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Some exact solutions of Einstein-Dirac-Maxwell fields and massive neutrino
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Some exact solutions of Einstein-Dirac-Maxwell equations are presented for a zero-mass neutrino. It is found that,
in the presence of an electromagnetic field, even the time-dependent Dirac field has ghost solutions. But the solution
becomes "ghost-free" in the presence of (charged) matter. It is shown that the time-independent Dirac field has a
ghost-free solution if, in the context of the current speculations, the neutrinos are considered to possess some mass.

I. INTRODUCTION y~P. ~+ mP = 0, (2)

Using Cartan's formalism Davis and Ray' (DR)
obtained an exact solution of the Einstein-Dirac
equations for a zero-mass neutrino in a static
plane-symmetric space-time where the Dirac
field is time independent. The interesting feature
of their solution is that the neutrino energy-mo-
mentum tensor vanishes, whereas the neutrino
field and current density do not. Hence they refer
to this neutrino as a "ghost neutrino. "

Later, Pechenick and Cohen' (PC) presented
a more general solution of Einstein-Dirac equa-
tions with the same metric as in Ref. 1, but with
a time-dependent Dirac field. They obtained in
their solution a neutrino field with a nonzero
neutrino energy-momentum tensor and current
density. Thus, one may think that their solution
may represent physical neutrinos.

Sections IIA and IIB of this paper aredevoted
to the electromagnetic versions of the above two
solutions in cylindrically symmetric metrics.
In both cases our solution represents "ghost neu-
trinos" only. In Sec. IIC we have therefore pro-
ceeded to obtain an interior solution of Einstein-
Dirac-Maxwell equations in a charged fluid. The
solution is now "ghost-free. "

In the context of the current speculations" that
the neutrinos may possess some mass, we ob-
tain in Sec. III a ghost-free solution for a time-
independent Dirac field. One may then say that
general relativity demands that the neutrino should
possess some mass.

In this paper we have used cylindrically sym-
metric Weyl, Einstein-Hosen, and Marder me-
trics. It has been shown in the Appendix that
broadly similar results may also be obtained with
the plane-symmetric metric used by DH and PC.

II. FIELD EQUATIONS AND THEIR SOLUTIONS

The field equations of Einstein-Dirac-Maxwell
fields are

R~k —
2 g~kR = 8mGE~k+ 8rGT (1)

Fjk P

F~k, t+F» . +F,,- k
—P,

with

(8)

(4)

'k k jl ~g jk Flm' (6)

In this subsection we shall restrict our discus-
sion to the static case only. Hence, the Dirac
field g is a function of r only.

Let us consider the line element (Weyl form).

ds' = e'" dt' —e' '"(dr'+ dz') r'e '"dp'—
where u and k are functions of r alone. Equation
(2) can be expressed as

(8)

where a comma indicates ordinary differentiation.
Solving Eti. (8) we get

e(kk- a) /2q
1

Qk

g, being an arbitrary constant spinor. From Eq.
(5) we get

T„=-,'e" (2u, —k, )sty'y'y'g (10)

T30 ~g" 2u& —— y y y

All other components of the energy-momentum ten-

We use units in which k= c = 1. We adopt the con-
ventions of Jauch and Rohrlich' for Dirac y ma-
trices and the notations of Brill and Wheeler' with
regard to (t, g*, and V~g.

In the solutions of this section we shall put m = 0
(zero-mass neutrino).

A. Time-independent Dirac field
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sor vanish. The only nonvanishing components
of the electromagnetic field tensor are F02 and

F». From Eqs. (3}and (4) we get

E»=c, /e" and F»=C, /e (12)

i, [y ' (c'/2a')y'-'] ', ,)y'

Equation (21) together with Eqs. (16)—(19) will
give the complete solution.

(23)

where C, and C2 are constants of integration.
The field equation (1) for the line element (7)

can now be written as

Q2e 2gQ, l
211

I ~ '1 + 2~ 2 +2e~2ti
211 ~,11

(13)

(14)

B. Time-dependent Dirac field

In this subsection we shall consider a field func-
tion which depends on r and t. Separating the
variables, p can be written in the form g, (y)e ' ',
where (, is a spinor function of y, and cu is a
positive real number.

We shall consider the Einstein-Rosen metric

21 I ~1 g 2e- 23'u
211 y , 11 y

(is) ds2 e2( 2 6I) (-dt2 dy2)

-28dp2 e2&dS 2 (24)
where

c'=4~G(c '+c ')

The solution of Eqs. (13) and (14}are given by

where u and p are functions of r alone.
Using the notations and results of Ref. 2, we

get from Eq. (2)

C2
e 2' — +1-a + +1+a

2g

C2 4

e 2h gl- g + pl+a
2g

C2 )-2
F =C yl a+ y+

02 1 2g2 )

yl-a+ yl+2
~2g2 ]

(i6)

(17)

(18)

(19)

d4o l 0
S(ding —2 +Q 1

—P 1
Isa

From the solution of Eq. (25) we get

&(8-~)/2&24(ply' 2)~-
where (, is an arbitrary constant spinor.

The nonvanishing components of the energy-
momentum tensor from Eq. (5) are

(2s)

(26)

(20)

kZ

where (, is a scalar.
Then from Eq. (9), one gets the neutrino solu-

tion

( g2 'Ir -1/2
~

y2-4+ y2+2
~v

I 2g2' ) v0~

where

(21)

where g is a constant.
Proceeding exactly in the same way as in Ref. 1,

one gets from Eqs. (10) and (11)

e28-2(x
T —T00 11 (27)

Tol = Tlo= 4e (28)

T» = T„=—,
' e "[ III(t2i&uy')g +(n, — P2, ) I(Ityy'y'g j,

(29)

1T»=T„=4e "
III (2i(Ily')p+ n. , ——

g y'y'y ( .
L

(30)

The nonvanishing components of the electromag-
netic field tensor are given by (12).

The field equations (1) for the line element (24)
will reduce to

= lX0 (22)
e

= -C'e 2"+82GT„, (32)
at'

Q.0 being an arbit rary cons tant.
The current density S~ =igty~g when evaluated

will take the form

8» 2"
(p + P ''I--C2--

y ~

Adding Eqs. (31) and (32) we get

(33)
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P,1
yll ~ ~11 ~ ~1 y

(34)

T„=T„=0. (35)

Equation (34) is identical to the result obtained .

by adding Eqs. (14) and (15). Again, Eq. (33) is
identical to Eq. (13). Hence, the solutions for o.
and p will be similar to those for k and u, re-
spectively.

It then implies that

&„=T„=-,'e'-"t0'(» ~y')0

+ (u, —2p i —v, )g y'y'y'p], (43)

~OO=Tu = ~e

Again for the line element (41),

(44)

(45)

To, =T»= —,'e "
g (2icuy')(+ u, , ——

g y'y'y'g,
(

Since all other components of Z'» are zero from
the field equations, we have

(36)g» = 0 for all j and k.

Applying Eqs. (26) and (36) to Eqs. (27)-(30), one
gets

Rol -Ro2-R03 = 0.

Thus,

~01 ~02 ~03

Proceeding as before, we get

e(8-u-u)/2e((u(y y r-t)y1
vr C

(46)

(47)

4, =&0 (37) Equations (46) and (47) together with the Eqs.
(42)-(45) give

kZ

The wave function is

(r '+ (C'/2a')r'
(coeur+ iy'y' sinter)e ' '(„.

(3 8)

S

(48)

The current density will be given by Eq. (23).
The ghost solution in the case of Sec. IIA does

not cause surprise, but one may not expect such
a solution in the case of Sec. II B. Let us there-
fore see if a ghost-free solution can be obtained
for the Dirac time-dependent field with the elec-
tromagnetic field in the presence of matter.

~28 2C P
00 11 (49)

where s, q, and &f& are arbitrary real numbers.
Also

C. An interior solution n0 8-R- P (5o)

We shaH consider here an interior solution of
a charged fluid at rest. The field equations (1)
will take the form

where

M = —&egg, . (51)

R)|, —2 g)~R = —SwG(E)~ M+/~)+ SwGT)~,

where

(39) All other compobents of $~ are zero,
The field equations (39) for the line element

(41) reduce to

M/y —pQ gag p(gag Q /Q p), (40)

&2(8+@) d&2

where n, p, and v are functions of z alone.
The nonvanishing components of T~~ are

(41)

and T» and E» are given by Eqs. (5) and (6). The
quantities involved in Eq. (40) have their usual
meanings.

Let us consider here the metric (due to Marder')

ds'= e2(" @(dt' —dr') —-r'e-"d(I '

p —Qt v +2P u + +p — ' +
Q 1 V, l

=-SwGp- 4wGC'e ' '"—SwGToo, (52)

e'~' —P 2 —2P v+(w v+ ' +Q 1 Vl
~ 1 wl wl wl wl

=SwGp+4wGC e ~~ '"+SwG7'„, (53)

e202o ~ 2p
2P |

wll w
ll ~ 1

T&»=T,o=~e "g (4ivy')g, (42) =SwGp —4wGC e '" '", (54)
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~(n +p~~+2P ~v}+p g +&g )
~ t t t

=SvGp+4vGC'e ' '", (55)

where

trinos possess some mass, we think that we
should attempt to find a solution for the massive
neutrino. We do this here.

Equation (2), when solved for the line element
(41), will give

A solution of Eqs. (52)-(55) is as follows:

16mGMe'"=, exp &
cosar ~,cos'ax a' i

e2P
y'

cos2ar '

g2v
cos'ar

C2 16m GMp= -M cosa'- —exp-
a2 cosa'

(56)

(57)

(58)

g=—exp -my e dr~e'
Wr

(64)

p„, — n„p„+2P„p„+P„+v„— ' + "—0, (66)

g, being arbitrary constant spinor. The only non-
vanishing components of T» are &gf& &02& and T03.
The Einstein-Dirac field equations for the line
element (41) can be written as

8m'Gm& g-e- vn && i+ ' + —P &
—2p..i~ s= e, (65)t t ~" t

C' 16m GMp= -M cosa'+ exp—
2 a

cosa'

(59)

(6o)

2p, i

n, }i+",xx+2P, xv, i+P, }. +",i =0 s

with

(67)

(68)

where M is given by Eq. (51) and a'=SwGC'. From
Eqs. (4V) and (50) we get

1 4~GM
exp —

+ cesar), }61}cosar j"'

88 fM vw.m
11 y

where y = ]~~ g, and T» and TBO are given by

(69)

1 16mGM
~00 11 exp — cosar),cosa/

1 I' SmGM
S - exp}~ — cosar) .

cosar ( a'

(62}

(63}

T20= e (nx 2pi v, i)tt} y y y p,

The solution of Eqs. (65)-(68) is

(vo)

(Vl)

The above solution represents a fluid cylinder
of finite radius r, given from Eq. (59) by

The exterior solution will be the same as that of
the preceding subsection (i.e. , Sec. IIB).

We have obtained the above solution with a lim-
ited motive, namely, to see if a ghost-free solu-
tion of Einstein-Dirac-Maxwell equations can be
had in the presence of matter. The solution is
ghost-free as well as singularity-free.

III. MASSIVE NEUTRINO?

We find that the time-dependent Dirac field
which has a. ghost-free solution in an otherwise
empty space as in Ref. 2 has a "ghost" solution
in an electromagnetic field. Again it has a ghost-
free solution in an electromagnetic field in a
charged fluid. It is therefore obvious that the
neutrino theory may suffer from some basic weak-
ness. All solutions should be ghost-free if this
weakness is identified and removed. In the con-
text of the current speculations ' that the neu-

n =lnr+31n(r+A) —ln [(r+A)'+a'], (V2)

P=lnr+ln (r+A) —in[(r+A}3+a'],

v=ln(r+A) —lnr+ln[(r+A) '+as],

where a and A are constants of integration and

8m Gmy =12 .
Since R20=R30 0, we have

(V3)

(75)

',+q.

where s, q, and P are arbitrary real numbers.
From Eqs. (64), (69}, and (72)-(V4), we have

(76)

Equations (64) and (76) together with (Vo) and (71)
give
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and

(r /A)-3/2[( r +A)3 + a3] -1/2

&& exp ——(r +A)'y 'm

T» ——y m(r+A) ' [(r +A)'+ a'] '

(78)

(79)

-to those already obtained in this paper. The me-
tric is

ds'= e'"(dx' —dt') + e'"(dy2+dz2),

where u and v are functions of x alone.

1. Time-independent Dirac field

S/=4~o, ~2(r+A)-3[(r+A)'+a']-'(6'+6')

The metric for the massive neutrino will be

(eo)

ds' —( r +A)'( dt ' —dr ')
3y 3(2

dy'- (r+A)'de'. (81)
(r+A)2

To investigate the possibility whether the space-
time is singular at any point, let us calculate the
components of the Riemann tensor. The non-
zero components of the Riemann tensor are

The time-independent Dirac function g for a
massless neutrino is given by

8 -(v+3/2)
P

The nonvanishing components of the energy-
momentum tensor are

T„=,' e-"(v„—-u,,)g'y'y'y'y,

T30=68 "(",1 ,u)1A y y tt/

The nonvanishing components of the electro-
magnetic field tensor' are

(A2)

(As)

(A4)

2
101 212 ( r +A)6

4
202 ( ~A)6 )I

4 6(r +A)-'
(r+A)' (r+A)'+a"

6(r+ A)-'
303 323 (r+ A)6 (r P A)3 +a3

(82)

+20 C,e-'" and E» ——C2e"

where C, and C2 are constants of integration.
The fieM equations can be written as

(Ae}

e '"(u „+2u, v, )= —(C,'+C, )e '", (A6)

(A7)

e '" (u„+2v „-2u, v, + 2v, ') = —(C,'+ C,')e '",

The Kretchmann scalar K is calculated to be

K=24(r+A) "[(r+A)'+a'] '[5(r+ A)'+4a'].
k

e '"(v „+2v,') = ——(C,'+C, ') (A8)

(83)
Equation (83) shows that K is finite at r =0 if A

is positive and tends to zero as y- ~. It should
be noted from Eqs. (82) that all the nonzero com-
ponents of Riemann tensor approach zero as

Hence, the space-time is asymptotically
flat. Also S/, g, and T» all tend to zero as
y~ ~

The energy-momentum tensor component T00
will have a nonzero value if the Dirac field is time
dependent. However, from the results of this
section, one may infer that general relativity is
consistent with the existence of the massive neu-
trino. In other words, the discovery of the mas-
sive neutrino may be an important test of the
theory of general relativity.
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APPENDIX

Here we shall briefly derive with the plane-
symmetric metric all the results corresponding

where k =836 A solution of Eqs. (A6)-(Ae) j,s
given by'

e'"= C3A(3Ax+B} '/',

826- (3Ax ~B )2/3

F0, = C, (3Ax+B) '

F23 = C, (3Ax+B}~/3,

(A10)

(A11)

(A12)

where C„Bare constants and A = (k//2)(C, 2

+ C,'). Then frem Eq. (A2) one gets the neutrino
solus, ice.

g =(C A) ' (3Ax+B) '/'1I/ (A13)

S/=4~u0~'(C3A) 'k(3Ax+B) '/3(5/0/6/1}. (A14)

2. Time-dependent Dirac field

As in Sec. II 8 we have the following field equa-
tions:

8 "(u 11+2u 1v 1)= (C1 +C2 )8 +kT001 (A15)
k
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e (u»+ 2v ~~
—2u ~v g+ 2v g )

= —(C,'+ C,')e 4v —kT», (A16)

1
Q =2Qg

v =
& (bx'+c),

(A27)

(A28)

e 2"(v»+2v ~ ) = ——(C~ + C2 )e
k

Adding Eqs. (A15) and (A16) we get

(u, »+v, »+v, i)= ( i + 2)e

(A17)

(A18)

where a, 5, and c are arbitrary constants.
Using Eqs. (A27) and (A28), we get

8+ 2e-ce-(g+Q)g
00 11

$0 @,2e-ce-(a/2+y)g

k(E' -H') = —(a +b —2abx')e ~'

(A29)

(A30)

which is identical to the equation obtained by
adding (A6) and (A7). Equation (A8) is identical
to (A17). Hence, the solution of Eqs. (A15)-(A17)
is given by (A9)-(A12). It implies that

TOO ~11

8k+& 2e-ce (a+5)x

kfp= —,
' (a+b)(l+2bx')e ~

4k+& 2e-ce-(a+5)x

kp = —,
' (3a -b)(1+2bx')e '"

(A31)

(A32)

The field function g becomes

q = e 'v'"k'exp(iy'y'~x)e '"'q„, ,

where u and v are given by (AQ) and (A10).

(A20)

—4k~x e e

—= —(E")+2x(a+b)E".k(y d
2 dx

4. Massive neutrino

(A33)

(A34)

3. An interior solution

Proceeding as in Sec. II C for the line element
(A1) we get

e- & veu/2) e- ju tr

(A21)

Proceeding as in Sec. III we write the field
equations as

2u, v, +v, = —8vgotgome" '",
t11 t 11 t1

2=

V11 —2Q1V1+3V1 = 0,
with

T»=go/ me"

The solutions of Eqs. (A36)-(A37) are

(A35)

(A36)

(A37)

(A38)

go 8 2 -(2y+g)

where r, 6, and Q are real constants.
The field equations reduce to

(A22) u=v=2ln A+ —&mal
2

whereA is a constant of integration and

= —
3 7/l/J 0 /0

(A39)

e '"(2v „—2u, v, +3V,') =kp ——(E' —H') -kT„,
(A23)

k
e '"(2u,v, +v, ') =kp+ —(E'-H')+kT»,

(A24)

Thus we get

q= (A+ —&me~ e'V. ,2 )

S/=4~a, ~' &+ —&mx e "(5',+6/),A.

(A40)

(A41)

e '"(u „+v „+v,') =kP ——(E' -H'),
where

(A25)
-6

e'„=0,' g. m (& + —& m e (A42)

01 23

The Maxwell equation will take the form

dFO1
+ 2E "(u, + v, ) =4na, (A26)

where 0 is the charge density.
Since we have four equations (A23) —(A26) to

determine six quantities, let us take u and v as
free variables and choose them as

where
)=my'x(&'+2&xv'mx+ —,', x'mx'). (A43)

The metric for the massive neutrino is confor-
mally flat. Calculating the Riemann tensor and
the Kretchmann scalar, one can conclude that the
space-time cannot be extended beyond x = —2A/
Xv m, while the space-time is asymptotically flat
on the other side of the origin. Thus a sort of
bound state occurs as in Ref. 2.
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