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We state a new axisymmetric, static, asymptotically flat solution of the Einstein equa-

tions in a vacuum. The solution depends on three parameters, m, n, and y. When n ~ 00

and y~1, the solution has the Schwarzschild solution as a limit. There are no horizons

and the tetrad components of the conformal tensors are everywhere finite. The solution

lacks elementary flatness on the whole axis of symmetry.

I. THE ny SOLUTION

We describe a family of static axisymmetric
solutions of the Einstein equations which depends
on three parameters, m, y, and n, which we shall
call the ny solution. When n ~ oo and y—+1, the
solution is the Schwarzschild solution.

Static, axisymmetric solutions of the Einstein
equations are given by the Weyl metric

ds = e~dt +e ~[e—"(dp +dz')+p d0 l

with

disappear when y= 1 (the Schwarzschild case); in

this case the "line" p =0,
~

z
~
(m maps into the

horizon surface r =2m in the more usual coordi-
nate system. It is worthwhile to try to understand
the origin of the directional singularities. It may
be that the discontinuous nature of the source
function at

~

z
~

=m produces directional singulari-

ties. We shall introduce a source which does not
have discontinuities. The directional singularities
are then indeed no logger present, however other
problems arise along the axis. We take the source
distribution along the axis to be

and

A,»~+ +A, ,~ =0
P

(2) f= [arctan[n(z+m)] —arctan[n(z —m)]J.
2m'

is»p=p(A»p ~»z )» hz=2»pA, Qz». »
2

A, is given by the Newtonian potential of an ax-

isymmetric source. It is well known that the
Schwarzschild solution is generated by a mass of
density 1/2 distributed symmetrically along the
axis for a length 2m. The y solution is generated

by a mass of density y/2 distributed symmetrically

along the axis for a length 2m. Thus when @=1,
the solution is equal to the Schwarzschild solution.
As described in Ref. 1 and in other references cited
therein, the y solution has directiorial singularities

at the points p=0,
~

z
~

=m. These singularities

In the limit n ~ N», this is the distribution for the

y solution. The solution to Eq. (2) with this distri-
bution is

dz

[(» )2+ 2]1/2

X [are tan[n (z'+m)]

—are tan[n (z' —m )]I . (5)

After an integration by parts

J dz'ln~ [[(z'—z) +p ]' +(z' —z)]
~ 1+n (z'+m) 1+n (z' —m)

The integration is now readily performed in the complex z' plane. We state the result:

25 1465 1982 The American Physical Society



1466 DEMETRIOS PAPADOPOULOS AND LOUIS MITTEN 25

(R &+R2 —2m)(R &+Rz —2m)

(R &+R2+2m)(R, +R, +2m)

(R ~ +R2 2r—n +2i /n)(R ~ +R2 2—m —2i/n)(R
~ +R2+ 2m —2i /n)(R ~ +R ~ +2m +2i /n)

16R )R )R2R2

(R )+R2 —2m)(R )+Rz —2m)(R )+R2+2m)(R )+R2+2m)
X

(R)+R)} +4/n )((Rz+Rz) +4/n ))
2

R )~—p2+ — z+m
n

'2
2 2R2 ——p+ ——z —m

n
(10)

II. LIMITING BEHAVIOR OF THE ny SOLUTION

The ny solution is asymptotically flat; as p~ ao, or
~

z
~
~00, e ~e "~1. The solution does not have

the property of elementary flatness on the axis. The ratio of the circumference of a circle surrounding the
axis to its radius in the limit of vanishing radius is easily calculated to be exp( —p). Elementary flatness re-
quires @=0on the axis. We examine the behavior of the metric components on the axis (p=O):

R& ————(z —m}, Rz ————(z+m) .l l

n

In fact either or both R
~

and R2 can have the opposite sign from that indicated above when p=O. We
choose the signs indicated and identify the range of z for which these signs hold by comparison with the
known properties of the y metric (n ~ ao ). Of course the metric is symmetric about the z =0 plane:

2 2
'Y/2

(z+m) +1/n
e p=O=

(z —m) +1/n
(12)

This shows that the choice of signs in Eq. (11) is valid for z & —m since when n +oo, exp—(2A, )—+0 for
z =m or z =—m in the y metric (as in the Schwarzschild metric y= 1, where

~

z
~

=m are the poles of the
horizon). We see that for the ny solution there is no singularity at z =—m, and we can take Eq. (11) to be
valid for z &0:

[(z+m) +4/n [(z —m) ]
[(z —m) +1/n ][(z+m) +1/n ]

Elementary flatness is recovered as n ~ oo. The
lack of elementary flatness along the axis is prob-
ably related to the fact that the source function is
finite along the entire axis [Eq. (4)], but vanishes
off axis {hence is singular along the axis).

The axis for the Schwarzschild and y solutions
could be best studied by making a coordinate
transformation

p =(r —2mr)sin 8, z=(r —m)cos8. {14)

This transforms the line p=0,
~

z
~

& m into the
sphere r =2m. The properties of the ny solution
in the neighborhood of the axis will quite probably
also require a coordinate change for greater under-
standing.
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III. TETRAD COMPONENTS OF
THE CONFORMAL TENSOR

We now examine the tetrad components of the
conformal tensor. They are everywhere finite. De-
fine a complex null tetrad (m, m, l, k) in the usual

vray: k and l are real, m and m are complex and
complex conjugates of each other:

1(0=C„k"m"k m

f, —=C, k"1"k m

|I(2=—, C„—~k"l"(kt'1 m—t'm ),
Ps =C„„~l"k"lt'm

f4= C„„~l"m"lt'm

(16)

Choose the (t,p, P,z) components of the null tetrad

to be

k"l„=—1, m "mq —1,

kl'k& ——II'lz ——m "m& ——kI'm& ——l&m& ——0,

tv 2m(pmv) 2k(plv) ~

(15)

k"=[1 ( —gti)'"g~'" o o]

l"=—,[(g„)

mt'= —,[0,0,(gyp} ',—t (g~) ]

(17)

The complex Weyl tetrad components are defined
as With this tetrad, Pi ——P3

——0, g4
——($0/4) exp( —4A, ),

&4ij.—2p

4p2

(z+m —i/n) (z+m +i/n) (z m+i/—n) (z —m —i/n)
R2 R1 R1

3y 1 1 2 1 1 2 2 2 2 2
2 2 2 216 R1 R1 R1R1 R2 R2 R2R2 R1R2 R1R2 R1R2 R1R2

64p

z+m i/n z—+m +i/n z m+i—/n z —m —i/n+
R2 R2 R1 R1

4p' —& i' 4p' ~ i' 4p' ——~2' 4p' —&z' 6p' —2(z —m +i In)(z —m i ln)—
+ 2 + 2 + —

2 +
R1 R1 R2 R2 1 1

+ 6p —2(z+m i/n)(z+—m +i /n)

R2R2

6p —2(z+m +i/n)(z —
m +i/n)

R2R1

6p —2(z+m +i/n)(z m i ln)——
R2R1

6p —2(z+m i In)(z —m—+i/n)
R2R1

6p —2(z +m i ln )(z ——m i ln)—
R2R1

(18)

V

y 2p (z —m +i/n)+(z —m +i /n) 2p (z —m —i/n)+(z —m i/n)—
P R13 +

R 1

2p (z+m —i/n)+(z+m i ln) 2p (z+m +i/—n)+(z+m +i ln)

16p

2R 2 3p2 2R 2 p 2R 12 3p2 2R 12

2 2, 2 R 2
R2 R2 ' R1 1

+ 4(z+m i/n)(z+m —+i/n) 2p 4(z ——m +i/n)(z —m i/n} 2p- —
+

R2R2 R1R1
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4(z+m i—/n)(z —m +i/n} —4p 4(z+m +i /n)(z —m +i /n) —4p

R2R ) R2R)

4(z+m i—/n)(z —m i/—n) 4p— 4(z+m +i /n)(z —m i ln—) 4p-
R2R) R2R)

y z+m i I—n z+m +i/n z —m +i In z —m i In-+ +
64P R2 R2 Ri R

4P —R j 4P —R ~ 4P —R2 4P —R2+ 2 + R2 +
R) Ri 2 R2

+ 6p —2(z —m +i In)(z —m i In) —6p —2(z+m i/n—)(z+m +i In)+
RiR) R2R2

6p —2(z+m —i/n)(z —m+i/n) 6p —2(z+m+i/n)(z —m+i/n)
R2R ) R2R)

6p —2(z+m i/n)—(z —m i/n) —6p —2(z+m+i/n)(z —m i/n)—
R2R) R2R )

As n —+00, these become equal to the tetrad com-
ponents of the conformal tensor for the y metric. '

They vanish asymptotically; i.e., as
~
z

~

~ 00 or

p —+ oo. They are all finite for finite n as p~0.

IV. CONCLUDING REMARKS

The ny solution describes an interesting vacuum
solution of the Einstein equations. The most wide-

ly studied solution of the Einstein equations is the
Schwarzschild solution (y= 1, n ~ oo). In Weyl
coordinates, this solution has strange behavior on
the axis for

~

z
i
(m. It turns out that the solu-

tion is not geodesically complete on this portion of
the axis and must be extended. A natural generali-
zation of the Schwarzschild solution is the y solu-
tion (n~ oo,y+1}. This solution is generally
singular on the axis at z

~
(m and has a direc-

tional singularity at
i
z =m. Hence a coordinate

change near the
~
z

~

=m is required, followed usu-

ally by an analytic extension (Ref. 1}. For the ny
solution, the algebraic invariants of the Riemann
tensor seem to be always well behaved. However
the axis everywhere lacks elementary flatness.
This suggests the possibility that the coordinate
system is bad in the neighborhood of the entire
axis.

The ny solution or the n (y= 1) solution seems
to have interesting suggestions to make regarding

(19)
I

gravitational collapse to the Schwarzschild solu-
tion. As n ~ 00, the solution approaches the
Schwarzschild solution, but in a discontinuous sort
of way. The geometric properties of the n solution
are discontinuous in nature as n ~ oo. Similarly
the pure y solution becomes the Schwarzschild
solution as y~1, but the geometric behavior is
discontinuous as y~ l. It would seem that a col-
lapsing object may not be able to go adiabatically
and smoothly to the Schwarzschild solution if its
exterior is described by the ny solution. The other
limit for the ny solution n ~, ny~finite, should
describe a source which is becoming increasingly
cylindrically symmetric. Collapsing cylindrically
symmetric sources may form naked singularities.
It is interesting to speculate on the fate of a source
described by the ny metric with small n. Of
course the aforestated remarks only suggest that
the ny metric is worthy of further study. An
understanding of the nature of the collapse of an
object whose exterior is initally given by the ny
metric can only be reached after an investigation of
the dynamical problem.
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