u" u")



THOMAS F. JORDAN

—u'(u" oG"")(u"ou "o—u" u")(u "o—m„)/u "om„(u"o+m„)(u"ou "o+m„m,—u" u")

+u'( s" F"")(u"ou "o—u" u")/u "om„(u"ou "o+m„m„—u" u')

—u'( u'oF"")(u". s ")/u "o(u 'o+ m„)(u"ou "o+m„m„—u".u")

—u"(u" oF"")(u" s")[u'ou "o—u" u"—u "om„]

X 1/u "~„(u"o+m„)(u"o+m, )(u "ou "o+m„m,—u" u") .

Qne can check that G"" satisfies the condition (1.8) provided

n.OGnr

(4.17)

(4.18)

We have to specify oF""and oG"" as functions of u", s", x"—™x",and s" so as to satisfy this condition
(4.18) and the remaining equations (3.2). Some limited solutions of these equations will be found in a subse-

quent paper.

V. SUMMARY

For Poincare-invariant Newtonian equations of
motion (1.6) and (1.7) for N particles with spin, the
conditions for Lorentz invariance are Eqs. (2.21}
and (2.22}. If the force on each particle is a sum
of Poincare-covariant two-particle forces as in Eqs.
(3.1), then the two-particle forces must satisfy Eqs.
(3.2) for all r+n and sQr. It follows that the
two-particle forces have the forms (4.16) and (4.17)
where F""and G"' are functions of the variables

ou", ~s", ox"—ox", and s" given by Eqs. (4.6),
(4.8}, (4.10},and (4.12}. The condition (1.8) will be
satisfied by G""if oG"" satisfies the condition
(4.18). Then the only equations that remain to be
satisfied by F""and G""are Eqs. (3.2}, since they
imply that the two-particle forces (4.16) and (4.17)
satisfy the Lorentz-invariance conditions for sys-
tems of two or more particles. Some limited solu-
tions of these equations will be found in a subse-

quent paper.
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