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We describe a way to include asymptotic freedom in the potential energy for a baryon

composed of three heavy quarks, which is based on the Born-Oppenheimer approximation

to the NIT bag model. The running coupling constant appears in both the two-body

Coulomb terms and the three-body confining term of the potential energy. The
Schrodinger equation with this potential is solved using a hyperspherical expansion, and

spectra are obtained for the baryons b, c, and Q (s ). Comparisons of these systems

with the corresponding qq systems are made using the same running coupling constant

and bag parameters for the baryons and the mesons.

I. INTRODUCTION

Since the discovery of the charmonium (cc) sys-
tem a good deal of progress has been made to-
wards understanding the main features of the static
interaction between a heavy quark and a heavy an-

tiquark. There now exist derivations' of the
spin-independent part of the potential energy based
on the Born-Oppenheimer approximation to the
MIT bag model, where it is assumed that the glue
field adjusts rapidly compared to the motion of
quarks. In the first step, the quarks are taken to
be static, and, to lowest order in the coupling con-
stant, numerical solutions for the shape and the en-

ergy of the bag as a function of the qq separation
are obtained. This energy serves as the potential

energy V —between quarks in the second step of
the Born-Oppenheilner approximation, which is the
solution of the Schrodinger equation. In Ref. 1 a
running coupling constant was used which satisfies
the requirements of asymptotic freedom in the lim-

it of small separation; but the same values of the
bag constant B and zero-point-energy constant Zo
were used as were obtained in the original bag-
model fit to the spectrum of hadrons composed of
light quarks. The solutions of the Schrodinger
equation' are in fair agreement with the experi-
mental data on the cc and bb spectra and their lep-
tonic decay widths.

Given the success of the numerical solution of
the bag-model equations for the qq problem, one

may be inclined to consider a similar approach to
the q system. For a fixed coupling constant this
has been done. The situation is somewhat dif-

ferent, however, for a running coupling constant.
In the qq problem there was a transparent way to
incorporate such a coupling constant: for each
value of the qq separation the bag equations were
solved using the value of the coupling constant at
that separation. ' There is no analogous procedure
in the q problem since there are three distances
instead of the one qq separation. Therefore, a nu-

merical solution will not contribute as much to our
understanding of the q problem as it has done for
the qq system.

In Ref. 8 the present authors proposed an ana-

lytic approach to solving the Born-Oppenheimer
approximation for the heavy qq and q systems,
which exploits the fact that the bag model allows
one to treat these systems on the same footing.
Using the simple bag shapes appropriate to small
and large separations, and simply joining the
corresponding results in the middle region, we ob-
tained a global approximation to Vqq in good
agreement with the result of the numerical treat-
ment which involves more complicated bag
shapes. ' One therefore feels confident that the
analogous analytic treatment of V 3 is as well

q
founded as that of V —. All potentials derived in

this way are Aavor-independent.
In Ref. 8 we derived in this manner an approxi-

mation for V 3 using a fixed coupling constant. In
q

this paper we will discuss a way to include the
variation of o,, with distance in V 3, and study its'q
consequences for the heavy q spectroscopy. The
fact that the potential separates into two-body and
three-body terms of specified analytic form sug-
gests how this should be done. The two-body color
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Coulomb terms are due to single-gluon exchange,
and differ from the qq case only by a color factor
Fq.Fq, instead of Fq F . The same one-loop

q
correction plus renormalization-group argument
should apply, therefore, and give the very same
variation of a, with

~ r~ —r~ ~

. (Note that to this
order one does not get three-body forces; the
three-gluon vertex is proportional to f,s,F~,F~, F~,
which vanishes between two color singlets. ) For
the three-body (confining) term the situation is less

clear. When all quark separations are small, which
is the most important region for the low-lying

states, this term depends only on the hyperspheri-
cal radius p. Therefore we make o;, in this term
also depend on p,' but this still leaves some ambi-

guity which is discussed in Sec. II. For large
separations it is less clear what to do; but it is also
less important since a, has become almost constant
in this region, and, in addition, the probability of
finding quark configurations with these large
separations is small.

Besides the energy contributed by the static,
longitudinal glue fields generated by the quarks,
and the volume-energy term, the potential energy
also contains a term E0 coming from the zero-

point energies of the transverse glue fields and the

(light) quarks. This term depends on the shape of
the bag and thus on the configuration of the sys-
tem as a whole, rather than of any particular sub-

system.
Once the three-quark Hamiltonian is specified,

one can proceed to solve the Schrodinger equation.
This is greatly facilitated by the fact that the
three-body part of the potential is a function only
of the hyperradius for the very important small

quark separations. One finds that a hyperspherical
expansion9 of the wave function converges very
fast '; this is discussed in Sec. III, where we calcu-
late the b, c, ands excitation spectra. Some re-
sults for mixed systems such as c s are also given
there. A brief discussion of the hyperspherical
method is given in the Appendix.

The experimental situation does not look as good
for the heavy q system as for the heavy qq sys-
tems. The analog of the cc and bb systems would
be the c and b systems, respectively: baryons
composed of three identical heavy quarks. Such

systems could tell us a lot about the static interac-
tion between (three) heavy quarks, just as quarkoni-
um has done it for the static qq interaction. Un-
fortunately, there is no c spectroscopy to compare
the predictions of the theory to. Moreover, the
chances that such baryons will be found in the

near future look rather slim.
Fortunately, the study of the three-heavy-quark

system is not quite as academic as it may seem.
One can use the s system as a first guide to gain
some understanding of the static interactions be-
tween quarks. The s spectroscopy is not yet well

explored, with only one state, the 0, known at
present. There are, however, negative-hyperon
beams in operation at Fermilab and the CERN
SPS which contain sizable fraction of Q, and
which have already been used to establish the static
properites of the 0 and its main branching ra-
tios. ' The exploration of its excitation spectrum
then may be also be within reach.

A word of caution is needed for the s system,
however, since the strange quark generally is not
quite as nonrelativistic as one might wish.
Nevertheless, when one applies the identical poten-
tial (which was used for the cc and bb systems) to
mesons containing the s quark, consistency is ob-
tained between the masses of the P(ss ) and the
F'(cs ).'" One finds' the rather small quark
mass, m, = 0.641 GeV, which indeed makes these
systems somewhat relativistic: (p /m ) = 0.56
for the P.

In Sec. IV we comment on relativistic and spin-
dependent corrections, which have not been includ-
ed here. Next, a comparison between the quark
and the nuclear few-body systems is made. We
then emphasize the lack of theoretical foundation
for the use of a confinement term consisting solely
of the sum of two-body interactions, within the
framework of QCD, and point out some of the
differences which arise were one to substitute such
a potential term for the three-body confining po-
tential.

II. THE MODEL

In Ref. 8 we studied the potential energies of the
heavy-quark-antiquark and the three-heavy-quark
systems, in the Born-Oppenheimer approximation
to the MIT bag model. In the limit of small qq
separations, r =

~ x~ —x- ~, the following expres-
sion for V (r), obtained by approximating the bag
shape by a sphere of radius R =(a,r /vrB)'~s, and
keeping only the dipole term from the homogene-
ous part of the potential, accurately represents the
numerical calculations'

V (r)= — ' +(—')' 'kr .
qq 3& 3
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4a,
V (r)= — +kr+V -,

3T
(2.2)

where R:(8a—,/3mB)'~ . and k =(32mBa, /3)'~,
in terms of the quark-gluon coupling constant

a, =g /4m. and the bag constant B. V —is a con-

stant, and (2.2} becomes accurate when r exceeds
R . By comparison with the numerical solution, '

we found that a rather accurate description could
be obtained by simply taking expression (2.1) for
separations r &R „,and (2.2) for r &R„. V is

fixed by the requirement that V —be continuous at
I' =R ~.

In the limit of large qq separations, the bag shape
is accurately approximated by a tube of radius R „,
and V (r-) becomes

Insofar as the potential energy is concerned, it is
R „(the radius of the fiux tube for large separa-
tions} which sets the distance scale in the problem
and determines the transition region between small
and large separations. For simplicity we have
chosen to match (2.1) to (2.2) right at r =R„,al-

though one could do a somewhat better job of fit-
ting any given set of heavy-meson energy levels by
choosing a slightly different value for the matching
radius, tailored to the range of distances spanned
by the wave functions under consideration. As the
quark mass is increased this entire question be-
comes moot since the wave functions are all con-
fined to r ~R

Following the identical steps for the heavy q
systems, one arrives at

V 3(x&,x2,x3)= .

p(R„,

+krM+ V „p&R
g)J Xj X

(2.3a)

(2.3b)

in terms of the hyperspherical radius

1/2

X —X
l)J

The term krM is the generalization to three tubes of the one-tube result kr in (2.2). rM is the minimized
sum ' of the lengths of the three tubes in a I'-shaped bag. With x;J—= ~x; —xj ~,

2 2 2 2 2 2
X12 X13 +X13 X23 +X12 X23r~= —, p 1+v3 4

(x]2 +x23 +x]3 )

1/2 1/2

(2.4a)

if none of the angles of the quark triangle exceeds
120', and

small separations is found to be'

rM =
~
xg —xj

~
+

~
xj —xk

~

for 8; & 120' . (2.4b)
12m. 1a, (r) +-ln

33—2ny p p

(2.5)

V 3 depends on the geometry, and is also chosen to
q

make the potential continuous.
So far we have looked at the fixed coupling-

constant case. But in the Born-Oppenheimer ap-
proximation the quarks enter the equations as
fixed-point sources, and consequently the varia-
tions of coupling constant with distance as re-

quired by QCD should be incorporated. The lead-

ing behavior of the coupling constant, including
one-loop corrections, for a heavy qq pair at very

in terms of the number of quark flavors n~ and the
QCD scale parameter A. [This is to be contrasted
with the case of light, relativistic quarks which
spread out over the entire bag. For such quarks
one can only speak of an average separation r, and
the coupling constant then has to be interpreted as
a, (r), for which the original NIT fit5 gave a value

2.2 for r =-1 fm. ]
Rather than repeating the one-loop calculation in
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12ir 1

33—2nf in[(1/A2r )+y]
(2.6)

the bag model, the correct effective coupling was
incorporated in Ref. 1 by replacing the quark color
charges Q =gI'," by effective charges

Q (r) =g (r)F in the bag equations of motion for
the glue fields. With a, (r) =g (r)I4m, a, was

parametrized as

where A and y were treated as free parameters.
For nf =3, y= 3.36, and A =0.24 GeV [and conse-
quently a, (1 fm) =1.0] were found to give a good
fit to the cc and bb spectra, using the value of the
bag constant B from Ref. 5: B' = 145 MeV. '

For these values of the parameters a, ( 00 ) = 1.15.
In the qq problem proceeding in this manner

simply makes a, in (2.1), (2.2), and in the defini-
tions of k and R, become a, (r). In other words,
(2.1) and (2.2) become

+( 3
)'~ k(a, (r))r, r &R„,

3 T

4 a, (r)

3 7'
+k(a, (r))r+ V, r &R„S qq & — oo

(2.7a)

(2.7b)

I.5—

I.O

0.5 —50

0.0 0.5 I.O Ra) I.5

r (fm)

2.0 2.5
0

FIG. 1. The global approximation to the heavy qq
potential, VG. The solid curve, which represents V~, is
defined in (2.7). For r &R „it is the dipole approxima-
tion (Ref. 8), (2.7a), the continuation of which for
r & R „ is shown as a dashed curve. For r & R „,VG is
given by (2.7b), and its continuation for r &R„ is shown
as the dash-dot curve. All these approximations use the
same running coupling constant, (2.6), with A=240
MeV and y=3.36. The Coulomb term of the potential
has been omitted from all curves. The difference
LV= VH —V~ is shown on the right-hand scale, where
VH is the numerical result from Ref. 1.

where k(a, ) is the function defined following (2.2),
and we now take R „ to be R „(a,( co ) ). Equation
(2.7) is referred to as the global approximation to
the potential, VG. Figure 1 shows a comparison
between (2.7) and the potential from Ref. 1. Just
as for the fixed-coupling-constant case the
discrepancy between the two curves is maximal, yet
only 40 MeV, at r=R„= 1.35 fm.

Examination of the wave functions plotted in

Fig. 9 of Ref. 1 shows that, with the exception of
the highly excited states of charmonium, they are
all essentially confined within R . If one uses
(2.7a) for all distances, the energy of the ground
state of charmonium changes by less than 1 MeV.
The 3S-state energy comes down only 5 MeV.

In the q system where there are three different
quark separations it is not obvious how to include
the variation of cz, by replacing the fixed quark
charges Q with effective r-dependent ones. But
the analytic approximation to the potential given
in (2.3) suggests a way to proceed. The most im-
portant and also the least ambiguous a, depen-
dence is found in the Coulomb-type two-body
terms. As indicated in the Introduction, it seems
quite reasonable to let the coupling constant in
each of these terms depend on the appropriate
two-particle separation, thus retaining its two-body
character. It also seems reasonable that the a,
which appears in the three-body term of the poten-
tial (2.3) should develop a dependence on a collec-
tive, three-body variable since that term is a direct
consequence of the confinement mechanism which
affects all three quarks at the same time. We
know, from the discussion of the qq potential
presented above, that the most important part of
V 3 will also be the one for the small distances,

p & R„.From Eq. (2.3a) one sees that the three-
body term in the potential depends exclusively on
p, and therefore one is led to expect the a, which
occurs there to also be a function of p. We there-
fore propose
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ag( Ix; —x.
I

)
V &(x],x2,xs)= ——,g

(J Xi XJ
R 3

——
3ag()]p}

2n.B

consequently we take
' 1/6

(3.4)

+k(a, (Ap) }p, p (R„. (2.8a)

The constant A, can be interpreted as a measure of
the effective distance at which a quark sees the
other two quarks. As such it can range from

( —,}'~,for a quark-diquark configuration, to

( —, )
' for an equilateral-triangle configuration.

Comparing the probabilities for the occurrence of
the various configurations, one expects l to be
closer to the lower limit.

When dealing with states for which the wave
function extends beyond R „,we make use of the
fact that the coupling constant has essentially
reached its asymptotic value and write

a, ( Ix; —xjI )
V,(x],xq, xs) = ——,g

]&j I xi xj I

+k„rM+V ), p&R„, (2.8b)

where k„=k(a,(ap)).

III. THE SPECTRUM

The potentials proposed in (2.7) and (2.8) are the
major parts of the potential input to the
Schrodinger equation. The actual Hamiltonians,
which are given by

p
2

H =g + V (r)+Ep
i

(3.1)

3 .2AH 3 y + V 3(x] x2 x3)+Ep
2m;

(3.2)

ZpEo=-
R

(3.3)

where R is the radius of the spherical bag. From
Ref. 8 it is seen that the bag radius depends on the
same coupling which appears in k in (2.8a) and

also include the MIT-bag-model zero-point energy

Ep due to the presence of confined quantum fields.
This term was parametrized in the original MIT
calculation as

The corresponding formula for the qf system is'
1/6

R-= (3.5)

Even though our bags become spherical only in the
limit of small separations, we use (3.3) and (3.4) or
(3.5) for all separations. The MIT-fit value

Zp ——1.84 is taken.
To see how well (3.1) along with (3.3}and (3.5)

does in the cc and bb systems we have listed in
Table I both the theoretical and experimental spec-
tra. The agreement is seen to be good. For com-
parison, the spectrum of Ref. 1 has also been in-

cluded in the table. '

In describing the three-body system there is the
additional parameter )], in (2.8), which represents
some ignorance about the correct way to incor-
porate a running coupling constant into the three-
quark problem. Our procedure for assigning a
value to this parameter (within the range discussed
in Sec. II) is the following. Using (2.7), (3.3), and
(3.5) we find that m, = 0.649 GeV is needed to fit
the mass of the ]I}(1020). We would like to choose
A, so that this same quark mass, when used with
(2.8), (3.3), and (3.4), would give the mass of the
0 (1672). Anticipating some of the results below,
we were not able to achieve this except by pushing
l], down to an unacceptably small value of about

In the next section we will discuss some of the

physics which is missing from the present calcula-
tion and which might account for this discrepancy,
but for now we shall simply choose A, to be at the
lower limit of the acceptable range, A, =1/~3.
With this value, m, =0.571 GeV puts the 0 at its
physical mass of 1.672 GeV.

A method for obtaining the energy spectrum of
the three-body Hamiltonian (3.2) is suggested by
the particular form of the confinement term in
(2.8a) and also by the zero-point energy (3.3) with
(3.4): they only depend on the hyperspherical ra-
dius p [def]ned following (2.3}]. One therefore ex-
pands the wave function in terms of hyperspherical
basis functions (see Appendix) and expects rapid
convergence. Since the Coulomb-type two-body
forces in (2.8), and the remaining three-body terms
in (2.8b) have angle dependence, and thus are not
diagonal in the hyperspherical basis, this expansion
leads to a set of coupled radial Schrodinger equa-
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TABLE I. Spectra of the cc and bb systems. For each system a comparison of the spec-
trum from the present work is made with the experimental spectrum and with that from
Ref. 1. The last column lists the expectation value of the qq separation for each state.

Calculated energy
(Gev)

cc state Expt. ' (GeV) This work Ref. 1 (r) (fm)

1 Si
1 3pc

2 Si
13D
3 Si
2 Di
4 Si

3.095
3.522
3.685
3.770
4.030
4.160
4.415

3.095
3.506
3.669
3.782
4.054
4.129
4.379

3.095
3.525
3.686
3.809
4.089
4.171
4.418

0.34
0.57
0.72
0.77
1.03
1.06
1.29

bb state Expt. (GeV) This work Ref. 1 (r) (fm)

1 Si
1 3pc

2 Si
1 3Di

3 Si
23Di
4S

9.462

10.015

10.351

10.576

9.460
9.886

10.005
10.133
10.333
10.415
10.582

9.460
9.946

10.048
10.198
10.393
10.489
10.660

0.20
0.36
0.45
0.50
0.68
0.71
0.88

'See Ref. 15.
"See Ref. 16.
'See Ref. 17.

tions. Already one term in the expansion gives an
accurate value for the energy eigenvalue. ' In the
case of the s ground state, for example, the inclu-
sion of a second term only shifts the value of the
ground-state energy by an amount ~&-0.35 MeV.
This shift becomes larger with increasing quark
mass, since then the ground state becomes more
deeply bound and the nondiagonal Coulomb terms
are more important there. Nevertheless, the cou-
pling of this highly localized state to higher states
is sufficiently limited by the strong angular
momentum barriers, and the convergence of the
hyperspherical series remains rapid. For the b
ground state one finds b,E=1.3 MeV. The numer-
ical results in this paper were all obtained using
the hyperspherical method.

The lowest six levels in the energy spectrum of
Hamiltonian (3.2) for A, =(

3
)'~ and m, =0.571

GeV are shown in Fig. 2. The grouping of the lev-
els in this particular spectrum is close to that of a
weakly perturbed six-dimensional, isotropic har-
monic oscillator. Indeed, the assumption that the
perturbation consists of the sum of two-body po-
tentials (Ref. 20), g, U(r J ), plus a three-body

2.2— s

I

2

WZ/lr
K

2.0—
c5

K

L=O L=2

FIG. 2. The lowest few eigenstates for the s system.
For each state the total quark spin S, and the total orbi-
tal angular momentum L have been given. The thres-
holds for strong decay through quark-antiquark pair
creation have been inserted at convenient places and are
labeled by the two-body final state. The parameters
used are m, = 0.571 GeV and A, = ( —)'

3
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potential which is a function only of p, leads to a
three-parameter description of the five energy-level
differences in Fig. 2. This information is summar-
ized in Table II, where it is seen that a rather good
fit to the energies can be obtained by choosing the
parameters to have the indicated values. One also
sees that the two- and the three-body corrections
are comparable, and can be regarded as perturba-
tions. However, the harmonic oscillator leads to
expectation values for the hyperradius p, which,
for the excited s states, are about 10% smaller
than those obtained from the Hamiltonian (3.2)
(see Table III); the ground-state expectation value
is used to set the scale.

For comparison the splitting obtained by Chao,
Isgur, and Karl ' for the S=—3 excitation spec-
trum (before the inclusion of the hyperfine split-
tings) have also been given in Table II. These au-

thors assume a harmonic-oscillator potential per-
turbed by two-body forces. Their level splittings
can be described by two parameters whose values

were fixed by simply extrapolating from NA and
XA spectroscopy. Note how large the two-body

splitting turns out to be. The two sets of separa-
tions are sufficiently different to remain recogniz-
able, even after the application of spin-dependent
corrections. Especially the position of the first ra-

dial excitation of the ground state relative to the
other states, is sensitive to the structure of the ac-
tual potential being used.

The resemblance of the s mass spectrum to that
of a weakly perturbed harmonic osillator is ac-
cidental. In Table III the level splittings we obtain
for the s, c, and b systems are listed. The
separations for these different systems become
smaller, and differently arranged, with increasing
quark mass. As mq continues to increase beyond
mb the spacings become larger again, as appropri-
ate for Coulomb-type bound states. At this point,
the approximation of the potential, to zeroth order,
by a harmonic oscillator obviously has become bad.

We now want to give some indication of the sen-
sitivity of the spectrum to variations in A, . If A, in-
creases the three-body part of the potential be-
comes more positive, since the coupling constant,
which appears in the slope k of the confining term
increases. (In addition, the zero-point energy be-
comes less negative. } The effect of this is to raise
the entire spectrum, while the spacings of the
lowest few excited states are hardly affected.
Changes in these splittings are typically of the ord-
er of 5 MeV, and at most 12 MeV, when A, is in-
creased from ( —,) to ( —,)'~ .

All 0 states, except the 0 (1672) ground state,
in Fig. 2 are seen to lie above the =E threshold
and can decay strongly. A crude estimate for the
lowest threshold for decay through the creation of
a nonstrange-quark-antiquark pair for the c sys-
tem yields M(ccn)+M(cn )=5.72 GeV. Since the
c ground state is expected at M(c ) =5.04 GeV,

TABLE II. The s system, showing energy-level differences of the lowest excited states from the ground state (in
MeV). The total quark spin S, the total angular momentum L, and the total spin and parity J are given for each state
L . The symmetry label ~=S (for symmetric) or M (for mixed) stands for the permutation symmetry of the space (or
quark spin) wave function. The column labeled "Hamiltonian (3.2)" refers to the present calculations. The column la-
beled "Perturbed harmonic oscillator" gives the differences for an isotropic six-dimensional harmonic oscillator which is
perturbed by two- and three-body potentials, with the following values for the parameters: the effective harmonic-
oscillator quantum h Q=320 MeV, the two-body-potential-induced splitting 6 = 65 MeV, and the three-body-
potential-induced splitting 5 = 75 MeV. The results in the last column are from Ref. 21 and correspond approximately

to taking h Q=h= 350 MeV and 5=0 MeV.

State S L JP Hamiltonian (3.2) Perturbed harmonic oscillator

(two- and three-body potentials)

Ref. 21

ss 3

2
1

2
3

2

2
3

2
1

2

3+
2
1 — 3—
2 '2
3+
2
] +
2
1+ 3+ 5+ 7+
2 2 2 2
3+ 5+
2 '2

320

510

595

320

2hQ —5 —6 = 500

2hQ —5/4 —4/2 = 585

2hQ —5/4 —2A/5 = 595

2hQ —5/4 —6/5 = 605

370

535

565

630
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TABLE III. Properties of the s, c, and b systems. The states are labeled as in Table
II. For each state the energy difference hE (in MeV) from the ground state and the expecta-
tion value of the hyperradius p (in fm) is given. A, =(—)', m, = 0.571 GeV, m, = 1.872

GeV, and mb ——5.237 GeV. The ground-state energies are M{s ) =M(Q ) = 1.672 GeV,
M(c ) = 5.04 GeV, and I(b ) = 14.72 GeV.

State
S

(p)

3 b3

Ss

~s

Ds

0
320
510
585
595
605

0.75
0.95
1.06
1.12
1.12
1.11

0
265
390
465
470
485

0.46
0.59
0.68
0.72
0.72
0.72

0
2SS
340
425
435
450

0.28
0.38
0.43
0.46
0.46
0.47

all the c states listed in Table III are presumably
rather stable. A similar estimate for the b states
yields a decay threshold at 15.7 GeV, to be com-
pared with a ground-state mass of M(b ) = 14.7
GeV.

IV. COMMENTS

TABLE IV. (p /m') for a single quark in the
ground state of heavy qq and heavy q systems, for
s (m, = 0.649 GeV) (Ref. 22), c (m, = 1.872 GeV),
and b (mb ——5.237 GeV) quarks. The q' potential has

qq

q

0.565
0.495

0.187
0.147

0.078
0.053

(A) In the previous section we noted that it was
not possible for us to fit the masses of the P and
the 0 with a common value for the strange-
quark mass, indicating some defect in the Hamil-
tonians (3.1) and (3.2). Examination of Table IV
reveals one source of the difficulty, which is that
the quark motion is moderately relativistic in both
these systems. It is also seen that the correspond-
ing systems composed of the heavier c and b

quarks are much less relativistic. In addition,
there are spin-dependent interactions which have
not been included in our calculations. Since these
terms are inversely proportional to mq, and contri-
bute 115 MeV to the g q, splitting—s's they

presumably are also not negligible for the strange-
quark system.

For the heavier quark flavors c,b, ... , where rela-
tivistic effects are smaller, we expect that it will be
possible to choose a value for the parameter k such
that the q systems will be fit with the same values
of the quark masses as are needed for the
corresponding qq systems.

(B) In Fig. 3 we have summarized some of the
properties of the ground states of a number of
three-heavy-quark systems, using A, = ( —, )'~ .
Note the great variation in size of these systems,
which is accompanied by a comparable variation in
the values of the coupling constant a, (Ap) at the
expectation value of the hyperradius, p, in each
ground state. Three-quark states are generally
more extended than the corresponding quark-
antiquark states. This is opposite to the situation
encountered in the few-nucleon systems where the
three-body states (triton, He) are more compact
than the two-body state (deuteron). The q poten-
tial is somewhat weaker than the qq one, which
manifests itself also in the reduction of the binding
energy per quark: 140 MeV for ss, compared to 35
MeV for s (Ref. 22); 325 MeV for cc compared to
190 MeV for c; and 5l.0 MeV for bb compared to
330 MeV for b; i.e., a reduction of 35 to 75% in

going from qq to q .
(C) In Refs. 7 and 8 the confining part of the

tential energy for the three-heavy-quark system
was shown to be a pure three-body term. Al-
though this result was obtained from the MIT bag
model, we know of no mechanism for confinement,
within the context of QCD, which would lead to a
sum of two-body potentials. The QCD Lagrangian
contains explicit three- and four-gluon interactions,
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I.O

0.5—

CI

0.5

cs ca

c~
b ~c+

the ratio (Fq Fq') /(Fq F )=-2 and sum over

pairs, as if the q-q and the hypothetical q-q poten-
tial were proportional to the color factors Fq F
and Fq Fq, respectively. From (2.7) and (2.8) it is
seen that the color Coulomb terms (and in fact all

terms originating from single-gluon exchange ') in
1

the two potentials are related by this factor of —,;
but the confining terms are not simply proportional
to the color charges.

It is interesting to see how different the effective
confining term arising from this two-body pre-
scription is from our three-body confining term.
For simplicity, take the coupling constant to be
fixed and form the ratio of the averge over the an-

gles of the two terms, f. For small separations, us-

ing Eqs. (2.7a) and (2.8a) this becomes

(4.1)

-0.5

—I.O
0 I.O R g)

p (fm)

2.0

which in a q system must give three quark in-

teractions (and, in multiquark systems, through
successive gluon fissioning, all orders of multi-
quark interactions}. In addition, once the coupling
constant a, becomes large enough (at large dis-
tances} multiple exchange of single gluons will
create multibody interactions.

Nevertheless, some authors have tried to describe
the three-heavy-quark system with a sum of two-
body potentials. Their prescription is to take the
heavy-quark-antiquark potential, and multiply it by

FIG. 3. The calculated ground-state hyperradial wave
function and energy eigenvalue are shown for the s', c ',
and b ground states (S) and the first s' excited state
(P). The three-heavy-quark potential averaged over an-

gles, V(p), is also shown for A, =(—)' . In the top part

of the graph, the running coupling constant, as present
in the three-body terms of V(p), has been plotted. The
expectation value of the hyperspherical radius p for
various three-heavy-quark systems, including mixed sys-

tems such as c s, is indicated by a vertical line.

Note that the denominator has no angle depen-
dence. From considering extreme geometric con-
figurations for the quarks, namely a straight line
and an equilateral triangle, one expects 1 &f, &

( —,)'/, with the larger value corresponding to the

triangle. We compute f, =l.18. This implies that
taking a sum of two-body terms amounts to
overestimating the slope of the confinement term

by 18%. (It also shows that the quarks in a q
ground state are more likely to be found in the tri-
angle configuration. Roughly the same conclusion
holds for all states listed in Table III.}

The corresponding result for large separations is
obtained from (2.7b) and (2.8b) to give the ratio

(4.2)

and this time' fi ——0.91. The simple two-body
potential now under estimates the slope. There-

fore, the prescription of taking a heavy-quark-
antiquark potential multiplied by a factor of —, as

the heavy-quark-quark interaction, and summing
over pairs, would only give a good description for
states which extend far enough to experience the
compensating effects of the two regions —yielding
an effective ratio for f of about 1. This is clearly
not the case for the low-lying q states we have
considered so far.

In Fig. 4 we compare the energy spectra result-

ing from Hamiltonian (3.2) (already shown in Fig.
2) and from one in which the potential (2.8) has
been replaced, according to the above-mentioned
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FIG. 4. Comparison of the lowest eigenstates of H 3
q

(as in Fig. 2, solid levels) to those of a Hamiltonian ob-

tained from H 3 by replacing the three-body confining
q

term by a sum of two-body terms (dashed levels).

recipe, by a pure two-body potential (which we
based on the qq potential (2.7) but which still con-
tains the three-body zero-point energy Eo). Such a
potential is still fairly diagonal in the hyperspheri-
cal basis; however, the convergence of the expan-
sion in this case in not rapid as before because the
two-body confinement terms generate a coupling
between the channels which grows linearly with
distance. As expected, the two-body spectrum lies
too high.

U. SUMMARY

aq(
~
x; —xj

~

)
V 3(xi,x2,xs)= ——,g

i&j Ixi xj I

We have presented a simple analytic formula for
the potential energy of a system of three heavy
quarks, including the effect of asymptotic freedom,

hyperspherical radius scaled by a parameter A,.
For systems which are not sufficiently compact,
(2.8a) must be supplemented with (2.8b).

We expect Eq. (2.8a) to give as accurate a
description of the potential energy of the b' and c
systems as Eq. (2.7a) does for the bb and cc sys-

tems, for the values of the parameters. We do not
expect the same accuracy for sytems containing
strange quarks, since the treatment of such quarks
in the Born-Oppenheimer approximation has only
marginal validity, because of relativistic effects.
Also spin-dependent effects will modify the results.
Still, we have studied the 0 (s ) system, since
this is the only avai]able baryon on which to apply
the method. With A, in Eq. (2.8a) assigned the
lower limit of its expected range of values, ( 3

)'~,
it is found that the mass of the 0 comes out too
large. To bring it down to the experimental value
it is necessary to reduce the mass of the strange
quark from m, =0.65 GeV [the value needed to fit
the mass of the P(ss) meson] to m, =0.57 GeV.
This change hardly affects the splittings between
the low-lying levels of the s mass spectrum.
These splittings are the most reliably calculated
feature of the s, and also the b and c mass spec-
tra.

We have argued on theoretical grounds against
the idea that confinement can be represented by a
sum of two-body potentials. Nevertheless, we have
compared the spectrum from our potential energy
(which contains a three-body confining term) with
the spectra from two models ' which assume
two-body potentials. One of these was used recent-
ly by Chao et al. ' and assumes two-body
harmonic-oscillator forces between the quarks, and
the other was obtained from the prescription that

Vqq( f rq rq
/

)= V —( —/rq rq /
). W—e find that

our spectrum differs distinctly from both spectra
which come from two-body potentials, a feature
that will not be obscured by the application of
spin-dependent corrections.
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The Schrodinger equation for three free heavy

quarks of mass in the center-of-mass frame is

2

(&„+&»)f(x,y) =El(j( x, y)
2711

in terms of the Jacobi coordinates

(Al)
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APPENDIX

(2)]/$12
3 2

(A2b)

x=pcos8, 0+p ~ 00,

y =p sin8, 0(8 & ir/2 .
(A3)

This equation (Al) can be separated into six one-
variable differential equations by going over to
spherical coordinates (x;y)~(x, 8„,$„;y,8», $»)
and introducing the hyperradius p and another
variable 0:

x=( —,)'~ (ri —ri), (A2a)
The eigensolutions to the equations for the angles
can be combined into hyperspherical harmonics:

(A4)F '"(Q)=F '"(8x y)=N' cos'8sin 8P„'+' ' +'
( —cos28)F~(x)F„(y)

which are defined in terms of the spherical harmonics F~ and Y& and the Jacobi polynomials of the first
kind P„' . E=2n +l +A, and N„' is a normalization factor chosen to make the Y & an orthonomal set
with the volume element dQ=cos Osin gdgdQzdQy.

Including a permutation- and translation-invariant potential, Eq. (A l) becomes

2

(&„+&»)+V(x, y) P(x, y)=&/(x, y) .
2m

(A5)

If V is almost exclusively a function of p, it is efficient to expand P in terms of hyperspherical harmonics.
Ignoring the quark spin for the moment one has

y(x,y)= g X "(p)I"r(Q)
y=[k, l, A, ]

in terms of the radial wave function X r, and the eigenfunctions

(A6)

I.y lA,L K/A,I'm =g&mi~I'm„
m, p

of the total orbital angular momentum L= l + A, . Substituting (A6) into (A5) then leads to a coupled set of
radial equations of the form

with

h 8 5+-
2m ilp p Bp

+V~(p) —& X r(p)= —g V~ (p)X r (p)p' y'gay
(A7)

V~ (p)= JdQI'sr» (Q)V(x, y)1'~r (Q) .

In our case one- or two-component approximations to g already give good i'esults. It is straightforward to
include the quark spin.

An alternate technique for obtaining the energy spectrum of the three-body Hamiltonian (3.2) is to
separate the Schrodinger equation into coupled Faddeev equations, and then make a partial-wave expansion
of the wave function. " This method amounts to solving a partial differential equation in the two remaining
variables. We have checked our results obtained with the hyperspherical method, using two coupled chan-
nels for the ground states of the s, c, and b systems, and their first radial excitations, with the Faddeev
method. We find that the energy eigenvalues agree to within 0.5 MeV, and the expectation values for
(p /3)'~, the mass radius, agree to within 0.5%.
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