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Dynamical symmetry breaking in massless AP theory in curved spacetime with non-

conformal coupling to the curvature is investigated. It is shown that in general the one-

loop self-energy for such a field will involve a term of the form Rln~Rp ~, where R is

the scalar curvature, and p is a mass. This term can give rise to symmetry breaking.
Two models, the Einstein universe and a spatially flat Robertson-Walker universe with a
power-law expansion, are considered where this term is the sole contribution to the one-

loop self-energy. In both cases a phase transition will occur at a critical value of the cur-
vature. The form of the two-loop corrections to the self-energy and the limits of validity

of the one-loop approximation are discussed.

I. INTRODUCTION

Recently, the problems of interacting quantum
field theory in curved spacetime, including the ef-
fects of spacetime curvature upon symmetry break-

ing, ' ' have begun to be treated. In particular,
the generation of a mass as a result of one-loop
quantum corrections in a homogeneous spacetime
with nontrivial topology has been considered. '

It has been found that this mass may be tachyonic
and can, under certain circumstances, introduce an
instability into the theory. This instability may be
interpreted as resulting in dynamical symmetry
breaking. For the case of a self-coupled scalar
field, the vacuum state in which (P) =0 ceases to
be the stable ground state of the theory is replaced
by a configuration in which (P)+0. This is simi-
lar to the familiar Goldstone model, ' but with the
essential difference that the tachyonic mass is gen-
erated dynamically rather than being introduced by
hand. The dynamical symmetry breaking with
which we will be concerned differs from that treat-
ed by Coleman and Weinberg' in that the latter
mechanism can occur in Minkowski spacetime,
whereas we will be concerned with effects pro-
duced by a nonzero curvature or nontrivial topolo-
gy. It also differs from the symmetry breaking
considered by Grib and Mostepanenko' which is
produced by a background gravitational field at the
classical level, and that of Abbott' who added an

RP term onto a result for the effective potential
computed in Minkowski spacetime. Our calcula-

tion involves the quantum corrections to the classi-
cal theory computed in curved spacetime.

Here we will consider dynamical symmetry
breaking for an uncharged scalar field theory with
a A,P self-interaction which is produced by one-

loop quantum corrections in a curved background
spacetime. Our primary concern is with effects
which arise when the scalar field is coupled non-
conformally to gravitation. When the spacetime is
not stationary, the analysis of stability and the
characterization of the stable ground state is con-
siderably complicated; examples in which this com-
plication arises will be considered.

The outline of this paper is as follows. In Sec.
II we develop some formalism which will be useful
in discussing the stability of A,P theory on a
curved background. In Sec. III we consider the
general form of (P ) for a nonconformally cou-
pled scalar field in a curved spacetime. This quan-
tity governs the radiative effects upon vacuum sta-
bility. It is shown on the basis of general argu-
ments that at the one-loop level a term of the form
R ln

~
Rp ~, where R is the scalar curvature and

p is a mass, will arise, and its coefficient is calcu-
lated using an argument based upon the renormali-
zation group. It is also argued that the two-loop
corrections will introduce a term of the form
Rln ~Rp

~

anditscoefficientiscalculated. In
Sec. IV some particular spacetimes are considered
in which (P2) may be explicitly calculated at the
one-loop level and shown to be of the form deter-
mined in Sec. III. These results are then applied to
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the analysis of dynamical symmetry breaking. The
two models considered are the Einstein universe
and a spatially flat Robertson-Walker universe
with a power-law expansion. In both cases it is
found that the symmetric (P) =0 vacuum state is
stable for certain values of the scalar curvature and
unstable for others. Consequently, a phase transi-
tion can occur between the symmetric and unsym-
metric phases as the curvature varies. In Sec. V
the limits of validity of the one-loop approxima-
tion are discussed, and it is found that higher-loop
corrections can be neglected near the phase transi-
tion for certain choices of the parameters in the
theory.

4=(z
I Pq Iz), (2.7)

where
I
z) is a coherent state for some particular

mode. Because

(:jkq+Ã4q+, ~(4q'+ 34q'4c+ 34qkc'

—3(y, ')y. )=o. (2.6)

The problem of characterizing the ground state
of the field theory is that of finding a solution to
Eq. (2.5) which is associated with a stable quantum
field theory. The criterion for stability which will

be adopted here is that introduced in Ref. 9, which
may be formulated as follows. Let

II. STABILITY OF A,Q THEORY IN CURVED
SPACETIME and

(2.g)

In this paper we will be concerned with the ef-
fects of spacetime curvature upon the stability of
the vacuum state of a neutral scalar field with a
A,P self-coupling. We assume the field to be mass-
less at the tree-graph level so that the Lagrangian
density is taken to be

(2.9)

the equation for 4 is

Cl@+(R@+A ( 3
4 +$,4 +p, 4

+(P ') 4)=0. (2.10)

~=( g)'"—( ,g""r)i—4~A

——,/RAN
——„A,P ), (2.1)

HC+gR4+ A,(P,'+ (Pq'), )4=0 . (2.11)

If we assume that 4 is small and drop the non-
linear terms, then this equation becomes

I7$+gRP+ , AP'=0 . —

Let us now write

4=0.+4q

(2.2)

(2.3)

where P, is a classical field, and Pq is a quantum
field with a vanishing vacuum expectation value,
so that

&y),=—&o
I y I

o) = (2.4)

Because (Pq ) =0 (e.g., by Wick's theorem), if we
take the vacuum expectation value of Eq. (2.2) the
result is

Clg, +gRJ, +A, (P )P,+ —,Q, =0. (2.5)

If we subtract Eq. (2.5) from Eq. (2.2), the result-
ing equation satisfied by Pq is

where R is the scalar curvature and g is a dimen-
sionless parameter describing the coupling of the
scalar field to the gravitational background. (The
metric is taken to have signature —2.) The choice
g= —, gives a conformally invariant theory. We as-

sume A, & 0 so that the field energy is bounded
from below. The equation of motion associated
with (2.1) is

The stability criterion will be that Eq. (2.11) does
not possess any solutions which grow too rapidly,
although it is not easy in general to give a precise
statement of what constitutes too rapid a growth.
In a stationary spacetime unstable solutions are
characterized by exponential time dependence. In
nonstationary spacetimes the time dependence (re-
lative to some chosen set of observers) of solutions
to Eq. (2.11) will in general be rather complicated.
In Sec. IV a particular cosmological example will
be considered in which growing solutions to Eq.
(2.11) arise and which may be considered to be a
case of instability.

This is a criterion for relative stability and not
absolute stability. In situations where an effective
potential may be defined (that is, where homo-
geneity in space and time imply P, =constant), it is
equivalent to requiring that the vacuum be associ-
ated wtih a local minimum of the effective poten-
tial. It does not eliminate the possibility of vacu-
um decay of the sort which arises when the vacu-
um is not associated with an absolute minimum of
the effective potential. Another criterion for rela-
tive stability is the negative-eigenvalue method
described in Ref. 10; this approach, the effective-
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&4»+&0»+) 4.'0» =o . (2.12)

We will be particularly interested in studying the
stability of the P, =0 configuration. In this case

P» is the usual massless free scalar field with a gR
coupling to the spacetime curvature. For cases in
which (P» )0&0, the one-loop quantum effects
can destabilize the P, =0 configuration, although a
negative (P» )o does not necessarily imply instabil-

ity.

III. THE FORM OF ($ )o

In this section we wish to make some general
observations on the characteristics of (P )0. At
the one-loop level we take P=P» to be a free field
satisfying Eq. (2.12) with P, =0. It has been im-

plicitly assumed in the above discussion that the
singular parts of ($2)o have been absorbed by re-

normalizations of the bare parameters entering the
theory and that the finite remainder is what ap-
pears in Sec. II along with renormalized values for

g and A, . If the expectation value of P is calculat-
ed in a given quantum state in curved spacetime
using dimensional regularization, the result is
found to be

potential method, and the procedure adopted in
this paper are all equivalent to the extent that
when more than one of them may be applied to the
same problem the results are in agreement.

Although we have chosen to work directly with
the equations of motion, the principal results of
this section, Eqs. (2.5) and (2.11), can also be de-
rived by use of the effective action. ' Note that
Eq. (2.11) is also the equation which would be sa-

tisfied by small perturbations of a solution to Eq.
(2.5). Thus coherent-state expectation values of the
quantum field are equivalent to small shifts in the
classical field P, .

In this paper we will be primarily concerned
with one-loop quantum effects, so that Eq. (2.6)
may be replaced by the linear equation

(P )o——RF(Rp, ), (3.2)

where I' is a function which may be determined by
the following argument. In dimensional regulari-
zation, p is introduced to keep the correct dimen-
sionality of (P )„sin n spacetime dimensions and
appears as a multiplicative factor p ". As n ~4,

p» "=1+(4—n)in@+0((n —4) ) (3.3)

so that p will appear in (P )0 only in the combi-
nation In@. This allows the form of (P )0 in (3.2)
to be deduced on dimensional grounds. Further-
more, at the one-loop level, p

" multiplies a sim-

ple pole at n =4 in (P )„sand so F must be linear
in lnIM. We must have

F(x)=C(g)lnx, (3.4)

where C(g) is a function of g to be determined. (F
is only determined up to a constant which may be
absorbed by a redefinition of p.)

From Eq. (3.2) we have

(P )o——C(g)R ln
~
Rp

Equation (2.11) becomes (P, =0)

(3.5)

4+JR4+A C (g)R (ln
~

Rp ~

)4=0 .

(3.6)

terms proportional to R are removed by renormali-
zation to the extent to which this is unambiguously
possible.

In general the calculation of (P )0 in a given
spacetime is a difficult task; however, some explicit
cases in which this calculation may be performed
will be discussed in Sec. IV. In these examples a
term of the form R ln

~
Rp

~

is found to appear
in (P )0, where p is an arbitrary mass. Here we
wish to argue that such a term is expected in gen-
eral. Assume for a moment that (P )0 is a local
functional of R and p only; that is, assume it is
geometrical and does not depend on invariants
such as Rz„R"or R& ~pR" ~. Then it must be
of the form

Now consider a redefinition of the parameters p, g,
and A. (the renormalization-group transformation):

The pole term is independent of the choice of state
and takes the same form in all spacetimes. ' The
finite part (P )0 contains all information concern-
ing the details of the state. If the pole term is re-
moved by a renormalization of g, there is also the
freedom to perform additional finite renormaliza-
tions which redefine (P )o. We assume that all

where A, '=A, +O(A, ) and g'=g+O(A, ). If we
work only to order A, and write

(3.7)

(3.8)

(3 9)
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A,C(g') =A,C(g)+0 (A,'), (3.10)

g= ('+ AC(g')In
p

(3.11)

The renormalization-group equations may now
be used to determine C(g). Let the bare quantity

gz be expressed in terms of the renormalized one g
by

gs ——)+g (n —4) "d„((,A, ),
v= 1

and define the function

a
pg=p

Bp

It may be shown that '

(3.12)

(3.13)

(3.14)

then Eq. (3.6) is left invariant by this rescaling pro-
vided that

regarded as a finite residual of the renormalization
process which is not of a form which can be re-
moved by an additional finite renormalization. In
this sense it is analogous to the anomalous trace of
the stress tensor. In general there will be addition-
al state-dependent contributions to (P )o. Howev-
er, as will be illustrated in Sec. IV, it is often the
only contribution.

The arguments used above to obtain Eq. (3.5)
may be extended to find the corresponding two-
loop contribution to (P )0, which will be of order
iL. Although there are nonlocal divergences which
arise at the two-loop level, these cancel among
each other and the theory remains finite, '

Bunch has shown that this is true to all orders.
To two-loop order, Eq. (3.15) is replaced by

Sm
" ' 3(166)

(3.21)

The solution of Eq. (3.14) is now

d) ——— (g——,)+O(A, ) .

Equations (3.13)—(3.15) yield, to order A,,

(3.15)
q

(g' ——, )ln
8~' p'

5A,
(g' —» )ln

6(SH)' " p'

~p 82
which has the solution (for g@ 6 ),

(3.16)

Here A, and A,
' are related by

(3.22)

1

6
ln

16~' p' (3.17) 3A,
2

A, '=A, + ln
8 p

+O(A, ') . (3.23)

If we take g —Q=0 (A, ), then we may write

+O(z') .
16m

' p'

Comparison with Eq. (3.11) leads to

C(g)= (g——,) .
16

We conclude from Eqs. (3.5) and (3.19) that a
geometrical state-independent contribution to
&y'), of

($~)o—— (g——,)R ln
~
Rp

16m

(3.18)

(3.19)

(3.20)

+D(g)ln
~
Rp

~ ], (3.24)

then Eq. (2.11) will be invariant under the redefini-
tions in Eqs. (3.22) and (3.23) provided that

1 i 5A, 7

16m 3(16m )

Note that to order A, , the conformal choice g= —, is
a fixed point of the renormalization group, but
that this is no longer true to order A, .

The appearance of the term ln (p/p') in Eq.
(3.22) means that the two-loop contribution to
(P )0 must contain a term of the form
R In

~
RJM

~

in order to maintain invariance
under the redefinition of p, g, and A, . If we write

(P )o——R [C(g)ln
~
Rp

is expected on general grounds. This term may be (3.25)
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and

D(g)=,(g——, )
(16 )

(3.26)

Again it must be emphasized that Eq. (3.24)
does not in general represent the entire two-loop
contribution to (P )p, but rather gives that part
which is determined solely by the coefficient of the
pole term; that is, by di ~ The form of the two-

loop corrections given in Eq. (3.24) may, however,
be used to assess the limits of validity of the one-

loop approximation, as will be discussed in Sec. V.

where

p =a [m +(g——,)R], (4.4)

m is the mass of the field, and f+i~z are functions
whose form is irrelevant to the present discussion.
If m =0, then p =(6g—1) is a constant indepen-
dent of a. In this case, the second term in Eq.
(4.3) is proportional to R and can be removed by a
finite j renormalization. This results in

(P )p
——(16m. ) '(g ——,)R In(Rp )

(4.5)

IV. PARTICULAR MODELS

A. Static Einstein universe

Consider the static Einstein spacetime whose line
element is given by

P, =+ — R
3

(4.2)

This is just the usual result for the wrong-sign
mass model, and the solutions in Eq. (4.2) are lo-

cally stable if (&0.
In order to examine the effects of one-loop

corrections on stability (P )p is required. This
was calculated in Ref. 9 for a massive field.
Equation (44) of that paper, with the correction of
an erroneous numerical factor and a slight change
of notation, reads

($2) (16/) —i —21 (
2 —2 —2)

2—m ln
m

P

—(2+a ) [f-i'(p)+puffin(p)]

a [dg +sin X(d8 +sin Hdg )],
(4.1)

and whose topology is R ')&S . The scalar curva-
ture for this model is a constant, R =6a

The classical vacuum state P, =0 is easily seen
to be stable only for g) 0 since the scalar curva-
ture acts like a mass term here. For / & 0 there is
symmetry breaking at the tree level with the field
developing a nonzero curvature-dependent vacuum
expectation value of

+ ~(g—6)R ln(Rp ) .1 —2

16m
(4 6)

The n =0 mode will therefore be unstable (i.e., the
modes will grow exponentially in time) if

gR+ (g , )R ln(Rp —)—&0.
16

(4.7)

Assuming that g & —,, P, =0 is found to be un-

stable if the radius satisfies a & a, where a, is the
critical radius defined by

a, =v6p- exp
8&(

(g ——, )A,

(4.8)

Note that this critical radius is invariant under the
renormalization-group transformation in Eq. (3~ 18)~

If a &a„then the classical ground state P, =0 is
1

stable also at the one-loop level. If g & —,, then

P, =0 will be unstable if the radius satisfies a ~a„
and stable otherwise.

We can find the ground state in the case of an
instability by solving

o0.+fR4. +
3 0.'

+ (g ——,)R[ln(Rp )]$,=0. (4.9)
16

which is recognized to be of the form in Eq. (3.20)
predicted by the general arguments of Sec. III.

The stability of P, =0 is determined by whether
or not the solutions to Eq. (2.11) with (P )p given
in Eq. (4.5) remain bounded for all times. We
have O=B /Bt —(1/a )Vs where Vs is the La-
placian on S whose eigenvalues are given by
n (n +2) where n =0, 1,2, . . .. Assuming a time
dependence for C' of the form e '"', we find that
the eigenfrequencies are given by

n(n+2)
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Assuming ((), to be a constant we find either ()), =0
or

essentially equivalent to those found here for the
static Einstein universe.

R — (g——,)R 1n(Rp ) .
16)r

(4.10)

In order to examine the stability of these solutions
we must solve for the eigenfrequencies of Eq.
(2.11). The lowest (n =0) eigenfrequency is given

by ds =dt a(t—)(dxi +dx2 +dxs ), (4.13)

B. Robertson-walker universe with a power-law
expansion

In this model we consider a spatially flat, topo-
logically trivial Robertson-Walker model whose
line element is

p) = —2 gR+ (g——,)Rin(Rp )
16

where the scale factor is given by the power law

a (t) =at' (4.14)
(4.11)

which is positive when Pc =0 is unstable. The
states given in Eq. (4.10) are therefore locally

1
stable for a &a, when g & —,, and for a &a, when

1

If we imagine a closed Robertson-Walker
universe whose scale factor grows sufficiently slow-

ly so that it may be regarded as a sequence of stat-
ic Einstein universes of increasing radii, then as the
radius passees through the critical value of a, there
will be a phase transition.

Another static case where (P )p takes the form
of Eq. (3.5) is de Sitter spacetime. Because the
scalar curvature is constant the results will be

for a and c constants. It is assumed that c+1;
however, the case c =1 has been examined
separately, and there were found to be no essential
differences with the c+1 case treated here. The
scalar curvature is

R (t) =6c (2c —1)t (4.15)

which approaches zero at late times.
The classical wave equation for the free theory

can be solved in terms of Hankel functions. [See
Eq. (4.18).] Bunch and Davies have calculated

(P )„s,for the case (=0, in the out vacuum state
using point separation. The result, their Eq. (3.10),
may be written as

G(x",x')=(P )„s———(16' e X) '+ (R~pt t~+ —,R)
48ir'

96
[2y+ln

~ 6Rp X
~
+in(e)(t )]+O(e lrie), (4.16)

where t is the separation vector, X=t t~ =+1, e
is one-half of the proper distance between x' and
x", y is Euler's constant, and we have introduced
the arbitary unit of mass p to keep the arguments
of the logarithms dimensionless. If the directions
of t are averaged over, then t t~~g ~, and

R~ttt t~ &R. The terms i—n Eq. (4.16) which are
singular when the regularization is removed by
taking the e—+0 limit may be absorbed into mass
and g renormalizations; the result after renormali-
zation is

(P )p ———(96ir ) 'R ln
~

R)M (4.17)

This is seen to agrm with the result in Eq. (3.20)
for /=0. In this model, as in the Einstein
universe, the entire expression for (P )p is the con-
tribution discussed in Sec. III. For /+0, the re-

where b~ and b2 are constants,

i) =a '(1 c) 't'—
(4.19)and

v =(1—6g)
(1—c)

Hence v is either pure imaginary or real and non-
negative. These solutions are always oscillatory.

I

suit for (P' )p is given by Eq. (3.20); this follows
either from the arguments of Sec. III, or by expli-
cit calculation.

Let us first consider the stability of this model
at the classical level. The solutions to Eq. (2.11)
with A, =O are of the form

(i 3c)/2(1 —c—)[b ~())(krl)+b If( )(k2l)]haik e~ x

(4.18)
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Consequently the theory is stable at the classical
level for any choice of g. Although it is possible
to choose g so that gR in Eq. (2.11}has the same

sign as a tachyonic mass term, the time depen-
dence of 8 prevents the theory from being un-

stable.
In order to examine the stability of the state

(t c =0 when one-loop effects are included we must

examine the solutions to Eq. (2.11). These will be
of the form 4=e' " ' "Fk(t). The stability may be
determined by considering the k =0 mode, as this
is the first to begin to grow at the onset of an in-

stability. The solution is expressible in terms of
Hankel functions whose argument may be either
real or imaginary depending upon whether t is
greater than or less than a critical value t, given by

8772 2

t, =~6c ~2c —1~ p exp. (1—c)

(g —' g,
' 24c (2c —1)

(4.20)

Let

3A, i c(2c —1)
4H ' (1—c)

(4.21)

If B &0 and t & t„orif B &0 and t ~t„then

F (t) t(1 —3c)/2 1/2 H(1) 2 3/2 + ~(2) 2
Z 3/2

0 1 1/3 3~B
~

2 1/2 3
L

(4.22)

z =
~

(1 c)B1n(pt)+/I ———„~, (4.23)

A =(6g—1) 1+ ln(6c
~

2c —1
~

)
c (2c —1) )(,

(1—c} 16+
(4.24)

and c~ and c, are constants. If B &0 and t ~ t„orif B g0 and t &t„the solution is

F (t) t( 1 —3c)/2z I/2 H(1) 1 3/2 + ~(2) 1 3/2 (4.25)

(4.26)

The critical time given in Eq. (4.20) is that value for which the argument of the Hankel functions vanishes,
(i.e., for which z =0). It is invariant under the rescaling ((t~(M' and g~g' in Eq. (3.18) in the same way
that the critical radius was in Sec. IV A.

When
~ leapt ~

is large, the mode given in Eq. (4.25) behaves like

'"exp( —,
I
B

I

'"
I

l —c
I

'"
I
imt

I

'"}

and therefore grows faster than any power of t.
We identify such modes as corresponding to an in-
stability of the state P, =0 since the perturbation
grows with time faster than the Robertson-Walker
scale factor (or indeed, faster than any power of
the scale factor). The behavior in Eq. (4.26) may
also be obtained from a WKB analysis of the wave
equation (2.11).

Therefore, we have found that as the time in-
creases beyond a critical value, if B &0, then the
tree-level vacuum state (t)c =0 becomes unstable
and the discrete symmetry P~ —P is broken. If

l

B &0, then for t &t„the vacuum state is not the
tree-level one, but as t increases beyond t, this new
state becomes unstable and the discrete symmetry
gets restored.

In order to characterize the stable ground state
of the theory in a regime in which the P~ —P
symmetry is broken, the nonlinear differential
equation (2.5) must be solved. We have not been
able to do this exactly, however, it is possible to
find the asymptotic form of this solution which is
valid as t~~ in the case B &0. Assume that the
time derivatives of Pc in Eq. (2.5) may be neglect-
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ed. In this case the solution becomes

gR + (g——,)R ln1Rp,

(4.27}

which is positive. As t~ oo this is a self-
consistent solution. [The time after which this
asymptotic form becomes a good approximation to
an exact solution may be estimated by computing

P, and P, from Eq. (4.27).] With this form for P„
Eq. (2.11}becomes

Cl@+.—,P, 4=0 . (4.28)

V. DISCUSSION

It has been shown in the previous section that
the one-loop radiative corrections in ~ theory in
curved spacetimes such as the Einstein universe or
an expanding spatially flat Robertson-Walker
universe can cause a phase transition between the
symmetric P, =0 vacuum and a nonsymmetric

P,+0 vacuum. We have, however, not addressed
the question of the limits of validity of this one-

loop approximation. From Eqs. (3.24), (3.25), and
(3.26), we see that the two-loop contribution to
(P )0 is small compared to the one-loop contribu-
tion provided that

1k, ln1Rp '11((16m'. (5.1)

Let us consider what constraints this require-
ment imposes upon the results obtained in the pre-
vious section. In the Einstein universe, the critical
radius is given by Eq. (4.8) and satisfies

gR, + (g——,)R, ln(R, p ) =0,
16

(5.2)

where R, =6a, is the scalar curvature at the
critical radius. In order that Eq. (5.1) be satisfied
near a =a, we must have

141«6 ~ (5 3)

Similarly, in the expanding-universe model of Sec.
IVB,

Because P, &0 in the regime where the symmetry
is broken, the solutions of Eq. (4.28) will be oscilla-
tory, verifying that this nonzero P, is associated
with a stable vacuum state. Note that as t~ oo,

P, —+0 so that the broken and unbroken phases be-

come indistinguishable at very late times.

2

ln1R, p 1
=,—1 . (5.4)

24c (2c —1)(g——, )

Equation (5.1) implies that

(5.5)
(1—c)

24c (2c —1)
1For example, if c = —, , then /=0.

Equations (5.3) and (5.5) give the conditions
under which the one-loop approximation is valid
near the phase transition, and hence that Eqs.
(4.8) and (4.20) are correct. For other choices of g,
the one-loop approximation will fail, and two- and
higher-loop processes will be important near the
transition. The situation is rather analogous to
that found by Coleman and Weinberg' for mass-
less scalar electrodynamics in flat spacetime. In
general, the one-loop approximation is not ade-
quate to characterize the stable ground state of the
theory, but for certain choices of coupling con-
stants higher-loop processes can be neglected.
Another analogous situation is finite-temperature
field theory where higher-loop effects are impor-
tant near the phase transition, but the high-
temperature limit can be described by the one-loop
approximation.

It may appear rather strange that Eqs. (5.3) and
(5.5), which involve g but not p, , are apparently not
invariant under renormalization-group transforma-
tions. However, recall that changes in g under a
rescaling are of order A, [see Eq. (3.18)j. The im-
plication of Eqs. (5.3) and (S.S) is that k, must be
sufficiently small so that g and f both approxi-
mately satisfy these conditions. Thus, as might be
expected, the validity of the one-loop approxima-
tion requires smallness of the coupling constant.

In the Einstein universe, Eq. (5.3) results in the

P, =0 phase being stable for a & a, and the $,+0
phase being stable for a &a, . Thus an adiabatical-
ly expanding closed universe undergoes a phase
transition which restores the P~ —P symmetry.
In the case of a spatially flat Robertson-Walker
universe with a power-law expansion, Eq. (5.5) re-
quires that 8 &0, so that the symmetric phase is
stable for t & t, and the nonsymmetric phase is
stable for t ) t, .

The expression for a, and t, involve the mass
parameter p. If we suppose that g and A, are
given, then p has a definite but unknown value
which the theory cannot predict, and which must
be determined empirically. The physically signifi-
cance of the phase transition produced by radiative
effects depends crucially upon the value of p. If it



1518 L. H. FORD AND D. J. TOMS 25

is of the order of the Planck mass, then t, will be
of the order of the Planck time. On the other
hand, it seems equally plausible that p might be of
order 1 GeV, in which case t, =10 sec. It is
often argued that effects due to spacetime curva-
ture ought to be important only at the Planck time;
however, in the present case, there seems to be no
way to exclude the possibility of such effects being

large at much later times.
We have assumed that the quantum state of the

field is the vacuum. (For the Einstein universe it
is the vacuum defined by the timelike Killing vec-

tor; for the power-law expansion it is the out vacu-
um. ) If the system is in some other state then ad-

ditional terms will appear in Eq. (2.11). In partic-

ular, for a thermal state, finite-temperature correc-
tions must be taken into account.
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