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It is often claimed that the fine-structure “constant” « is shown to be strictly constant
in time by a variety of astronomical and geophysical results. These constrain its fraction-
al rate of change a/a to at least some orders of magnitude below the Hubble rate H,.
We argue that the conclusion is not as straightforward as claimed since there are good
physical reasons to expect &/a << H,. We propose to decide the issue by constructing a
framework for a variability based on very general assumptions: covariance, gauge invari-
ance, causality, and time-reversal invariance of electromagnetism, as well as the idea that
the Planck-Wheeler length (10~33 cm) is the shortest scale allowable in any theory. The
framework endows a with well-defined dynamics, and entails a modification of Maxwell
electrodynamics. It proves very difficult to rule it out with purely electromagnetic experi-
ments. In a cosmological setting, the framework predicts an @ /a which can be compati-
ble with the astronomical constraints; hence, these are too insensitive to rule out a varia-
bility. There is marginal conflict with the geophysical constraints; however, no firm deci-
sion is possible because of uncertainty about various cosmological parameters. By con-
trast the framework’s predictions for spatial gradients of a are in fatal conflict with the
results of the Eotvos-Dicke-Braginsky experiments. Hence these tests of the equivalence

principle rule out with confidence spacetime variability of a at any level.

I. INTRODUCTION

Early suggestions that the fine-structure constant
a (or the elementary charge) varies with cosmologi-
cal time were made by Dirac,' Teller,? and Jordan.’
Dicke and Peebles* pointed out that the abundance
ratios of Kr** to Ar®* and of Rb¥ to Sr*” in old
ores and in meteorites constrain & /a, the fraction-
al rate of variation of a, to at least two orders of
magnitude below the Hubble rate H,.> They also
suggested that better bounds should result from
measurements of the Re!®” to Os'¥ ratio, because
the rate of the weak decay Re!'®’—0s!¥’ is highly
sensitive to the value of a. Later Dicke® showed
that the E6tvos-Dicke experiments require any spa-
tial variation of a caused by the Sun to be smaller,
by orders of magnitude, than the corresponding
variation in the solar gravitational potential. All
this evidence against a variability was soon forgot-
ten.

Interest in a variability reached a new peak fol-
lowing Gamow’s proposal’ (inspired by Dirac’s
large-numbers hypothesis) that a varies at the
Hubble rate. Within weeks Gamow’s a o ¢ law had
been newly ruled out. Peres® showed that it con-
tradicts the excellent agreement between the list of
nuclides found naturally and those expected to be
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B stable from nuclear mass systematics. Dyson’
showed it to conflict with Re'®” to Os!® ratios in
old ores; these make sense only if

|&/a| <4X10~*H, according to a later review.
Bahcall and Schmidt!! called attention to the good
agreement between fine-structure splittings in ra-
diogalaxy spectra and their laboratory values; this
implies |a/a| <1072H, in conflict with

Gamow’s suggestion. Later work has strengthened
the trend. A laboratory intercomparison of cesium
and superconducting cavity clocks by Turneaure
and Stein!? has given the only known bound on the
instantaneous a/a: |a/a|<8X1072H,. Wolfe,
Brown, and Roberts'? have extended the baseline of
the astronomical test for @ by looking at a BL-
Lacertae object at red-shift z=0.52; quasars make
possible a further extension.!* Finally, from an
analysis of isotopic abundances of fission products
in the Oklo “natural reactor” (a uranium vein in
Gabon which spontaneously underwent a fission
episode 1.8 10° years ago), Shlyakhter'® derived
the best constraint yet: |@/a| <107 "H,.

These impressive constraints are widely regarded
as establishing perfect constancy of @. One often
hears the argument that if a varied in time, it
would be expected to vary roughly at the Hubble
rate, which it does not; hence a is constant. There
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are several objections to such reasoning. It impli-
citly assumes a power law in time for a, with an
exponent not widely different from unity. Yet oth-
er behaviors are conceivable. For example, a could
exhibit an asymptotic approach to a finite value,
with little present variation (this is the typical
behavior of G in a large class of gravitational
theories'®!’). The extant constraints might not be
sufficient to rule this out. Evidently, in the ab-
sence of a concrete dynamical equation for a, the
mentioned argument essentially begs the question.
Further, the idea that the Hubble rate is the only
characteristic rate for variable quantities in an ex-
panding universe is problematic. The Hubble ex-
pansion is driven (via the gravitation equations) by
the total energy density in the universe. But a is
an electromagnetic quantity; its temporal variation,
if any, should be driven by the density of some
electromagnetic quantity. Since various elec-
tromagnetic energy densities are orders of magni-
tude below the rest energy density (at least in re-
cent times), one has good reasons to expect |/« |
to be much smaller than H,,.

All this underscores the need for a general
dynamical framework for a. Only within the con-
text of such can it be clear if the sensitivity of a
given experimental constraint is sufficient to yield
firm conclusions.!® And only within such a frame-
work can one combine constraints on spatial and
on temporal variability of a into unified evidence.
Without it one hardly knows how to compare the
merits of the two, let alone integrate them. The
main goal of the present paper is the construction
of just such a framework based on a few uncontro-
versial assumptions, and its application to the
question, Do the extant constraints rule out all
sorts of a variability? We answer affirmatively.

Our assumptions are discussed in Sec. II. In
Sec. III we construct the Lagrangian giving the
dynamics of the electromagnetic field and of a.
An unspecified scale of length / enters into it.
From the observed scale invariance of electro-
magnetism / < 10™!° cm; also /> 10~ cm because
the Planck-Wheeler length is the shortest conceiv-
able length in physics. In Sec. IV we show that
purely electromagnetic experiments are incapable
of ruling out « variability. Temporal variability of
o in our expanding universe is taken up in Sec. V.
The framework predicts that in recent epochs
|a/a | ~kH, with k probably in the range
10=*—107°. This small value is due partly to the
mentioned smallness of electromagnetic energies
and partly to the appearance in the expression for

a/a of an integration constant which can act to
suppress a/a. As a result the constraints from in-
tercomparison of clocks!? and from the spectra of
radio galaxies and quasars'!'>!* do not suffice to
rule out a variability. The geophysical con-'
straints'®!® come rather close to ruling it out; how-
ever, uncertainties about various cosmological
parameters prevent us from reaching a firm con-
clusion. Predictions of the framework for spatial
a variability are the theme of Sec. VI. We confirm
Dicke’s conclusion® that tests of the equivalence
principle provide very strong constraints on a vari-
ability. The Dicke® and Braginsky!® versions of
the EGtvOs experiment strongly rule out any a
variability, temporal or spatial. Our conclusions
are discussed in Sec. VIL

II. POSTULATES OF THE FRAMEWORK

The fine-structure constant « is the low-energy
limit of the (renormalized) electromagnetic cou-
pling constant. Being interested primarily in ma-
croscopic phenomena, we adopt a classical descrip-
tion of the electromagnetic field and its interaction
with (classical or quantum) matter.

Once the possibility that a depends on space and
time is admitted, modification of standard
Maxwell electrodynamics is inevitable. For exam-
ple, adopting the usual relation between a and ele-
mentary charge, a=e?/%c, we see that a variabili-
ty implies e variability in units for which % and ¢
are constant. But e variability seems to clash with
charge conservation (the electron’s charge depends
on position) which follows from Maxwell’s equa-
tions. Evidently, something in the accepted picture
of electrodynamics must give way. What we need,
then, is a set of assumptions to guide us in modify-
ing Maxwell electrodynamics in a reasonable way.
These should allow a general, model-independent,
framework for a variability; at the same time they
should respect generally accepted physical princi-
ples. We adopt the following assumptions and dis-
cuss each in turn.

P1. For constant a electromagnetism is Maxwel-
lian and the coupling of the vector potential to
matter is minimal. This is a correspondence prin-
ciple restraining us from introducing unnecessary
modifications of standard physics.

P2. Variations of a result from dynamics. One
must reject prescribed laws of variation. If a
varies, the variation influences charged matter;
charged matter should in turn influence . Only
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dynamics for a can incorporate this important
feature.

P3. Dynamics of electromagnetism and a are
derivable from an invariant action. We know of no
other way to consistently incorporate the principle
“action equals reaction” than to derive dynamical
equations from an action principle. And no better
way offers itself to guarantee relativistic invariance
than to start from an invariant action.

P4. The action is locally gauge invariant. The
importance of the gauge principle in contemporary
physics cannot be overstated. Thanks to it there is
now a unified picture of all the microscopic in-
teractions. If we gave up demanding full gauge in-
variance, we would be modifying Maxwell’s theory
in an unreasonable way.

P5. Electromagnetism is causal. There is no ex-
perimental evidence for causality violation. Theo-
retically it is sometimes discussed, but only in rath-
er esoteric situations. In our rather mundane prob-
lem causality should be enforced: dynamical equa-
tions should be hyperbolic and of at most second
order, in order to forestall runaway solutions and
other noncausality.

P6. The electromagnetic action is time reversal
invariant. This is taken for granted in contem-
porary particle physics where any violations of C,
P, or T invariance are blamed on the weak interac-
tion, or the superweak facet of it.!° Concrete evi-
dence for P and T invariance of electromagnetism
are the very tight upper bounds on the electric di-
pole moments of the proton and neutron.® Of
course such evidence establishes 7" invariance only
to some finite precision. We assume it is exactly
true and thereby accept a risk.

P7. The shortest scale of length which can enter
into physical theory is the Planck-Wheeler length
Lpw=(G#/c)?~107* em. It has been argued
that at shorter scales spacetime itself is not
smooth, or even simply connected.?! If so, it
makes no sense to talk of smooth fields obeying
differential equations on scales shorter than Lpw;
introducing an even shorter length into a theory
cannot have any palpable consequences. Another
way of saying this is that to probe experimentally
the predictions of a theory down the scale / re-
quires use of particles of energy E ~fic/l. If
I < Lpw, E is so large that its gravitational radius
2GE /c* exceeds I. So the particle probe would
tend to fall into a black hole of its own making,
thus frustrating any attempt to learn from its
scattering about the structure of the theory at
scales < Lpy.

P8. Gravitation is described by the metric of
spacetime which satisfies Einstein’s equations. The
aptness of the geometric description of gravitation
is clear enough today. Einstein’s equations are the
simplest dynamics for the metric which have stood
all experimental challenges to date. We adopt
them, not out of blind confidence in their correct-
ness, but because they allow a clean separation of
the issue of a variability from that of G variability
which exists in many competing gravitational
theories. We do not assume the other half of gen-
eral relativity—the strong equivalence principle—
because it rules out a variability by definition.

III. DYNAMICS OF THE FRAMEWORK

A. Electrodynamics

We choose units of length, time, and mass so
that %, ¢, and G are spacetime constants; this can
always be done. Since a=e?/#c, where e is the
electron charge, a variability means that e depends
on the spacetime point. We expect the charges of
all particle species to vary in exactly the same way.
Otherwise charge ratios would vary, and there
could not exist accurately neutral atoms (equal
electron and proton charges) or hadrons (zero net
quark charge), as observed. Thus every particle
charge can be expressed in the form e =eye(x"),
where e is a constant characteristic of the parti-
cles and € a dimensionless universal field. The
particular split between e and € is our choice. We
can rescale € by a constant factor and make ap-
propriate changes in all the e so as to get the pre-
vious e’s. Thus the theory governing € should not
fix its overall scale: it should be invariant under
the change e— constant X e. We shall find this
constraint very useful.

Consider now the classical dynamics of a
charged particle of rest mass m and charge ey€ in

flat spacetime. We may start with the Lagrangi-
an223

L=—mc(—u®uy)"?*+(ege/c)u®d, , (1)

where u*=dx%/dt is the four-velocity and 7 is the
proper time. We notice that L is Lorentz invariant
and involves mimimal coupling. The appropriate
gauge transformation law for 4, is

ed,—€edg+X o, (2)

where X is an arbitrary function: under (2) L
changes only by the perfect derivative
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(eg/c)dX /dr. The minimal coupling in (1) is re-
quired (P1) only in the é— const limit. One might
thus be tempted to introduce other couplings con-
sistent with this, such as € ;4% or € € gd“u”.
However, no single rule such as (2) involving a tru-
ly arbitrary function guarantees gauge invariance
of the dynamics. Thus we exclude these modifica-
tions by P4.

We notice that the curl of 4, is not invariant
under (2); it cannot be the physical electromagnetic
field F,g. To identify F,, we turn to the Lagrange
equations for (1):

J

i[mua +(eg/c)ed]=—m 4c?

dr
+(eg/c)edp) P . (3)

In writing (3) we have already taken into ac-
count the normalization relation

U u®=—c?. 4

In addition we have regarded m as m(x“); since the
particle is charged, part of its rest energy is elec-
tromagnetic in nature and should depend on posi-
tion through €.® Simplifying (3) we get

dmuy)/dr= —m_ac2+(eo/c)[(eAB),a‘——(osA,,),,3]u‘9 . (5)

The first term on the right-hand side is the
anomalous force first discussed by Dicke,® due to
variation of €. The second is a Lorentz-type force.
Identifying it with the usual expression

(e€/c)F 4guP we arrive at the definition

Fog=€""[(edp) ,—(edy) 6] . (6)

This agrees with the Maxwellian version only for
€— const. We note that F,g is gauge invariant
and invariant under rescaling € by a constant.

To build the electromagnetic Lagrangian (P3) we
have at our disposal F,g and its dual

*FWY =S e"PF g )

where €#*°8 is the Levi-Civita tensor. * v shares

the invariances of F,,. One possible electromag-
netic action is

Sem=—(16m)~" [ F¥F,(—g)d% , (8

which reduces to the Maxwell action for constant
€. The other possible Lagrangian density is
*FMF,,. When € is constant this is just a perfect
divergence (recall that *F**,,=0). For this reason
one never considers *F*'F,,, in ordinary elec-
tromagnetism. When € can vary, *F*", 40 and
*FMF,, is not a perfect divergence; one could thus
include it in the action. However, *F*F, uv Changes
sign under time reversal so it is excluded by P6.
We did not include a mass term m 24 pA" since it
violates P4. Likewise, we excluded terms of fourth
or higher order in F wv from Sgy because they do
not vanish for constant € and thus violate P1. We
are thus left with (8) as the general electromagnetic
action satisfying our assumptions.

[

B. Dynamics of a

SEMm is so simple in structure that variation of it
with respect to € does not give a proper dynamical
equation for e. By P2 and P3 we must thus intro-
duce a separate action for €. Evidently, the La-
grangian density should be constructed from the
metric and the logarithmic gradient €~'¢, which
is invariant under rescaling of € by a constant.

One cannot introduce a function of € by itself since
it changes under rescaling. [For this reason also,
we did not include such a function in (8).] Now,
because € is dimensionless, €, €* €% does not
have dimensions of a Lagrangian density (even if
we introduce #’s and ¢’s at will). This led
Meisels®* to conclude that no satisfactory dynamics
can be set up for a dimensionless coupling con-
stant. Let us see if this pessimistic conclusion is
unavoidable.

We can try the Lagrangian density Re‘ze,#e" or
else R#ve~? €,,€,, where R*Y and R are, respec-
tively, the Ricci tensor and scalar. These have,
after multiplication by #c, the correct dimensions.
But they are problematical. The R or R*" are
determined by Einstein’s equations. The € field is
one of the sources of these equations, and up to
third order derivatives of € appear in the expres-
sions for R or R*¥ (variation of R or R*" with
respect to the metric brings two extra derivatives
to bear on € € ,). Thus in its explicit form the dif-
ferential equation for € will contain third- and
fourth-order derivatives as well as second. This
contradicts P5 so we must exclude Lagrangians
with curvature in them.

If a scale of length [ is available, one can build a
satisfactory action, namely,



25 FINE-STRUCTURE CONSTANT: IS IT REALLY A ... 1531

Se=—3hcl ™ [ e et(—g) %, )

where the factor ——;— is conventional. Of course,
introduction of / must clash at some level with
scale invariance, an experimentally established
feature of electromagnetism. However, the elec-
tromagnetic interaction has been probed only up to
energies in the GeV range, so by the usual argu-
ment one can vouch for scale invariance only down
to 10~1% cm or so. Provided [ is shorter than this,
no contradiction need arise. In fact we shall see in
Sec. IV that the electric field of a truly point
charge described by Sgy and S, is accurately
Coulombic down to a distance <I/. Hence scatter-
ing experiments with the present energies cannot
reveal the presence of a [ <10~ !° cm, say. One
may also recall the current view that electromagne-
tism merges with the weak interaction at energies
equivalent to a length ~10~'® cm, and both merge
with the strong interaction at energies equivalent to
~10~% cm. Whatever the details of this unifica-
tion, one should not be surprised if a scale of
length makes its way into dynamics of the elec-
tromagnetic coupling. We do not try to guess /,
but merely require (P6)

172
I>Lpyw= [ﬁG/c3] ~10~3 cm. (10)

We did not consider the more general Lagrangi-
an density

N [lze-Ze,,,eﬂ ]

with f an arbitrary function because, as shown in
the Appendix, any choice of f, except that in (9),
leads to causality violations, and must be excluded
by (P5). Thus a Lagrangian quadratic in e*le’“ is
forced on us.

C. Structure of the equations

In order to write the dynamical equations for
F,, and €, we must specify the matter action. Be-
ing interested in the macroscopic manifestations of
€ variability, we adopt a model of point classical
particles for the matter. By “point” we mean
small by macroscopic standards, but large com-
pared to I. Since / <10~'3, the model is a good
one for ordinary matter composed of atoms, nuclei,
electrons, . .. . For many point particles with
masses m coupling to 4, with strengths e¢, the

action may be written as®? [see (1)]
Sp=3 f [—mc?+(ege/c)utA,]
Xy~ 18 [x —xir)]d* , (11)

where x‘(7) with i=1,2,3 describe the spatial track
of the typical particle as a function of its proper
time 7, u*=dx*/dr, while y=dx’/cd is the
Lorentz factor. We regard each m as a function of
€ because part of m is electromagnetic in nature
and depends on the local strength of the elec-
tromagnetic interaction.

Variation of Sgm + Se + S, With respect to 4,
gives the electromagnetic field equations

(e™'Fm). =4mj* (12)
with
j*= 3 (eo/cy)ut(—g)~ 128 x —xi1)] .
(13)

Because e ~'F*¥ is antisymmetric we have the iden-
tity j¥,,=0. The conserved charge, the sum Seo
over particles, is thus distinct from the sum of the
“charges” epe which couple to 4, in the action.
Thus is charge conservation reconciled with varia-
bility of € (or a). We note, also from (12), that
Gauss’s theorem only permits the determination of
eo from the distant electric field of a system
(provided € is known at the field points).

There exists an alternative view of the electro-
dynamics just discussed. One can take the view
that the Lorentz force in (5) is the force on a con-
stant charge e of the field eF,g (a curl). If €F g
is interpreted as the electromagnetic field, then
Egs. (12) have just the form of Maxwell’s equa-
tions in a material medium with dielectric constant
€2 and permeability €. That is, if time-space
components of €F @B are identified with the electric
field E=¢€’D, while space-space components are
identLﬁed with the magnetic induction B=¢€H,
then D and H satisfy the usual “macroscopic”
Mazxwell equations with the conserved charge and
current as sources. This alternative description of
variable a was actually discussed long ago by
Dicke [Egs. (26)—(28), Appendix 4 of Ref. 6] who
also pointed out that a is to be identified, not with
eo>/#ic, but with ey’€?/#c as in our formalism.
Variation of @ can thus be described in two
languages (variable charges in a homogeneous va-
cuum or constant charges in an inhomogeneous
medium) with the same physical content. The
difference between our formalism and Dicke’s is in
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the dynamics for €. Dicke thinks of €2 as an or-
dinary scalar field;® our requirement that the
overall scale of € have no physical significance
forces us to adopt scalar-field dynamics for Ine
[Eq. (9)].

We know experimentally that € varies little over
“earthly” distances and times. Thus, for fields F*¥
which do vary on such scales, the factor €' in
(12) can be taken out from under the derivative,
and we recover, to a good approximation,
Maxwell’s equations with the ege as sources. At
this point we use our prerogative to choose the
overall scale of € so as to make e=1 at our present
cosmological epoch, and far away from strong
sources of the field € (see Sec. IV.). With this
choice the ey coincide with the usual charges of
particles—the sources of Maxwell’s equations— at
the present epoch.

The dynamical equation for € is obtained by
varying Sgy + Se + S, With respect to Ine. With
the notation

o= mcly N (—g) "V x'—x{(1)], (14)
we have

3o

12
Olne=— —
ne de

P €

. 1 y
et lA,,F“ ] ,

v

(15)

where O denotes the covariant D’Alembertian.

Substituting j* from (12) into (15) we obtain the

alternative form
12

Dlne=—ﬁ; €

90 1

o~ 3 Fus (16)

from which all reference to current has disap-
peared; this will be useful in Sec. V.

IV. ELECTROMAGNETIC TESTS

We now show that purely electrostatic laborato-
ry experiments do not rule out the electrodynamics
with variable a developed in Sec. III. One of the
most accurate tests of Maxwell’s equations is the
classic Faraday “ice-pail” experiment. It is found
that in the charge-free interior of a highly conduct-
ing cavity, there is no measurable electrostatic
field, whatever the exterior situation. As is well
known Gauss’s law, together with the equipotential
nature of the cavity walls predicts this vanishing of
the electric field. A similar result holds in the
variable a electrodynamics, as we now show.

Working in flat spacetime we identify F%,
i=1,2,3 with the electric field vector E. Setting
©=01n (12) we get in the cavity interior

V(e 'E)=0. a7

Multiplying (17) by €4, integrating over the inte-
rior volume of the cavity, and integrating by parts
we are left with the surface term

gi ere”IE'dg , (18)

where the integral extends over the walls. Since
these conduct well, e4y must be strictly constant in
(18); otherwise, €E= V(e4,) would not vanish in
the walls, and a large current would flow. Thus,
we may take €4, out of the integral (18). The
remaining integral must vanish by (17) and Gauss’s
theorem. The volume integral is then

[ Eav=0 (19)

which proves that E vanishes identically inside the
cavity, in harmony with the ice-pail experiment.

Does the proposed electrodynamics predict ob-
servable departure from Coulomb’s law? To
answer this we calculate the exterior field of a
spherical distribution of charge in flat space. We
exclude magnetic monopoles; thus we allow only a
spherically symmetric radial electric field. Outside
the charges (17) is solved by

E=reQ/r?, (20)

where Q is a constant. By Gauss’s law one inter-
prets Q as 3¢, over the particles in the charge
distribution (see Sec. III). In order to calculate €
we substitute (20) into the right-hand side of (16).
Again, outside the charges, for a static situation we
get the equation

r~29,[r4d,Ine)] =(durfic)~12Q%r —*  (21)

since F*'F,, = —2E2.
By appropriate transformations we are able to
solve (21). Here we only give the result:

e(r)=sec[IQ(4mhic)~ 2 r—1] . (22)

This can be checked by direct substitution. We ob-
serve that as r— o0, €—1 in harmony with our
choice of scale. At large distances [when

r>> IQ(4w#ic)~'/?], E has a purely Coulombic
form: E=7Qr—2. This accords with the success of
Coulomb’s law in experimental studies. If we are
dealing with an elementary charge
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(Q/V'#ic =1/V/137), then we see that the Coulom-
bic behavior is already accurate (argument of
secant small compared to unity) for » > 1. Since
leptons are known to have an accurately Coulom-
bic field (apart from vacuum polarization correc-
tions) down to distances 10~ cm, we conclude
that / <10~ 5 cm, in harmony with our earlier
claim.

Let us now consider a spherical macroscopic dis-
tribution of charge of radius R. If / <10~" cm,
can one ever detect departures from the r ~2 law
outside such a distribution? This would require
that /Q(4m#ic)~'/?R ~! be not much smaller than
unity, i.e., that the formal electrostatic potential
Q/R be no smaller than about V#c /I If [=101¢
cm, the required potential is at least 10'° V (1
esu=300 V). For laboratory-sized charged objects,
R is in the range 1072—10° cm, so there would be
fields of strength at least 10’ V/cm present. Such
fields exceed by far the critical field for air break-
down (3 10* V/cm), so that the required experi-
ments would have to be carried out in high vacu-
um (which is not usually done). Even this option
would prove useless if / <1072 cm since the re-
quired fields could never be set up; they would
exceed the vacuum’s breakdown field (10'* V/cm).
As it is, potentials of 107 V obtainable in Van de
Graaf accelerators are about as large as can be had
in the laboratory, but they fall short of our re-
quirements.

Departures from spherical symmetry do not
mend matters. For a collection of point charges
Q;, the solution of (17) is

E=e3 0;Tir; 3, (23)

where T; is the vector from Q; to the field point.
Instead of (21) we now have

Vine=(4rtic)~ I’E? (24)
outside the sources. As direct substitution and use
of (17) shows, the solution of (23)—(24) is

e=sec |[(4mfic)" 123 Qir, 71| . (25)

Thus despite the nonlinearity of (23)—(24), there is
a sense in which the effects of separate charges can
be superimposed. For E to depart from a superpo-

sition of Coulomb fields, € must depart from unity.

From (25) it is clear that this requires the potential
> 0:/r; to be large in our earlier sense. For the
reasons already mentioned we again conclude that
electrostatic experiments have trouble distinguish-

ing between the variable a electrodynamics and
Maxwell electrodynamics.

V. TEMPORAL VARIATIONS OF a

We now wish to calculate temporal variations of
a or € in a cosmological setting. We assume the
universe to be homogeneous and isotropic in the
large over the epochs of interest. Adopting a
Robertson-Walker metric with expansion factor
a (t), we write the equation (16) for € as

a’l?
#ic

do 1 22 B2
= +—(E’-B
ea€+4w( )

(a%e/e)=—

b

(26)

where a dot stands for a time derivative, and E
and B are the fields measured by a commoving ob-
server. Since we are not interested in spatial varia-
tions of € resulting from graininess in the contents
of the Universe, the source term in the right-hand
side of (26) is to be understood as averaged over a
large volume.

The Universe is filled with electromagnetic radi-
ation, but this does not contribute to the source of
€ in (26). We recall that for a plane electromagnet-
ic wave the invdriant E>—B? vanishes.”’ An in-
coherent distribution of waves (i.e., blackbody radi-
ation) is a linear superposition of plane waves with
no definite phase relations. Because of this last
point, a space average of E?—B? lacks any cross
terms between different waves. Thus, incoherent
radiation does not contribute to (26). The incoher-
ence also eliminates cross terms between fields of
the waves and field of material particles. Thus
only matter is a source of €.

Both terms in the square brackets in (26) are
Lorentz invariants. In evaluating the contribution
of a particle to the source, one can thus pass to its
rest frame.?® Averaging such a contribution over a
large volume V), in the rest frame of the particle
gives, by (14), the source term

e@m /de)c>+(4m = [, (B2—Bhav |v,~".
0
@7

Now, one can represent the electromagnetic part of
the energy mc?, mgyc?, by

mene?=(8m)~! fVO(E2+i§2)dV (28)

so that the source can be written as
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€(dm /9€)c2+ 2mppe?—(2m) ! fV ﬁde} Vo .
0

(29)

Since magnetic energy is a very tiny fraction of the
total electromagnetic energy in ordinary nonrela-
tivistic matter, the magnetic term in (29) can be
neglected. Further, the bulk of mgyc? is Coulom-
bic in nature, so to a good approximation

mpym < €2. It follows that e(0m/d€)c? ~2mppc?.
Thus the quantity in square brackets in (26) is
essentially four times the density of Coulomb ener-
gy-

The bulk of rest mass in the Universe is in the
form of protons and neutrons, free and bound in
nuclei; these are the main contributors to the
Coulomb energy density. Electrons, because they
are so light, contribute negligibly. So do atomic
and interionic interactions. The Coulomb energy
of the proton can be estimated in two ways. If we
extrapolate the nuclear mass formula®”?8 to Z=1,
A=1 we get mgyc?~0.7 MeV. If we model the
proton by a uniformly charged sphere of radius 1
fm, we get mgyc?~0.86 MeV. Both estimates
should be on the small side since the charge in the
proton is strongly concentrated.?’ But even if it
were concentrated within the proton’s Compton
length (which it is not), we should have
memcl~amec*~7 MeV. Thus, to within a factor
of 2, mpmc?~3 MeV =3X10"°mc? The
neutron’s rest energy exceeds the proton’s by 1.29
MeV. It is generally agreed that this splitting is
purely electromagnetic in origin.?’ Thus we esti-
mate for the neutron mgyc?~4.3 MeV.

Most neutrons in the Universe have been incor-
porated into nuclei, primarily into He* which
makes up about a quarter by mass of matter in the
Universe. The mass formula indicates that the
Coulomb contribution to the binding energy of the
He* nucleus is ~ 1.8 MeV, or 0.45 MeV per nu-
cleon. Thus a nucleon in He* contributes only
~15% more Coulomb energy than a free nucleon.
Nucleons in other abundant nuclei do better. For
example, in O'® and Fe*® they contribute 40% and
70% more Coulomb energy than when free. How-
ever, all nuclei apart from H' and He* account for
only 2% of all matter by mass.”*?° Thus, when
weighted by the appropriate abundances, the aver-
age nucleon’s Coulomb energy exceeds the free pro-
ton contributions by only 10%. We may thus
rewrite (26) as

(a3€/e)'=—a’¢(I*/#ic)ppc? (30)

where p,, is the total rest mass density of matter,
and {~1.3X1072%

We now argue that { may be taken as constant
in (30). For it to change significantly there must
be a significant change in the relative abundance of
H' and other nuclei. It might be argued that nu-
cleosynthesis in stars has been accomplishing just
such a change. However, as we now show, the ef-
fect is negligible. All transformation of H! into
heavier nuclei proceeds via the process 4H! —He*
which releases 2X 10~ erg per proton converted.
This energy is the principal source of optical lumi-
nosity of galaxies. A recent estimate® sets the
present mean luminosity density at 1.6 1032
ergsec”! cm™? corresponding to a proton conver-
sion rate of 8 X 1072 sec™! cm~3. A minimal es-
timate for the nucleon number density in the
Universe follows from considerations of primordial
He* synthesis®!: 1x10~7 cm~>. Some 90% of
these are protons.® Thus the time scale for proton
conversion is > 10% sec; that for significant
changes in § is similar. But the time scale for
changes of p,, or a* in (30) is (3H,) ™!~ 107 sec.
Thus in (30) & is highly constant when compared
with the other quantities. It changes <0.3% per
Hubble time H,~!. However, galaxies, when
young, should have been much brighter than to-
day.’? Thus, constancy of § can safely be assumed
only as far back as z~1. Before then galaxies may
have converted protons much faster than our esti-
mate suggests, and { might have varied substantial-
ly.

Since p varies as @ ~° in an expanding Universe,
we can immediately integrate (30); assuming & con-
stant

e/e=—L(1% /A)p,(t—tc) , (31

3

where ¢¢ is an integration constant. To estimate
€/€ at the present time ¢y, we may as usual express
Pm as a multiple Q,, 4 of the critical density
pc=(3/87G)H,?%, where G is the gravitation con-
stant. Since (G#/c>)!/? is just the Planck-Wheeler
length Lpy, we get the suggestive relation

(€/€)1—yy=—1.6X 1071 /Lpw ' QpoHo 7 , (32)

where t =t,—tc and we have set £=1.3x1072.
An upper bound on €/€ in terms of the unknowns
I and 7 follows by taking for H, the largest value
discussed today, Hy=100 km/Mpc=1.02x 10~ 1°
yr~!, and for Q,, the large value 0.2 obtained by
assuming that all gravitating matter is nucleonic
(an exaggeration), and that the specific luminosity
of great clusters of galaxies equals that of the typi-
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cal galaxy.*! Both assumptions tend to overesti-
mate (},,,. Thus

| (€/€0)r=sy | <3.2X 107241 /Lpw)*|7|y~2.

(33)

Turneaure and Stein'? have set the laboratory
bound |é/e| =5 |a/al <5x 10712 yr=!. We do
not know 7 but since our equation is valid for
times of order ¢, it would be strange indeed if
| 7| were orders of magnitude larger than ¢,. If
| 7| <to and [ /Lpw < 10, or if
| 7| <0.1Hy~'~0.1 to and (I/Lpw) <40 there is

no contradiction between (33) and the experimental
bound. Evidently, in the absence of a concrete
value for /, the experiment cannot rule out a varia-
bility.

We now turn to the evolution of € in the past.
Since p, «< (1 + )3, where z is the red-shift, we
may integrate (31) by using the standard relation
between “lookback time” At=t,—¢ and red-shift*>

z=HoAt+(1+5q0)H A2+ O(A) ,  (34)

where g is the deceleration parameter. We get

Pm(1)=(3/87G )y oHo [ 14 3HoAt +3(2+ 540) Ho2A> + O(AL%)] . 35)
Recalling our convention €(¢5)=1 and assuming |e—1| to be small we get

€(t)—1=—1.6X1073(1 /Lpw *QoH*AtF(AL,7) (36)

F(At,r)=1[1+ 5 HoAt +(2+ 5o Ho?At*] — 5 At — HoAt>+ O(Af?) . 37)

From observations of fine-structure splitting in radio galaxies, Bahcall and Schmidt!! concluded that at
red-shift z=0.2, |e(¢)—1]| =% |a(t)/alty)—1| <1Xx 1073, For the currently discussed values,
0.05 <gg <0.5, z=0.2 corresponds to HyAt =~0.17. Since Q,,0<0.2, (36) gives

|e(z=0.2)—1| <5.4X107%(1/Lpw)*| 1.32Hor—0.11| . (38)

Thus, if | 7| <, while //Lpy <3, or if | 7| <0.1H,~'~0.1¢, while [ /Lpw <8, the prediction is below the
observational bound. From observations of fine-structure splitting in a BL-Lac object, Wolfe, Brown, and
Roberts'* deduce that at z=0.52, |e—1| <0.03. Now z=0.52 corresponds to HyAt~0.37 for

0.05<g¢ <0.5. With Q,,,<0.2 (36) gives

|e(z=0.52)—1] < 1.1X10~*(I /L pw)*(1.86Hyr—0.32) . (39)

Thus, if | 7| <ty and [/Lpyw <10 or if | 7| <0.1H o~ ! while //Lpy <20, the prediction is again below the
observational bound. Thus the astronomical observations do not rule out a variability unless one is willing
to assume that the shortest conceivable scale is more than an order-of-magnitude larger than Lpy.

From the Re'®’, Os!®” abundances in ores, Dyson® ! deduced that 4.5 10° yr ago |e—1| <5x 107>,

With Hy~1.02x107'° yr—! and Q,,,~0.2, (36) predicts

|e(At=4.5%10°yr)—1| =~ 1.5X 10~%1/Lpw)*|2.2H,7—0.44 | . (40)

Even for [ ~Lpw this is consistent with Dyson’s
constraint only if 7=H;~1(0.2+0.15).
Shlyakhter'> deduced from the isotopic abundances
in the Oklo “natural reactor” that 1.8 X 10° yr ago
|e—1| <5X107°. The appropriate prediction is
made by (38) since Az=1.8X 10° yr corresponds
closely to HyAt=0.17. With Q,,,=0.2 and

| =Lpy it is consistent with Shlyakhter’s con-
straint only if 7=H,~'(0.08+7X10~°). The two
determinations of 7 are consistent; however, this is
no longer so if //Lpw >1.3. Thus Dyson and

T
Shlyakhter constraints together force [ down to
near its minimum allowable value; in this sense
they marginally rule out a variability. However,
this conclusion is strongly conditional on the as-
sumed cosmological parameters. Consideration of
He* synthesis in the big bang suggests®! that values
of Q,,0H,? a factor 25 times smaller than we have
assumed are quite possible (recall, Q,,, refers to
nuclear matter only). With these low values

1 /L pw need no longer be near unity. Also, small
Q,,0H,? allows the very narrow range of values for
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7 deduced from Shlyakhter’s constraint to broaden
considerably. Thus the suggestive implication that
Shlyakhter’s result requires the present time ¢, to
be a very special one (£ — ¢ very precisely deter-
mined), or a not to vary, looses much of its force.
We conclude that only when (,,, is determined
more accurately will it be clear if the geophysical
constraints provide a strong case against a varia-
bility.

VI. SPATIAL VARIATIONS OF «a

In the laboratory there should be spatial gra-
dients of a due to nearby matter with electromag-
netic structure. The relevant equation is (16). If
one is interested only in macroscopic gradients, one
may average its source over volumes containing
many atoms. As shown in Sec. V, one can then re-
place the quantity in parentheses in (16) by &p,,c?,
where ¢ is a number of order 1072 Actually ¢
varies somewhat with the composition of the
source. Thus the { appropriate to the sun
(predominantly H) is somewhat smaller than that
appropriate to the earth (mostly heavy elements).
In a static situation (16) becomes

Vine=E(1/Lpw )*Ge ~p,, (41)

[recall Lpy =(G#/c?)'/].

Our convention for € is that e—1 at infinity.
Hence In € obeys the same boundary condition as
gravitational potential ¢. In fact, by comparing
(41) with the Poisson equation, we have

Ine=(4me?) &1 /Lpw )¢ . (42)

That any fractional variation of a (or 2 In € for
€~=1) should be proportional to ¢ was conjectured
by Dicke.’*® He estimated the proportionality con-
stant as a/c%. Since we know now that / ~ L py,
we see that this is about right.

As discussed by Dicke,® gradients of a give rise
to “anomalous” acceleration. Basically, the total
force acting on a neutral body of mass M bearing
electromagnetic energy Egy is, by energy conserva-
tion,

F=—MV¢—VEgy
=—MV¢—(3Egy/9¢)Ve . 43)

Here we have neglected a fractional correction of
order ¢/c? to the last term. Since Egy is for the
most part Coulombic, one can replace dEgy/0E by
2Egpyve! (see Sec. V). By substituting (42) into
(43) we get for the acceleration F/M

A= —[1+27) 761 /Lpw) X Epm/Mc)]V .
(44)

The second term in the square brackets varies from
body to body, giving rise to an anomalous com-
position-dependent acceleration. Tests of the
equivalence principle search for just such a term.
In the typical experiment the accelerations of two
substances are compared and a bound is set on the
relative difference, i.e., on

D=Q2m)" (1 /Low *A(Egp /Mc?) . (45)

Bessel®® used a pendulum to establish that

| D | <2x 107 for various pairs of substances.
The source in this case was the earth (Fe, Si, C,
O, - - ) for which we estimate roughly
£~1Xx1072 We also estimate A(Egy/Mc?)
~1X 1073 (see below). Bessel’s constraint then
tells us that [ /Lpw <3.5. Thus, this ancient test
of the equivalence principle sets a bound on / as
tight as any of the astronomical bounds (Sec. V),
but one free of ambiguity related to the uncertain
values of Q,,, and ¢t-. The 1922 torsion balance
test by Eotvos, Pekar, and Fekete®® gave

| D | <5x107? for various pairs. Using again
£~1X107? and A(Egy/Mc?) ~1x1073

we infer that [ /Lpw < 10~!. This result argues
against a variability. Evidently, experiments sensi-
tive to spatial variation of a are the only ones sen-
sitive enough to decide the question. In order to
make the most of the data from modern tests of
the equivalence principle, we now turn to some
fine points.

In his pioneering analysis of the relevance of the
experiments for a variability,6 Dicke calculated
Egy from the Coulomb interaction energies be-
tween nucleons alone. Evidently atomic and lattice
energies can safely be neglected by comparison.
But at first sight it seems that self-energies of nu-
cleons cannot, so let us include them. If ¢, €>
and ¢, denote the self-electromagnetic energies of
electron, proton, and neutron, respectively, we
should have for an atom of atomic and mass num-
bers Z and 4

Epm(Z,4)=Z(e,+€,)+(A—2Z)e,
+7.7X10*mc?Z%24 13, (46)

where 77 is the atomic mass unit (% of the mass
of the C!2 atom); the last term in (46) is the
Coulomb term from the nuclear mass formula.?®
To a sufficiently good approximation M (Z,A)
=Am (the maximal error is 0.3%). Hence, for nu-
clei specified by Z, A, and Z,, A,,
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E E zZ, Z A% Z,?
2 = A= A L 77%10- r——aa | @7
Mc Mc? |, A4, Ay | mc? A A4

where A=¢, —€, —¢,. Evidently €, <m,c*=0.51
MeV. Also, the 1.29 MeV mass splitting between
neutron and proton is known to come exclusively
from electromagnetlc effects: €, —€, =1.29 MeV.
Thus 8.4X 10™* < A//ic? <1.4% 1073, In most
cases the two terms in (47) are opposite in sign.
When one nucleus is heavy and the other light, as
in the actual experiments, the correction due to
self-electromagnetic energies is small (typically
5%); this justifies Dicke’s approximation.

Roll, Krotkov, and Dicke®”® showed that the
sun accelerates gold and aluminum masses equally
to great accuracy. Their formal result was

=(0.96+1.04)x 10~!! (10 interval). Thus at the
95% confidence level D <2.7x10~!!, For gold
and aluminum the difference (47) is 2.7 X 1073,
We get a definite lower bound on & of the sun by
regarding it as composed only of hydrogen, and
taking the minimal value 0.7 MeV for €, (see Sec.
V). This gives £>3X 1073, Putting all these into
(45) we come up with the 95% confidence bound
1/Lpw <5% 1073, Braginsky and Panov'® estab-
lished with 95% confidence that
D=(0.3+0.9) X 10~ '2 for platinum and aluminum.
For these the difference in (47) is also about
27X 1073, With our earlier bound on ¢ we get
(95% confidence) I /Lpw < 1X 1073, Thus, the
Eotvis-Dicke-Braginsky experiments strongly rule
out the framework for a variability developed here
from assumptions P1—P8. Because these are rea-
sonable assumptions we now know with some con-
fidence that a is a parameter, not a dynamical
variable. It undergoes no spatial or temporal
changes whatsoever.

VI. CONCLUSIONS AND CAVEATS

Experimental constraints on variation of a can-
not by themselves rule out variability. A theoreti-
cal framework capable of making specific predic-
tions is required to judge the relevance of any par-
ticular constraint. Just such a framework has been
developed under very general assumptions; it neces-
sarily entails a modification of Maxwellian electro-
dynamics. A characteristic length / enters into it.
An experimental constraint rules out a variability
of any kind if it is in clear conflict with predic-
tions of the framework for / no shorter than the

—
fundamental length 10733 cm. By this criterion
neither the astronomical constraints nor those from
laboratory intercomparison of clocks are sufficient-
ly sensitive to rule out variability. The geophysical
constraints are marginally sensitive, but uncertain-
ty about various cosmological parameters precludes
firm conclusions. The constraints from laboratory
tests of the equivalence principle are very sensitive
and strongly rule out all a variability.

Our approach divorces electromagnetism from
the weak and strong interactions. Yet, it is
suspected that all three are unified at high energies.
Thus it would be more logical to introduce a
spacetime variable coupling constant into the uni-
fied gauge theory of the three interactions and re-
cover electromagnetism with a variable a after
symmetry breaking. What guarantee have we that
our scheme would emerge? Although only a full
treatment can decide the question, we would argue
that the very generality of our assumptions pre-
cludes other outcomes if, in fact, electromagnetism
separates cleanly from the other interactions in the
presence of a variable coupling constant. A full
treatment would be worthwhile, not only to verify
this point, but because it would make it clear
whether our conclusions about a carry through to
the constants of the weak and strong interactions,
or whether further experiments are needed to es-
tablish their strict constancy.*®
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APPENDIX

Consider the Lagrangian density
L == "), (A1)

where f(x) is an arbitrary function. The factor
< is conventional; i represents / Ine, and for
51mphclty we have dropped /. For what f’s is (A1)
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consistent with causality? We show that only for
f(x)«x.

The wave equation corresponding to (A1) is

1 e +2f"PH Py, =source , (A2)

where f’ and f"' denote first and second derivatives
with respect to the argument. We consider the
evolution of small disturbances 8y on the back-
ground (g,,,¥). The characteristics S (x ) =const
of the corresponding linearized equation obey

£8"S uS +2f"(PHS =0 (A3)

Now, by causality characteristics cannot be space-
like surfaces (information transmitted outside the
light cone) so g#*S S, >0. Consider the option
g""s S, >0. It follows from (A3) that f’ and f”
always have opposite signs. This rules out maxi-
ma, minima, or inflection points of f(x). Hence,
either (a) f'>0 and f" <O for all x, or else (b)
f'<0and f” >0 for all x. We also want f’ and
f"' to be well behaved in order that the wave equa-

tion be well defined. This is especially true near

x =0 because for easily realizable gradients

| %€ %€ ,e®| should be small if, as we know, / is a
very short length. Thus for small |x | we must
have f'=a + Bx? for constant a, and y.>° For
case (a) above we need a,8>0 (f' >0 for x >0),
y=ratio of even to odd integers (f” real and posi-
tive for x <0), and y <0 (f”" <0 for x >0). But
then f"" >0 for x <0 and f',f"— « at x=0, so
this alternative is excluded. Case (b) is excluded in
a similar manner.

We return to the alternative g¥*S ,S , =0 (null
characteristics). The field ¢, can be quite compli-
cated and need not lie in the null surfaces of the
spacetime. In fact if ¢, is timelike (€ , in an ex-
panding Universe), it cannot lie in null surfaces.
Hence, in general ¢S , 0. It follows from (A3)
that f”=0. Now, ¢*¢ , need not be constant on a
characteristic. The implication is that
f(x)=ax +b for constant a,b. Of course b does
not generate any dynamics for 1 and so can be
dropped.
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