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We present a natural SU(2))&U(1) )(SU(2)' gauge model with low-energy predictions

identical to those of the standard model, but which allows all gauge-boson masses to be

above or straddling their standard values. We discuss the Higgs structure and its rela-

tionship to the naturalness of the model. Current measurements of the e+e ~p+p
cross section set upper limits on the lightest 8' and Z masses of 89 and 116 GeV, respec-

tively; from data on e+e ~ hadrons, the corresponding limits M~ (87 aAd Mz & 108

GeV are deduced. Some high-energy predictions for the model are explored. The model

is extended to U(1) &(SU(2) with all possible SU(2))&U(1) Higgs doublets and

SU{2))(SU(2) Higgs quartets.

I. INTRODUCTION

The standard SU(2) XU(l) electroweak model'
sucessfully describes all low-energy weak-
interaction phenomena. Alternative models based
on the gauge group SU(2) XU(1)XG, where G is an
arbitrary group, can be constructed in which
the predictions at low energies are identical to
those of the standard model, but will differ at
higher energies. In previously constructed models,
the gauge bosons had masses less than the standard
8' and Z masses. A general analysis based on the
SU(2) and U(1) couplings alone shows that, in
principle, there is no upper bound on the lightest
Z . There is already a model with all masses sig-
nificantly greater than 100 GeV, but which re-

quires an adjustment of parameters to achieve the
proper charged-to-neutral-current strength ratio.
In this paper we present a class of models which
naturally reproduce the standard low-energy
behavior and which allow the lightest weak bosons
to be heavier than those of the standard model.
We examine in detail the simplest of these models.
It is interesting to examine extended gauge groups
in the event that the weak-boson mass spectrum
turns out to have more structure than the one-Z,
one-8'prediction of the standard model. The

group G could be connected with still-to-be-
discovered heavy fermions.

The electroweak gauge group to be studied is
SU(2) XU(1) XSU(2)' with couplings go,

1
—,g&, and g2, respectively. The known quarks and

leptons are assumed to transform only under the
subgroup SU(2) XU(l), and in the same manner as
the standard model. The additional SU(2)' may
couple to heavy fermions which are not detectable
at presently available energies. To generate masses,
we use the scalar doublets 4= (P+,P )

and 4= (st+,f ) and a scalar quartet
(g+,sl, ri, ri ) in. the representations

(T, Y, T') =(—,, 1,0), (0, 1,—,), and ( —,,0, —,), respec-
t l l l

tively. Spontaneous symmetry breakdown occurs
with vacuum expectation values (P ), (g ), (ri ).
This is similar to the Higgs structure of Ref. 4, ex-

cept for the addition of the 4 doublet. The Higgs
mechanism is fully developed in Sec. II.

A consequence of this model is that the relative
strength between the charged-current (CC) and
neutral-current (NC) interactions is naturally the
same as in the standard model, i.e., without adjust-
ing any parameters. The naturalness comes about
from the simple form of the weak-boson mass ma-
trices. With our choice of Higgs structure the
charged-boson mass-squared matrix M~ is found
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by removing from the neutral-boson mass-squared
matrix Mz the rom and column corresponding to
the 8 boson of the U(1) group. The matrix Mz is
given by (Mz );;= —,g; g.&,.u;J. and (Mz ),-1

, g;gj—u;J for i+j, where uj is the vacuum ex-

pectation value of the Higgs multiplet which con-
nects the ith and jth groups.

Since the known fermions are assumed to couple
only to U(l) and to the first SU(2), their charged-
current interaction is given by 2 ' goj&+'8'&+&,

where 8'+& is the charged boson associated with
the first SU(2). The resulting effective low-energy
interaction is —,go (Wi Wi ) where

( Wi+W, ) =(Mii )ii. The neutral-current in-

teraction is given by g i (jp —j& )8&+goj z
'W

pz

and leads to the effigy:tive low-energy interaction
—,a[(j&' bj& —) +C(j& ) ] where

and b is identified with sin 8~. The factor —,a ap-

pears in the interaction because the product of neu-

tral currents contributes in two possible orderings.
The matrix Mz is singular because one of the
mass eignestates is the massless photon. By adding
to (Mz ),J the term»(, e /g~gj, the photon acquires
an artificial mass, and the singularity is removed.
The propagators in the expression for a are
(88)=(~z )ii» (BW'i ) =(Mz )Oi and

(Wi 'W'i ')=(Mz )uu. With the above mass-

squared matrices, it can be demonstrated that
a =go ( Wi+Wi ) in the limit A, =O. This gives
the standard-model relation between the effective
CC and NC couplings.

The particular Higgs structure of our model is
essential in obtaining the NC/CC ratio naturally.
For an SU(2) XU(1) Higgs multiplet (T, Y) the
weak-boson masses arise from terms in the Lagran-
gian of the form (P )( —,g, Bt+g;T; W&)( —,giB&
+ g;T; W&)(P). A simple computation shows

that the desired relation between M~ and Mz
occurs only when T(T+1)—Tq ——2T3, where T3
is the SU(2) quantum number of the neutral Higgs
field which acquires a nonzero vacuum expectation

1

value. The relation holds for T= —, and for some

higher values (T=3,—, , . . .). For SU(2)XSU(2)
Higgs multiplets (T, T'), more than one neutral

Higgs field in the multiplet can break the symme-

try and the situation is more comphcated. The
only simple examples which preserve the natural

property are T=T' with all nonzero vacuum ex-
pectation values in the multiplet equal. Only a
T=T'= —, multiplet meets this last condition
without the imposition of additional symmetries.

The physical gauge fields are related to the mass
eigenstates in Sec. III. The six parameters of the
model go, g„g2, (P ) (l(» ), and (i) ) can be ex-
pressed in terms of G~, e, the angle 0~ of the
standard model, and three other parameters which
cannot be determined at low energies. Alternate
choices of the parameters are three masses Mz,

1

Mz, , Mz (or Mz, , Ms;, M~ ), where Mz, and

Mz are physical guage-boson masses and Mz is a

critical mass in the model. Another choice of
parameters is 50, 5&, and C, where 50, 5i re related
to the coup1ings go, g& and C is the coefficient of
the (jp) term in the effective Lagrangian at low
Q2

In Sec. IV we derive upper limits on the lightest
8'and Z masses for the model, based on e+e
—+p+p cross-section measurements. These limits
are 89 and 116 GeV for the lightest 8' and Z,
respectively. In Sec. V some phenomenology of
the model is presented and compared with that of
the standard model. From data on e+e ~ had-
rons, we deduce an improved upper limit on the
parameter C with constrains the lightest W and Z
to be below 87 and 108 GeV, respectively. Total
widths for the weak bosons are calculated. We
present predictions for the total cross section and
asymmetry in e+e annihilation and the dilepton
mass spectrum for the Drell-Yan process in hadron
collisions.

In Sec. VI, we extend the model to include an
arbitrary number of SU(2) groups. We show that
these extended models are natural and argue that
the upper bounds on the lightest 8' and Z derived
in Sec. IV are probably not raised substantially in
the extended models.

II. THE HIGGS-BOSON STRUCTURE

The covariant derivative for the SU(2) XU(1)
X SU(2)' gauge group is given by

D =9„—igoT.W„

-+,—ig&
—B„—igz T 'W',

where W „' are the new gauge bosons of SU(2)'
which are not coupled to the known fermions.
The electric charge operator is Q =T3+ , Y+T3. —
The gauge-symmetry breaking is accomplished by
the usual Higgs-boson doublet (T= —,, Y= 1,T'=0)
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(2a)

a similar doublet for SU(2)' (T=0,Y=1,T'= —,),

(here the rows correspond to different values of T3,
and the columns to different values of T3). In this
representation

(2b)1, 1

and a Higgs-boson quartet (T = —,, Y=0,T'= —, )

which is self-dual (rl=rig*r2):
1+2

(2c)

The most general SU(2) XU(1) X SU(2)'-invariant
Lagrangian is

I

W=(D„C ) (D C )+(D„%') (D„%')+TR(D,rl) (D„rl) V(rl, C—,% ),
where the Higgs potential is

V=pi 4 4+Xi(4 4&) +@2 4 4+F2(+t+) +m TRrl v]+h(Trrltg)

+f,4 rlrltC +f,% trltr1%+ f,@t4% "0+i(0 trl%++trjtC ) .

Here Tr denotes the trace and the coefficients are real. Expanding this expression for the potential in terms

of component fields, we obtain

V=S i'(
l
O'

I

'+
l
O'

I

')+~i(
I
&'I '+

I
0"

I
')'+S 2'(

I

@'
I

'+
l
O'

I

')

+~i(
I
+'I'+

I
O' I')'+2m'(

I
n'I'+

I n I')+4h(
I
n'I'+

I n

+~f (~&'I'+ ~&'I')+f (I&'I'+ l0'I')1(In'I'+ In

+f3( I
&'I'+

l
O' I')(

I
@'I'+

l

O' I')

With p~, p2, and m imaginary, the Higgs phenomenon occurs with vacuum expectation values
r

For vacuum stability we must impose the condition

h&0.

Necessary conditions for a minimum of the potential with nonvanishing u, v, and w are

pi +2Aiu + —,fiu +f3w + =0, p2 +2A2w + , f2u +f3U + =—0,
2U 2w

rn +2hu + , fiu + , f2w +-—
2u

Here we have ignored possible CI'-violating effects and set u =u*. Redefining the scalar fields as
p~p+ (p), g~f+ (g), and il —+i)+ (il ), we obtain the Higgs-boson mass-squared matrix from the
quadratic terms of the potential. In the charged sector,

V= —
i
uwP+ uug++v 2u—wrl

2uUw

Thus one linear combination of p+, l(+, and il
' acquires mass. The two other independent states can be
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gauged away to become the longitudinal components of the charged vector gauge bosons.
The quadratic terms in the potential involving Imp, Im1(t, and Imz) become

V= —
~

uw Imp —uu Imp +v 2vw Imrt
~V 2uuw

The two massless combinations are absorbed into longitudinal components of the two neutral gauge bosons.
The mass-squared matrix of the remaining Higgs-boson states RQ, Ref, Ret) is

V= 2fzvw+
ut

2

v 2uvfl+wt

tuv
+4)l,zw

2

2W

V 2uwfz+ut

tuw 2 ut
+4k, lv 2f3uw+

2U 2
v 2uufl+wt

V 2uwfz+ut

—V2 +Shu
u

(12)

To ensure that all observable Higgs bosons have positive mass squared, we require t &0 in addition to Eq.
(g).

We remark briefly on the symmetry of the Higgs potential in Eq. (5). Without the t term, the symmetry
is O(4) X O(4) XO(4), which upon spontaneous symmetry breaking becomes O(3) XO(3) XO(3). This yields
nine Nambu-Goldstone bosons, of which six are absorbed into 8'~-, Z~, W2, Z2 and three remain. Kith the
t term, the symmetry of the potential is SU(2) XSU(2) XSU(2), as can be verified by writing the t interaction
in the form

P v+
(13)

After spontaneous breaking, the symmetry is reduced to SU(2) with six Nambu-Goldstone bosons that are
absorbed. The residual SU(2) symmetry leaves a Higgs triplet, given by Eqs. (10) and (11). This symmetry
is only approximate in that it will be broken by the Yukawa couplings to fermions.

III. MASS EIGENSTATES OF THE GAUGE FIELDS

In the neutral sector the mass-squared matrix in the W' ', W' ' ', and 8 basis is

go (u +u ) gog2u goglu

MZ =
2

—gOg2u g2 (W +u ) —glg2W
2 i 2 2 2 2 2

goglv — glgzw —gl (u +w )

The matrix 9F for which 9F Mz 9F is diagonal is given by

(14)

no

go

np

g2

np

2
g) K

u
bgp 2Mz

n) + u+v+ 2(u+w)
go go 2Mz, g& go 2Mz,

n2 2 g] +
bg p 2Mz

n2
z + u +u+ 2(v+w )

go go

g) E
2Mz2

2 g12~2

bgi gp' 2Mz

(15)

where E—=u u +u w +u w and b=u gl lu /go —The norma. lizations no, nl, and nz are chosen such
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that% ~A =A A ~=1.

2(u +w )

K
1 1 1

g
2

g
2

g
2+ +

4[g 2(i 4+g 2(()4+g
2

( ii 2 +(J2 )2 ]

n& n

'M2+M2
Zf Z2

2
no ——

n n

M MZ] Z2

In terms of the mass eigenstates A, Zi, and Z2, the covariant derivative of Eq. (1) for the neutral sector is

(16)

T

2 2

D„=B„—inoQA„—i g n; T +Q—o, , (3) 1 g 1

i =1,2 go' 2Mz

+T'' ' [—2M +g, U +g (u +U )] Z.1

go
(17)

Hence no is to be identified with the electric charge e. In the fermion sector the SU(2) group is inactive so
that the interaction Hamiltonian is

1m=ej'„a, + g n, 1'„"——
2M,

g) w2 2

Jv iv ~

go
(18)

where j is the usual left-handed weak fermion current and j' is the electromagnetic current. The effective
weak neutral-current interaction at low energy is then

~NC (& +i() ) . (3)jeff =
K Jv

where

2
(i'( 1 2/g 2)+ 2(e2/g 2) j'„+c(j'„)'

Q +W
(19)

K nic=—
2(u +w ); )2b Mz2

'2
g, K g, w

2M, go

2 2
u '(1—e'/g i') +w' e'/g02

u +w

To ensure that the first term of Eq. (19) reproduces the effective Hamiltonian of the standard model we re-
quire that

GF (u+w)
v 2 4' (21)

It is convenient to define the quantities

g 2( 1 e2/g 2)+ (()2e2/g 2

s1n ger =
Q +W

In terms of the gauge-boson masses M~ and Mz
of the standard model (M~ ——77.6 GeV, Mz ——88.5
GeV for sin 0)i ——0.23), Eq. (21) leads to the rela-
tion

sw go
2 2

5o= 1
2

CW g)
2 2

5) —— —1,2

D =5o5i+5osw +5icg

(23)

Egi (il Cg —W S)F )

u +w

where c~=cos0~ and s~=sin0~.

(22)
The first two measure the deviation of go and'g&
from their standard-model values. Using the above
relations, the right-hand side of Eq. (16) can be re-
placed by observable quantities:
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no ——e,
n) n2 8GF2 2

v2'
n~ n2 8GF2 2

Mz Mz v 2M

(24)

where

2

Mw

2

Mw

2(u +w )

E
8GF

M 2 v2 '

g u+g (u+w)—44
g 2g Zg 2

(30)

where the critical mass Mz is defined as

gp gl g2 (u +w )K
2e' g p'u'+g, ' w'+g, '( u'+ w')'

8GF

v2 Mp

The normalization constants expressed in terms of
the 8'& and W2 masses are

=Mz (1—5p51/D) (25)

The values of n
&

and n2 can thereby be expressed
in terms of the critical mass and the Zi, Z2
masses:

v2 Mg, Mw, —Mw,

(31)

n;= v2 i+j .

Mzswcw D4 2 2

C=
Mz Mz

(27)

where D is defined in Eq. (23). The term in the ef-
fective NC Hamiltonian of Eq. (19) involving C is
absent in the standard model. If Z& and Z2 are la-

beled such that Mz &Mz, the reality of n~ and

n2 requires

(26)
The expression for C in Eq. (20) can be written as

with the critical 8'-boson mass defined by

gp gz (u +w )E
Mw ———

42 go' '+g '( '+ ')'

=My (1 5p5ics /D—)
(32)

Labeling 8'& and 8'2 such that Mw &Mw the

reality of N~ and N2 requires

Mw &Mw &Mw (33)

The charged-current Hamiltonian in the fermion
sector is

Mz &Mz &Mz (2&) (N) W)+„+%2Wp+y)J'„'+'+ H.c. ,v'2

(29)

The charged-vector-boson mass-squared matrix is
the same as the W' ', W'' part of M, in Eq.
(14). By dropping terms involving np and g& in

Eq. (15) we can immediately write down the diago-
nalization matrix for Mw .

Ni N2

g N N,

(34)

where j'„+'=j'„'+-ij'v '. The ratio of the charged-
current to neutral-current weak coupling strengths
is the same as in the standard model regardless of
the value of the parameters in the theory.

From Eqs. (14) and (23) we find the mass rela-
tions

Ma, Ms, =Mz, Mz, cos8a.(1+5,)

M~, ~Ms +M~ tan 0~[1+5~+5& cos 8~/(1+5~)C]=Mz, +Mz,

From Eq. (14) we find the mass inequalities

Mw, &Mz &Mw, &Mz, ~

However, Mz &Mz does not necessarily require that Mw & Mw.

(35)

(36)
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The covariant derivative of Eq. (17) for the neutral sector becomes

D„=d„ie—QA„i —g n;[T' ' a;—Q+P;T' '],
i =1,2

where

(37)

a =(5i—DMz /Mz, . )/(5o —5i) ~

6aw' (1+5ii)(1+5i )Mz
P; = (1+5i)+ 1+5ocw +6]sw +61sw 2l

Mz, 'Mz, '(5o —5i) Mz
(38)

The ZR'8' vertex is

T(Z~)1~ Wj„(p) Wkk(C)] = ifiIk[g—k(ij p)&+g—»(2p +&)& gk&(2—q+p)„],
where

W W Z W W Z
fijk go~j 1~k i~i + i, i+g2~j2~k2~i+1, 2

(39)

(40)

with i,j,k =1 or 2. The AWW vertex is obtained from Eq. (40) with

flak

——e and j =k.
One possible set of free parameters for the theory is 6o, 61, and C. The original parameters of the theory

are related to 5o, 5i, and C as follows [see also the first two equalities of Eq. (23)]:

g2 =2= e (1+5o)(1+5i) z 2Mz sw cw 5osw D
Q

(5o5i+5(pw +5icw ) e (1+5,) (1+5o)

2MZ sw cw 61cw D 2Mz sw cw 1 6osw 61cw

e (1+5o) (1+5,) C '
e C (1+5o) (1+5,)

(41)

From the positivity of g2, u, w, and v, 5o and

51 must both be non-negative in this 2Z, 28'
model, and C must satisfy the bound

5osw 51c
C& &0.

(1+5ii) (1+5i)
(42)

In addition to the restriction of Eq. (28), Eqs. (25)
and (41) imply

Mz, &Mz (43)

Also, Eq. (42) implies a further restriction on Mz,
Mz, and Mz . We note that the parametrization2' C

of the theory using Mz, , Mz, , and Mz is double

valued. In the limit Mz ~Mz the two realiza-
C

tions of the model correspond to the BKM model
and an SU(2) XSU(2)'XU(1) analog of the DOS
model.

We now examine the model for special cases in
which one of vacuum expectation values, u, v, m

goes to zero. At least two must be nonzero to give
masses to all of the 8' and Z bosons.

The case m =0 corresponds to the
SU(2) XU(1)X SU(2)' model of BKM. From Eqs.
(21) and (23) we see that this requires 5i ——0. The

IV. UPPER LIMITS ON LIGHTEST 8', Z MASSES

Since Mw and Mz must be less than their
1 1

corresponding critical masses, any restrictions on
Mw and Mz also place upper limits on the light-

est weak-boson masses. Solving for Mw in terms
C

of Mz, ~

2

M
Mw

WC 2 2 2 2cw Mz jtMz +sw
(44)

I

case u =0 (i.e., 5o——0) gives a model with the same
structure as the SU(2) X U(1) XU(1)' model of
DGS: the mass-squared matrix in the 8' sector is
diagonal and only one 8' couples to the known fer-
mions, giving an effective one- W, two-Z model.
Both the u =0 and m =0 cases give Mz ——Mz for

C

which the Z1 and Z2 mass straddle the Z mass.
The third limiting case is v =0. It gives the

theory with the smallest value of C for given
values of 5o, 5i [see Eqs. (41) and (42)]. Because
the known fermions receive their mass from Yu-
kawa couplings with 4, a theory with v =0 could
not supply fermion masses in the standard way.
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we see that in this model Mw has an absolute
C

upper bound of Mw/sw. ' There is no a priori
theoretical restriction on the allowed range of Mz .

Current measurements of the e+e —+p+p
cross section give the restriction C & 0.027." This
upper bound on C along with Eq. (42) constrains

5p and 51 and therefore the critical masses Mz and

Mw [see Eqs. (25) and (32)]. These limits are

z & 121 QeV Mw &97 G
More stringent upper limits on the lightest Z

and W masses can be fourid by maximizing Mz
1

and Mw directly for given values of C. Using

Eqs. (14), (23), and (41), we can write

Mz,.
'—Mz,.'Mz'[1+5pcw'(1+sw'/C)+5, sw'(1+c '/C)]+M,'s' c' D/C=o,

Mw, —Mw, Mw Mw [1+5p(1+sw /C)+5]sw cw /C(1+5))]+Mw sw D/C(1+5, )=0 .
(45)

From Eq. (45) it is straightforward but tedious to maximize Mz and Mw, with respect to 5p and 5~ for
fixed C. The results

MZSWCW
Z& max

(&w cw —C)

4
' 1/2 2 2 1/2

(C+sw )(C+cw )

C C1/2

C1/2 1/2

(Mw, )mxx=Mw 1+ 4 1/2(C+sw ) +sw

are shown in Figs. 1 and 2 as a function of C. For C &0.027 the bounds are

Mz, & 116 GeV Mw, & 89 GeV

As C goes to zero, the mass limits approach the standard-model values. The values in Eq. (47) should be
compared with the mass Mz ——88.5 GeV of the standard model before radiative corrections. '

(46)

(47)

200
200

M @M
Zp Z

1 (max)

49
)50—

C/l
Vl
O

!00
)00—

M
+& (max)

l

0 0.0$ 0.02 0.05 0.04 I

0.0)
I I I

0.02
I

0.05 0.04

FIG. 1. Upper bound on the lightest Z mass versus

the coefficient C of the (j„) term in the effective
Lagranian at low Q . Also shown is the value of Mz
required to achieve (Mz )mm

1

FIG. 2. Upper bound on the lightest W mass versus
C. Also shown is the value of M~ required to achieve

2
(M )....

1
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In this section we examine the experimental implications of the model when all Z bosons have masses
above that of the standard model. We use Mz, , Mz, , and Mz as the three free parameters of the model.

For the doublets (v, e) and (u, d), the charged-current Hamiltonian is

4 cc= tv'(1 —ys)e+py&(1 y—s)d, ] g N; Wi&,
2 2 i =1,2

where Ni and Nz are given in Eq. (31). The quantity dc is the Cabibbo-rotated combination

d~ ——d cosoc+s sinOC. The neutral-current Hamiltonian is

~Nc= g (gvfyi 4+g~ A'~ysit)«ZiI
i =1,2

where n i and n2 are given in Eq. (26) and

gv(&) =
4 ga(&) =—

4 gv(e) = —
4

+&'

(48)

(50)

The quantity a; is defined in Eq. (38). The couplings of successive generations of known quark or lepton
doublets are identical to those of Eqs. (48)—(50).

A. Decay widths and branching fractions

The partial widths for fermion-antifermion decays of the weak bosons are

cN; i ~ 2 i 2 1 (mi +m2 ) 1 (mi —m2 )
I'(Wi fif2)= A,

' (Miv, mi, mp ) 1 ——
(51)

I (Z;~ff)= A,
'~ (Mz, m, m ) (gf ) 1+ ~ +(gg) 1—

where c is the color factor and A,(x,y, z) =x +y +z —2xy —2xz —2yz. In addition, the Z2 or 8'2 may de-

cay into lighter gauge particles via a ZR'8' vertex if kinematically allowed. These partial widths are

1/2 2 2 2

I'(a ~bc) = f A, ( m, m,sm)
(m, +ms +m, +8m, ms +gm, m, + 8m' m, +8m' m,

m, mbm, 2

+8m, m, +8m, mb —18m, mb —18m, m, —18mb m,

—32m' ms m, —32m' m, m, —32m, m, ms ),4 2 2 4 2 2 4 2 2 (52)

where a, b, and c are the gauge particles involved and f is the appropriate vertex factor taken from Eq. (40).
In estimating these widths, we assume six flavors of leptons and quarks and use the masses m, =1.79,
m„=0, m„=md ——0.3, m, =0.5, m, =1.5, mb ——4.7, and m, =30 GeV. The results are fairly insensitive to

the value of m, . In Fig. 3 we show representative Z widths for the choices Mz, ——173 GeV and

Mz ——Mz, +2 GeV for a range of Z1 masses around and above the standard Z mass. Figure 4 shows 8'
widths for Miv ——168 GeV and Miv ——Miv +5 GeV. The widths are not appreciably different for other

values of Mz . The large width of the Z2 at lower values of Mz is caused PrinciPally by the decay

Z2~ W1$'1. The Z1 branching fractions are generally close to the standard-model values for Z1 masses in
the allowed range.
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FIG. 3. Total decay widths of the Z~ and Z2 gauge
bosons for representative masses.

FIG. 4, Representative total decay widths of the 8'~
and 8'q gauge bosons.

$. Predictions for e+e —+p+p,

The reaction e+e ~p+p provides a test of the standard model and places restrictions on the parame-
ters of any expanded theory. At 1' energies s &&Mz the cross section becomes

4ru' 46~&
g(e+e —~p+p )= 1 — [C+(—„—sin Hs ) ]3$27TCE (53)

The latest results from PETRA at Vs & 36 GeV give the limit C &0.027 at the 95% confidence level. "
Predictions for the e+e ~p, +p total cross section and integrated forward-backward asymmetry are

shown in Fig. 5 for an example with Mz & Mz. Current measurements" of the asymmetry
1

A (e+e ~p, +p ) at average v s =33 GeV are compatible with the standard model but do not rule out al-
ternatives. It is also possible to have a model different from the standard model yet with Mz ——Mz. In

1

that case, it can be shown that 73 GeV & M~, & 80 GeV for C &0.027. In Fig. 6, we show the integrated

resonance contributions above background at the Z& for Mz ——Mz, Mz ——200 GeV and a range of values
1 2

for Mz . The standard-model results are at the left end of the curve where Mz ——Mz. The relevant cross
C C

section formulas can be found in Ref. 4.

C. Predictions for e+e ~qq

Another process available for study in electron-positron annihilation is e+e +qq +hadrons. Fo—r-
s ~~Mz, the ratio

l

R =o(e+e ~y, Z; ~qq)lcr(e+e ~y~p+p )
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can be expressed as'

vZG, , vZG,
R = 3+Qf +6s V+3s

f 16~a 16m.a m
(54)

where Qf is the quark charge and

V=16gv(e)QQfgv(f» W=256[gv«)'+g~«)']g[gv(f)'+g~(f)']
f f

(55)

(56)

Interpreting results on V and W from hadron production at PETRA, ' ' we obtain the limit C & 0.016 at
the 95%%uo confidence level for sin Hiv

——0.23. This translates via Eq. (46) into the limits (Mz ),„=108and

(Miv ),„=87 GeV. Figure 7 shows the allowed region for V and W at 68% C.l..' The predictions of an
W& max

effective Hamiltonian with a C term are given by the segmented curve.

and the sum is over the quark flavors which can be produced. The factor 1+a,/~ represents the first-order
QCD correction. Using the effective Hamiltonian of Eqs. (19) and (21), we find, for five flavors,

V= —,[(—21+ 128siv —176siv ) —176C],

W= 9 [(2—8siv +16siv )(90—168siv +176siv )+.16(1—4siv )(42 —88siv )(42—88siv )C+2816C ] .

D. Drell- Yan production

In hadron-hadron collisions, quark-antiquark annihilations can produce Z bosons, which can then be
detected by muon pair production. The relevant cross section for qq annihilation is

2

«ref i +s )= ( IH- I'+ IH+ I'+ IH'+ I'+ IH'-
I » (57)

where m is the muon-pair mass, and

eqe' n, '[gv'(p)gv(e)+gA(p)gA(ri)]

m; i 2 m —Mz. +iMz Iz.
I l

n [gv(V )g~(e)+gv(e)g~(p)]
H+ ——

i =i,z in Mz +iMz Iz— . .

(58)

Here e& is the quark charge in units of e. For the inclusive production cross section AB~p+p I the
quark cross sections must be folded with the momentum distributions of the quarks in the initial hadrons:

gfq(x+, m )f-(x,m )o(qq +p, +p ) . —
6fp de 3P?l

(59)

The summation is over all quark and antiquark flavors and fq (x,m ) is the fractional momentum distribu-
tion of quark q in particle A. If y is the rapidity of the muon pair and s =(p„+p~) is the c.m. energy
squared, then x+ ——(m /V s )exp(+y). We use the QCD parametrization of Owens and Reya' for the parton
distributions. Figure 8 shows the dimuon mass distribution at y =0 in pp~p+p, X at v s =540 GeV for
the case Mz, ——106, Mz ——173, and Mz ——108 GeV.

VI. NATURAL EXTENSION TO U(1) XSU(2)

In this sation we consider a U(1) XSU(2) gen-
eralization of our two-F, two-Z model. We show
that these extended models naturally reproduce the

low-energy predictions of the standard model.
With a symmetry assumption about couplings and
vacuum expectation values, we also show that the
maximum allowed values of the lightest 8' and Z
for the gauge group U(l) XSU(2)+ are the same as
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=go +Qg (61)

a= ' B+g—'W,"',
gO I gr'

(60)

the corresponding limits for U(1))&SU(2) ', with
N & 3. Then the limits (Mii, ),„and (Mz, ),„de-
rived in Sec. IV for the case N =2 are also upper
bounds for an extended model of this type, regard-
less of the value of N.

Let the extended gauge group U(1)X SU(2)
have the couplings —,go, g; and gauge bosons B,
WP' ', with i =1,...,N. Note that this labeling of
couplings to the groups differs from that in previ-
ous sections. The known fermions are assumed to
couple only to U(l) and the first SU(2). Higgs
doublets couple the U(1) and any one of the SU(2)
groups; Higgs quartets couple any two SU(2)'s.
We allow the most general Higgs doublet and

quartet structure, with U,&
denoting the vacuum ex-

pectation value for the Higgs field coupling to the
ith and jth groups, i,j =O, ...,N and i+j For the.
electric charge to be given by Q =F/2+ g T&;, the
photon must be of the form l

A, 8(Mz )ii= 2' gvik + 2
0&i k&N

k@I'
(62)

2 ' 2(~z )ij 2giaj "ij + A, e 0&i j&N.
gIgj'

The charged-boson mass-squared matrix &~ is
identical to Mz without the rom and column
corresponding to the B boson, after setting A, =O.

The charge-current interaction
2 '

g&
j'+'8'&+ + H.c. leads to the effective low-

energy interaction —,gi (Wi Wi ), where

( W~+Wi ) =(Az )». The neutral-current in-

teraction go(j „j„"')B„+gj„' 'W—p„' gives the
effective low-energy interaction —,a[(j&

' —bj&™)2
+ C(j&™)], where

The photon is given mass A, by adding to each ele-
ment in the neutral boson mass-squared matrix

/g;gi. The ~es~lt~~g sym
metric matrix may then be written in component
form as



1396 V. BARGER, K. WHISNANT, AND ERNEST MA

and

=go'(BB ) 2—g,g, (Bw',")+g, '( w', "w',"),
ab =g, '(BB)—g,g, (BW',"),

a(b +C)=go (BB)—e /)(,

(see Ref. 5). To establish that the effective
strengths of the charged- and neutral-current in-
teractions are naturally the same as in the standard
model, we must show that

g&~(w&+W& )=a = go (BB)—2gog&(BWY )

+g 2( W(3)w(3) ) (63)

in the limit A, =O, where the individual terms in
Eq. (63) can be written as (W&+W& ) =(M~ )»,
(BB)=(Mz }oo (BWP )=(~z )0], and
( WI 'WI ') =(Mz ))). Note that
(M );1 =Cof[(M ),J]/Det(M ), where Cof
denotes the cofactor of a given element in a matrix
and Det the determinant. We first expand
Det(~z ) in powers of A, :

Det(Mz )=A, e g Cof[(Mz )J(A, =O)]+O(A, ) .
g J glgJ

It is not difficult to show that

g~gJCof[(~z )sy(A, =O)]=go Cof[(~z }oo(A=O)]=, go Det(Mn )

for all values of i and j. Then Eqs. (64) and (61) yield

2 2

Det(Mz ) .
~So

2Det(Mz )=)I, e go Det(Mz )g 2
l J gl 8J

The right side of Eq. (63) can now be expressed as

2

, [go'Cof [(~z')oo] —2gogi Cof[(~z')Oi]+g i'Cof[(~z') ill] .
A, go Det(Mn )

(64)

(65)

(66)

In each cofactor term, the piece independent of A, is equal to go Det(Mn } and thus cancels in the expres-
sion for a. Each cofactor in Eq. (66) is a determinant of an N XN submatrix of Mz, where each element

10 ~ l ~ I 1
~ ~ I ~

1
I ~ g ~

50—

0—

c IO
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~ to'
C9

Xl

10

.Z PP-Z;-|u,')u, X:
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0

10
E

b
7

to
50
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2

IVlz = I08 GeV
C

I
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~ ~
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FIG. 7. Domain of Vand 8'in Eq. {56)for
e+e —+hadrons; allowed region. from data of Ref. 14
lies within the elliptical boundary. The segmented curve
gives the predictions for an effective Hamiltonian with a
C parameter in the range 0 & C &0.05.

m{p, p. ) (GeV)

FIG. 8. Predictions for the cross section do./dy dm at
y=0 versus m of the Drell-Yan muon pair production
process for pp colliding beams at Ms =540 GeV.
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(67)

The derivation of Eq. (67} is given in the Appendix. From (8'i+Wi }=(M~ )ii we see that the natural-
ness condition of Eq. (63) is satisfied.

We now show that with the symmetry conditions of Eq. (70) below (Mii, ),„and (Mz ),„are the same

for U(1})&SU(2) as for U(1) XSU(2} ' when N & 3. Consider the matrix Mz of Eq. (62). By applying
the rotation in ( W~ ' i, W~') space given by the matrix

in the submatrix has a k term. Therefore, each cofactor yields N terms of order )I,~, analogously to the re-
sult for Det(Mz ) in Eq. (64). It can be shown that Eq. (66) reduces to

Cof[(Mp ) i i]
Det(Mii )

1 cos8 —sin8

cos8 sin8

(6g)

to &z, and setting tan8= —gq/gq i, the rotated (symmetric) neutral-boson mass-squared matrix elements

(~z ) 1 =(~~z 8 );1 for the Nth row are

gW —1

pgjg& ] Uj pf $ Uj & for i =X, 0&J &X—2
gN gled —1 (69}

1

ggN —1

gN 2 . . . 2 g+ ~ 2 . . . 2
(Up, N —1 + +UN —Q, +—i ) — (Up~ + ' +U~ g~ ) fori =N, j=N —1,

gN

where g~ ~
——g~ ~ + g~ . This transformation does not change Gz, sin 8~, or C since they are calcu-

lated from (Mz )pp, (Mz )pi, (Mz )ii and these elements are not affected by the rotation. We now

make the assumption that (Mz ),„has a symmetric solution such that

gN 1=g~, vj ~ ) =Uj ~~ J =01, ~ pN —2, (70)

where N —1,N is some pair chosen arbitrarily from the set I2, . . . ,N ]. Using Eq. (70), we see that all ele-

ments in the Nth row and column of the (Mz )' matrix become zero except for (Mz~)~iv. This corresponds
to the case in which one Z decouples from the other Z bosons and from the known fermions. Hence the e,

GF, sin 8~, and C calculated from the remaining submatrix are the same as for the full matrix. A similar
statement holds for the charged bosons. For such symmetric sets of parameters, the upper bounds on the
lightest weak-boson masses are the same for all values of N & 2.

In numerical evaluations of the N=3 case with C (0.04, we found that (Mz ),„can be at most 3%
1

higher than the upper bound for N=2. Thus it seems likely that (Mz ),„and (Mii )m,„are not appreci-

ably higher than the values in Eq. (46), if N is not too large.
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Here we outline the proof of Eq. (67). We begin

by writing the cofactors in Eq. (66) as

g gpCof[(~z ) p]=gp g, . g~'Det(C ~)( —1) +~

(Al)
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with a, P either 0 or 1. The matrices C P are
given by Eq. (62) as

A, e
z+Vik+ g ~ i J~

k~s

A, e——,uij + z z, i',
gl gJ

(A2)

where i,j go from 0 to N with the row i =a and
the column j=p excluded. The expression for iz

in Eq. (66) becomes Dll Dpp ~

Di~ =2Dpo, 1+m,
(A8)

The factor of 2 in front of Coft(C")pz] includes
the contribution from Coft(C")zp]. In deter-

minant form, all rows of Cof[(C )pz] and

Cof[(C ')zp] are identical except the first; there-

fore, we can combine the two determinants by add-

ing the top rows. In the resulting determinant for
Dp2 we now add all other rows to the first row.
The result is identical to the determinant form of
2Dpp. Similar manipulations can be used to show

more generally that

A, Det(Mw )
(A3)

for any l. Hence iT of Eq. (A5) becomes

where

a —=Det(C )+2Det(C ')+Det(C") . (A4)

a=a'D~e' yg, -'
I

It is convenient to define coefficients DI such that
a can be written as

=A, Dpp/e (A9)

a=A, e QDi gi g +O(A, ) .
E, m

(A5) Combining Eqs. (A3), (A6), and (A9), we obtain

Our next task is to determine the DI . By inspec-
tion of Eq. (A2), we observe that only C" has a
gp term and hence

2. . . 2
g1 gN

Det(mw')
(Alo)

Doo =«I]:«")ool (A6)
By reference to Eqs. (A2) and (59), we conclude
that

evaluated at A, =O. Identifying terms with

gp gz in Eq. (A2), we determine that for )I,=O,

Dpz ——2Cof[(C")oz]+2Cof[(C ')zp] . (A7)

gi Coft(Mw )ii]
Det(Mw )
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