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We present an E(6) unified theory where the Higgs scalars must be in a unique irreducible
representation to solve the strong CP problem naturally. The superheavy symmetry breaking of
E(6) to SU(5) and of the Peccei-Quinn U(1) is demonstrated. Phenomenological aspects are

briefly discussed.

(1) For grand unification, the groups SU(N) have
the disadvantage that in order to obtain a satisfactory
solution of the strong CP problem with an invisible
axion, the Higgs sector though very constrained must
always contain at least two different nonzero N-
alities.! This motivates us to consider the alternative
groups SO(10) and E(6), and we shall here show that
only the group E(6) works and further that it allows a
unique and exceptionally simple answer. Note that
SO(4n +2) with n =3 are uninteresting for grand
unification unless the embedding of SU(3) xSU(2)
xU(1) is a nontrivial one (see, e.g., Ref. 3); we here
restrict ourselves to the usual embedding.

Before discussing E(6) which is our main subject,
let us therefore first dismiss SO(10). With fermions
in the spinor 16 representation, one has mass terms

16 x16=10,+120, +126, , 1

and therefore one might reasonably consider scalars
belonging to one or more of these three representa-
tions, and possibly to 16 and the adjoint 45. But the
existence of, respectively, 102, 452, 1202, and 126* el-
iminates four of the five fields since we demand a
fully natural axial U(1) symmetry; this leaves only
one 16 which is insufficient to break SO(10) down to
SU(3)xSU(2) xU(1). This eliminates SO(10).
Since we agree, for the sake of argument, to avoid
SU(N) this leaves only E(6).

(2) In E(6) the fermions are most naturally as-

signed to the defining representation 27. The Yu-
kawa couplings are then of the form

27 x27=(27 +351"),+351, . 0]

Thus, we may consider these three representations,
together with the adjoint 78, as possible Higgs scalars.
The existence of singlet terms 27°, 782, and (351')3
disallows three out of these four; we believe the
fourth possibility, the 351 representation, is of con-
siderable interest and indeed this choice will underlie
our model.

The model is thus exceptionally simply stated: the
group is E(6), the scalars are in one, or at most two,*
351’s, and the fermions® are in two or more 27’s.

(3) We first show that a 331 of scalars can break
E(6) to SU(3)xSU(2) xU(1). E(6) has a maximal
subalgebra

E(6) DSU(2) xSU(6) 3

and let us embed, for book-keeping purposes, the
standard SU(3) xSU(2) xU(1) in an SU(5) sub-
group of this SU(6). Then there are three SU(5)

singlets in 351 contained in

(2,6) +(1,21) )

since 6=5+1 and 21 =15+5+1. Giving a vacuum
expectation value (VEV) to either of the two singlets
in (2,6) breaks E(6) to SU(5) (Ref. 6). Finally, 351
contains’ two adjoints of SU(5):

351 =45+2(45) +40 +2(24) +15+4(10) +3(10) +4(5+5) +3(1) .

Only one 24 is necessary to break to SU(3) xSU(2) xU(1) as required. Q.E.D.

(4) The Higgs potential for 351 has no cubic terms, but just one quadratic mass term (351 x351) and six in-
dependent quartic terms all of the form 3512351 ? There are no terms of the form 3513351 or 351%. Fortunately,
we have at hand?® the explicit Higgs potential. Writing 351 as the antisymmetric tensor 4** with

m,v=1,2, ...,27 the potential is

V(A4) = M4 A" + hi (A dP)2 4 1A yy A4 e A ™ + h3d* M gpA yod , A4
+ had**d"™Bd 1ol ppA oA ye A PA™ + hsd" O dPVd o od \ gy A oA e A AT

+ hd**d°™Bd 4, d"*d gy droxA yod A, A™
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V(A) and hence £ has a global symmetry under
Ay—e®Ay, Y, —ey, (6)

and we will identify this with a Peccei-Quinn-type
symmetry. What we will now show is that this U(1)
can be broken, when we break E(6)—SU(5) at the
superheavy scale; it will then follow that the resulting
axion is an invisible one. Here, the U(1) is definitely
color anomalous because each 27 of fermions gives a
nonzero anomaly and there is no opportunity for can-
cellation.

The mass term in Eq. (5) cannot break the U(1)
since after breaking to SU(5) it will obviously contain
only 5-ality==zero quadratic terms. Similarly, the #,
term which is nothing more than the square of the
mass term cannot break the U(1). This leaves the
five terms #, through h¢ which we shall study in
turn.

Our first assertion is that the 4, term will, in gen-
eral, break the U(1) invariance. To prove this, let us
introduce the following labeling of indices

27—10+5,+5+5,+1+1 , (7a)

b (b1, dut, D, Dp, D26, b27) (7b)

where 1 <L <10, 1 =M,N,P <5, and ¢, ¢, dn,
¢p correspond to 10,5}, 5, 55, respectively. One of
our SU(5) singlets in A, is’ now 4y 27 so that giv-
ing a VEV v to this singlet gives rise to a piece

hywd2%°4 . A7 . ®)
The choices {o, 7} = {M,L}, {N,L} give terms
2’!2"(5151_0), 2h2v(§f6ﬁ)

which are direct and indirect couplings sufficient to
imply global charges Q'(5,) =Q'(5,) =Q'(5)
=0'(10) =0. Since this sets Q' =0 for the entire de-
fining 27 of E(6), it follows that Q'(351) =0, and
hence that the U(1) has been broken.

This breaking of the U(1) in E(6) is to be contrast-
ed with what would happen in SU(N) groups. For
example, if the present theory were SU(27) for which
A* were the 351 antisymmetric second-rank
representation the most general potential® would be
exactly as Eq. (5) without the 43 through k¢ terms,
since the d,,, tensor is no longer an invariant. But
the global U(1) could never be broken in SU(27) due
to a general theorem in SU(N) proved in Ref. 1; the
reason is that the apparent U(1) breaking could be
compensated by an SU(27) rotation. In the case of
E(6), however, the compensating rotation is no
longer available since the relevant SU(27) generator
is not contained in the E(6) subgroup.

Now we consider the other four linearly indepen-
dent quartic terms with couplings /3 through A in
Eq. (5). These involve the auxiliary E(6) invariant
tensor d*** and their analysis hence requires some

further study of d***.

We wish to write d#** in an SU(5) basis; this is
straightforward if we begin from the basis chosen by
Cartan'? (also considered later by Gantmacher!!)
which is based on the maximal subalgebra indicated
in Eq. (3) above. The defining representation is writ-
ten (xqYp2,s) Where 1 <a,B,v,8=<6 and
z,3=—2s,. Then the E(6) cubic invariant is'’

XoVpZap— 2 (aBYSED) ZapZ ypZey - ()]
P

Rewriting xo= (514, 11), ya= (524, 15), and
Zap=(104,26g="5p) in an obvious SU(6)—SU(5)
notation with 1 <a,b <35 then the cubic E(6) invari-
ant is

51252510 —51,5%15 45345 + 6 €4peae 107610°95¢ . (10)

Here the SU(5) notation is as in Eq. (7a), and we
shall use below the letters L,M,N,P as defined by Eq.
(7b). Then the nonvanishing d*** are (LMP),
(LL'N), (MN,27), and (NP, 26).

With this basis for the d*** tensor, we shall now
consider whether each of the terms h3—h¢ separately
breaks the U(1), as the k4, term did. Of course, na-
turalness dictates that all seven terms in ¥ (4) of Eq.
(5) be present; our result here will be that the U(1)
is broken at the superheavy scale by any of the last
five of the seven terms in Eq. (5), even acting alone.

The hj term contains, putting o{(4,27)0="v,

hywld®depAd,, 44747 —(26-27)] . (11)

The choices for {v, \, £, 1, and 7} in expression (11)
can now give different SU(5) singlets within the E(6)
singlet. The choices {N, P, N',26, and N"'} and

(N, P, L, M, and 26} in the first term give (1055)
and (105,5), respectively (direct couplings). The
choices (P, N, L, L', and 26} and {M, N, L, L',
and 26} give, respectively, (5,1010) and (5,1010) in
the first and second terms. These contributions al-
ready demand Q' =0 for the entire (351) as required.

A similar analysis using the same VEV applied to
the terms kg4, hs, and kg shows that there are suffi-
cient direct and indirect SU(5) couplings to break the
U(1) in each case.

Note that here we have used only one of the three
available SU(5) singlets in 351, that corresponding to
A26,27. The other two superheavy VEV’s are in-
dependent from 4,7 and hence do not alter our
conclusion. Q.E.D.

(5) Before turning to the low-energy properties of
our model, let us make one remark about overall
asymptotic freedom. Asymptotic freedom allows only
one 351 (not two) and up to nine 27’s of fermions.!?
Thus, the combination of axion invisibility and
asymptotic freedom of E(6) makes the Higgs sector
unique.

(6) A number of authors have constructed E(6)
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grand unified theories.!> All such attempts that we
are aware of used complicated Higgs sectors, always
involving a 27 defining representation of scalars, in
combination with higher representations such as 78,
351', and 351. Thus, no previous work has studied
the Higgs structure of our present model. Because
our choice of Higgs structure is unique, and more
strongly motivated than previous choices, it seems
worth pursuing the phenomenological consequences
of this symmetry-breaking pattern.

An immediate concern is therefore the masses of
the light fermions but these are complicated in grand
unified theories by several factors: (i) when there
are superheavy fermions, such as (5 +5) C 27, these
can mix freely with light fermions, (ii) the light
masses are inextricably linked to the unsolved gauge
hierarchy problem, and (iii) tree-level estimates may
be completely changed by radiative corrections.

These uncertainties are present in our E(6) model,
and make definite phenomenological predictions jm-
possible at this time, especially without specifying the
precise fermion content. A naive inspection of the
up-quark mass matrix for, e.g., three 27 families, at
the tree level, reveals an unacceptable antisymmetry
in family space; hence the up quarks get mass only

from an SU(5) 45 of Higgs bosons (not 5). This
therefore leads us to introduce additional (27 +27)
fermion components so that there are superheavy
10’s to mix with the light ones, but this removes
much of the predictivity. In addition to this problem,
some authors!'? have appealed to radiative corrections
to explain the fermion mass hierarchy.!*

In summary, we have found an E(6) theory which
must surely be the simplest containing a natural in-
visible axion: in particular, the Higgs scalars lie in a
unique irreducible representation of E(6). If we had
a solution of the gauge hierarchy problem, the
present model would have strong predictive power.

Note added in proof. To achieve the required sym-
metry breaking at the superheavy scale, it is actually
necessary to give vacuum expectation values to the
SU(5) singlets in both (2,6) and (1,21) of Eq. (4),
as well as to the SU(5) adjoint in (2,84). This does
not alter our conclusion.
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