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Sum-rule inequalities for pion polarizabilities
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The peculiar influence of the annihilation-channel affects on the electric (e) and magnetic

(P) polarizabilities of the (light) hadrons is shown in connection with a bound on a —P for

pions established in terms of differential cross sections for backward ym ym scattering and

forward mm yy annihilation.

The question of determining experimentally the
pion polarizabilities (e.g. , by trying to extract the
low-energy pion Compton scattering from the radia-
tive scattering of high-energy pitons on nuclear
Coulomb fields' or from radiative single-pion pho-
toproduction on protons2) is presently under active
investigation. Information on pion polarizabilities
could also be obtained from the study of the reaction
e+e e+e mm. There are many theoretical predic-
tions derived within various assumptions and ap-
proaches (quark models, current algebras, chiral
Lagrangians, dispersion sum rules, etc.), which give
results spread over a quite large spectrum (see, for
instance, the review in Ref. 3 and the table in Ref.
I). In this context we report here a bound on the
difference between the electric (a) and magnetic (P)
polarizabilities of the pion with the intention of not-
ing certain possible unusual features of the (light-)
hadron polarizabilities and also with the aim of bring-
ing some quantative theoretical clarifications. In a
previous note it has been pointed out on the basis of
a bound on the sum a+P that the em annihilation
into two photons seems to control somehow the abili-

ty of the hadronic cloud surrounding the pion to be-
come polarized in the presence of electric and mag-
netic fields. However, the sum a+P is expected (on
quite general grounds) to be rather small' with

respect to the standard unit of 10 ' fm and an exact
bound on the more relevant object n —P might better
reveal such interconnections between physical quanti-
ties describing the annihilation and the direct
(ym yn) channels.

We start by considering the t-channel helicity am-
plitude G~+= Fo 0,~ t (in the not—ations and normaliza-
tions of Ref. 4) at 8 180' [S is the center-of-mass
(c.m.) scattering angle for the s channel yn ym] as
a function of t [(r) 'I' is the total c.m. energy in the t

channel yy nn] The usua. l variables s, t, u

[s + t + u =2@,2, p, is the pion mass, and (s)'~2 is the

(»s=I80') =
6 2 If++I'

while on the t-channel cut
~ f++(t) ~

is related to the
cross section at / =0' or 180' (P is the c.m. scatter-
ing angle in the t channel):

4a 0. 1 (r —4P, ') '~'
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Instead of Eq. (2) one may use as well
1

do 2 ( r) '~'

64 r (r 4

(2')

At t =0 (the location of the s-u-channel Born poles
in the charged-pion case which we treat first) one has
(see the identifications from Ref. 4)

(sr -) 2f,', -& (r =0) =-2e',
4m 137

(3)

4f(w )

dt

+=-2„~(~-P)&"-'
t~0 (4)

Then the maximum-modulus theorem leads through
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total c.m. energy in the s channel] satisfy then the re-
lations t = —(s —p, 2)2/s, u = p /s. Assuming, for in-

stance, Mandelstam analyticity (we work to the
lowest order in electromagnetism), one can view

f~+(t) as a real analytic function in the complex t

plane cut along the real axis from 4p, ' to oo (t
channel unitarity cut) and from —~ to —9p, /4
(s-u -channel cut). At 8 = 180' i f++( t) ( on the s-
channel cut is given by
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simple procedures to the constraints

6 ~2e2,

144 ( +) 26' 4e4
25 p, 2t/, m—(n P)—' '+2e «G—

6 6 (6)

where
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The technical steps of the derivation are as follows:

(a) Construct the function
+

(4tt, —t)'/ (t+9tt, /4)'/ '
r ~ 9 1/4' ]n)f && & (t') [

G(t) =exp' dt' —,
m' "4r' "-" (t' —t)[(t' —4p, ')(t' +9tt, '/4)]' '

(g)

which is analytic in the cut complex t plane, has no
interior zeros, and has the property that ( G (t') (.
= ~f++(t')( on both cuts.

(b) Apply the maximum-modulus theorem for the

analytic function Q(t) =f~t~ ~ (t)/G(—t) which is of
modulus 1 on both cuts. This leads to the inequality

(5); G -=G(0).
(c) Use the conformal mapping

1/2 '
2

' 1/2—4H . 4p 1 —z

,
t +9ttz/4 9pz/4 1+z

which applies the cut t plane onto the unit disk in the
complex z plane such that t =0 goes into z =0.

(d) Use the known bound (see, for instance,
Ref. 6)

d$(t (z)) «1
( ~(0) r z

dz

This lead to the inequality (6)

g' (dg/dt), ~
G G(0)

+
The inequalities (5) and (6) are optimal in the sense that they become just equalities if f+~ (t) has no interi-

or zeros (real or complex) in the cut t plane.
Analogous consideration lead in the neutrai-pion case (when no Born-pole contributions have to be taken care

of) to the inequality
r

(21rp'(a p)'~, '( «—exp 3 z

I

(t)'/'(t 4p, ')' ' dQ' — o o
r

21r ~4 ' t (t 4')''(t+9tt, '/4)—''
I

64m2 4s'641r tt s dg ( )

21r ~4&' (s —tt, ')(s —4p')' '(s —p, '/4)' '
/

which is again optimal [i.e., saturated if (f~+ '/t) has no interior zeros].
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If on the s-channel cut instead of the modulus of f++ one takes as known the imaginary part

Im f~+(s, 8=180') =(s —tt, ') X(—1)' '[os/(s) —orat/(s)l
I

(10)

(specifies in terms of total cross sections for photoabsorption of El and Ml photons) one can derive through
somewhat more sophisticated techniques (see, for instance, Ref. 7) another sum-rule inequality for u —p. Below
we display the result only in the n case. This time one uses the conformal mapping t(z) = —4/t, zz/(I —z)2
which brings the t-channel cut into the circle ~z

~
-1 and the s-channel cut into the segment [xt = p, 1] of the

new real axis x =Rez. The bound reads

[d (0)]'-2[DPI (0) 1& +12 —I,
where

tt, 'f~~(t(z)) 2/t, 'm(u —P)
S(z) t(z) ' S(0) (12)

S(z) =S(t(z)),

S(t) =exp (4 z t)&/2
JM

J,„

2 4128m p, do, 0.)(t')'/'(t' —4p, ')'/' dO' „„pp

(t' t)(t' 4~2)1/2

1 &I g( ) I = 1 t'
I d d Im@(x) 1m'(&)

(1 —xy) xy

(13)

If the amplitude f~+ is taken in Born approxima-
tion the bounds would imply u —p = 0; together with

the bound from Ref. 4 which in Born approximation
leads to u+p 0, this gives u= p=0 in the absence
of hadronic structure, as it should.

The above results may be used as checks for model
calculations. They show in a way unobscured by ap-
proximations that annihilation-channel affects may
play a quite peculiar role for (light-) hadron polariza-
bilities, unlike the case of atoms or molecules when
both the electric and magnetic polarizabilities are ob-
tained just by summing over contributions from the
excited states of the system. The bad high-energy
asymptotics (at least as far as the Regge behavior is
concerned) of the Compton amplitude related to
u —p prevents one from writing down a subtraction-
free sum rule involving only s-channel contributions
(as for u +P) and that is why the contact with the
usual quantum-mechanical calculations is being lost.
The derivation of the above bounds relies on very
weak assumptions concerning the asymptotics (due to
the logarithms appearing a polynomial boundness is
in fact sufficient) and so the conclusions are valid ir-

respective of subtractions.
Quark-model calculations of hadron polarizabilities

should, in the light of the above discussion, be re-
garded with some caution unless the models are so
devised as to account also for the dynamics in the an-
nihilation channel, since otherwise the results may
refer only to the static, nonrelativistic correspondents
of u and p which risk to have little in common with

gt

the structure constants actually measured in photon-
hadron reactions.

Next we shall shortly present the results of some
simple numerical evaluations of the above bounds
based, in the absence of direct experimental informa-
tion, on reasonable Breit-Wigner (BW) models for
the cross sections which are involved. The integrals
over the yy n m cross section in Eqs. (7) and (12)
and inequality (9) are computed by joining to the

(eo)Born approximation (f+t+ ~ = —2ez, f+t+ ~ =0) an
e(0+)-exchange-model contribution in BW form'
with M, =660 MeV, I t,t,]=I, „=640MeV and
taking I, » = 1.3 keV. The integrals over the back-
ward Compton cross section in Eq. (7) and inequality
(9) are analogously (but more reliably) computed in-

cluding, apart from the Born approximation (in the
w

—case) the p, A ~, and A2 resonances and (in the
mp case) the p and pp resonances. 'p In the charged-
pion case [Eq. (7)] beyond the resonance regions on
both cuts (to ~) we have taken the cross sections in
Born approximation; in the neutral-pion case [Eq.
(12) and inequality (9)] the integrals have been ex-
tended only up to around Js, Jt = 1.5 GeV." Nu-
merical integration has lead to the following results
[for (u —P) we use everywhere units of 10 fm3]:
G =0.189, p, G'/G =0.008, and hence
—2 & (u —P)' ~' & 15 from inequality (6);
[(u —P)' '~ & 17 from inequality (9). The bound
(11) has been evaluated by calculating S(t) in Eq.
(13) analogously with the first term in the right-hand
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side of inequality (9) but expressing, for computa-
tional simplicity, Imf+t+ ~ in Eq. (10) in narrow-width
approximation (only Ml transitions with p and au

states are retained). I~ 2 in Eqs. (13) can then be
easily found integrating over 5 functions and we have
obtained S(0) = 235 x 10 ', S(0)I

&

———25 x 10 ',
S2(0)I2=0.8 &&10 ' so that" —9& (a —P)
& 11.5. More refined evaluations of such sum-rule
inequalities with a better consideration of the thresh-
old and asymptotic regions in the integrations (upon
which the bounds are quite sensitive) are in progress
and will be reported else~here together with full de-
tails of the saturation.

Note added. The contribution of the f(1270 MeV)
meson to the present bounds is irrelevant since the
coupling f yy is very small in the helicity channel
specified by the amplitude f++ we are dealing with.

Indeed, the Crystal Ball Group at SPEAR has found
from the angular distribution of the f wowo decay
that the production of the fmeson in yy scattering is
strongly dominated by photon pairs with opposite hel-
icity, thus confirming previous theoretical predictions
[see, for instance, D. L. Burke, Report No. SLAC-
PUB-2745, 1981 (unpublished) and the literature cit-
ed therein]. We thank Dr. S. B. Gerasimov and Dr.
A. B. Govorkov for helpful comments.
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"It is worthwhile noting that the inequalities derived here
weaken but remain valid if under-the logarithms one in-
sert instead of the modulus of the actual amplitude a ma-
jorizing quantity. So this crude treatment of the asymp-
totic behavior (which supposes f++ constant at ~)
should not endanger but some~hat weaken the results if
f++ actually decreases at ~ as one may expect if s-

channel helicity conservation at high energies holds in
pion Compton scattering (see Ref. 3 and the literature cit-
ed therein in this context).

~ It is seen that unlike inequality {9) the bound (11) or pos-
sible variants of it may be helpful in clarifying the interest-

(~o)ing question of the sign of o, "


