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Using the SLAC lattice Hamiltonian QCD theory, we compute the decay width for the

decay p+~m+m . There is reasonable agreement between the theoretical result and obser-

vation. There are two key ingredients involved in our calculation. One is the vacuum-

insertion technique of Lee, Primack, and Treiman for the evaluation of light-hadron ma-

trix elements of effective low-energy interaction densities. The other is the identification
of the SLAC lattice currents with the physical hadron currents to leading order in the
SLAC order-1/g effective Hamiltonian for the fluxless light-hadron sector—in the spirit
of Gell-Mann's work in current algebra. Our result suggests that the SLAC theory, taken

together with these two ingredients, provides a viable technique for calculating large-
distance light-hadron dynamics.

I. INTRODUCTION

One of the most popular candidates for the
theory of the usual strong interaction is quantum
chromodynamics (QCD). ' Among the outstanding
questions in this (continuum) QCD strong-
interaction scenario is the detailed mechanism in-
volved in the confinement of quarks. It was with
this question in mind that Wilson introduced the
lattice approach to the large-distance behavior of
QCD. For, since the confinement of quarks is
presumably a large-distance phenomenon, one
could hope that the short-distance part of the
QCD theory, which appears to be consistent with
observation, could be cut off in a gauge-invariant
way without affecting, significantly, the true
large-distance properties of the theory. Wilson's
lattice QCD theory represents an effort to con-
struct just such a gauge-invariant short-distance
cutoff. And, indeed, Wilson found that his lattice

QCD theory confines infinitely heavy colored
quarks. The issue of dynamical, light-quark con-
finement on the lattice remains @n open question.

Indeed, in Wilson's original formulation, there
were a number of unresolved issues, as is always
true in any entirely new development. Among
these issues was the fact that Wilson's arguments
also led to confinement for Abelian lattice gauge
theories, while weakly coupled QED does not con-
fine. In addition, in order to avoid spurious fer-
mionic degrees of freedom on his lattice, Wilson
had to introduce chiral-noninvariant terms into the

lattice QCD theory with massless fermions; such
terms made the discussion of the chiral aspects of
low-energy hadron dynamics difficult on the lattice
itself, if not impossible. It was with such ques-
tions in mind that the SLAC group introduced
what we will refer to as the SLAC lattice approach
to strong-interaction dynamics.

One may naturally ask what are the key differ-
ences between the SLAC lattice and the Wilson lat-
tice. A significant calculational difference is that
the SLAC theory uses a continuous time variable
and latticed spatial coordinates together with a
Hamiltonian formalism whereas Wilson's theory is
most simply described as a Lagrangian theory in
which all four Lorentz coordinates are latticed,
with the time coordinate taken to be imaginary
(Euclidean quantum field theory). But, from the
point of view of chiral symmetry, the primary
difference is that Wilson's theory uses the usual
difference definition of differentiation on a lattice
whereas the SLAC group has introduced into ha-
dron dynamics the lattice derivative

Vf(ja) =gikf(k)e' 1',
k

where

f(ja):Q f(k)e' 1'—
k

for a function f(ja) defined on a one-dimensi'onal
lattice. Here, the sum on k is over
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k =2m'/(2%+1)a,

m = —1V, —1V+1, ,1V .

It has been shown in Ref. 4 that the derivative (1)
alleviates spurious fermionic modes on the lattice
and yet maintains local y5 symmetry for massless
fermions on the respective lattice. Thus, the
chiral-symmetry properties of low-energy hadron
dynamics on a lattice are more readily discussed
with (1) than with Wilson's difference deriva-
tive. '—'

In addition, the SLAC group has been able to
argue that, in Abelian lattice gauge theories, there
is a phase transition so that such theories only con-
fine (heavy) quarks at strong coupling. At weak

coupling, a theory like lattice QED would not con-
fine heavy quarks. This is an important result for
the entire lattice framework, since one does not be-
lieve that heavy weakly charged particles are con-
fined by QED in the continuum. Thus, a confin-
ing result for lattice QED in this case would have
indicated that the lattice theory does not accurately
represent the large-distance properties of the atten-
dant continuum theory. A more detailed proof of
the existence of this phase transition in Abelian
lattice gauge theory has been given by Guth.

As we have attempted to emphasize, while all of
these results about confinement are encouraging,
they nonetheless refer to heavy quarks (static
quarks). At some point, one must face the issue of
dynamical light quarks in the lattice QCD frame-
work, for one would like to feel that the known
low-energy phenomena of light hadrons are not in-
consistent with the lattice framework. Toward this
end, the SLAC group has made substantial pro-
gress.

More specifically, working in their QCD lattice
Hamiltonian framework, the SLAC group has been
able to show' that, in order 1/g, where g is the
gauge coupling constant, there arises an approxi-
mate SU(6) && SU(6) p U(1) symmetry of light-
hadron physics. A number of important results

3
follow from their work: pz/p„= ——,

5
P Pf

g~/gal+ ——,, both vector mesons and pseudoscalar
mesons are pseudo-Goldstone bosons, etc. Thus,
one can say that this SLAC lattice theory for QCD
is not obviously inconsistent with the general as-
pects of the dynamics of light hadrons (hadrons
composed of u, d, and s quarks). It is, therefore,
tempting to use this theory to address more of the
details of light-hadron dynamics, that is to say,
more of the details of large-distance approximately
chirally invariant light-hadron dynamics. This is

our primary objective in the development which
follows.

What we shall do is to use a prototypical large-
distance light-hadron process to perform a detailed
test of the applicability of the SLAC lattice QCD
theory to large-distance light-hadron dynamics.
Our prototypical process will be

p+~w+m'.

For, experimentally, " approximate scaling occurs
already for Q ) 1 GeV, where Q represents the
magnitude of the squared four-momentum transfer
in lepton-hadron inelastic scattering, or s in e+e
annihilation, the squared center-of-momentum en-

ergy, for example. This fact, taken together with
the recent theoretical result' that the transition
from weak-coupling asymptotically free behavior'
to strong-coupling confining behavior in QCD is
abrupt means that the process (4), with
Q2=mz ——0.602 GeV2, should be in the regime of
confinement —in the regime of large-distance
light-hadron dynamics. And, indeed, we will find
reasonable agreement between the SLAC lattice
theory and observation. This will provide further
support for the general lattice QCD idea itself as
well as the particular SLAC representation of that
idea.

Our work mill be organized according to the fol-
lowing scheme. In the next section, Sec. II, we
describe the relevant aspects of the SLAC theory
for the computation of p+ —+~+a . In Sec. III, we
present this computation itself and thereby derive
an expression for the width I (p+~a.+ma). Sec-
tion IV presents the determination of the effective
value of' the lattice constant a, which is needed to
evaluate the expression derived in Sec. III for
I (p+ +a+sr ). Secti—on V. contains the determina-
tion of the effective gauge coupling constant g
which is needed to evaluate our expression for
I'(p+ ~n +a) Section V. I .then presents this
evaluation of I (p+~m+m ) and compares our re-
sult with observation, with due discussion of the
various theoretical procedures involved in our
work. Finally, Sec. VII contains some concluding
remarks.

II. THE SLAC LATTICE THEORY

Our objective is to calculate the process
p+~m+~ . We shall do this using the SLAC lat-
tice theory. Here, we wish to delineate those as-
pects of the SLAC theory which are relevant to
our calculation.

More precisely, the SLAC theory consists of the
lattice Hamiltonian'
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r

n —1

H(g, )=—.g , g'—E-, ~' g— , tr g V-, „.— gS'(n)y~~a/~, „, g V-, , ~„
links loops g around i P m=0

loop n&0

aP

+H.c.

(5)

where

k(m)=2m. m/(2N+I) .

In our work, we shall always be interested in the
infinite volume limit N~ oo. In this limit, 5 (n)
becomes

6'(n) +( —I)—"+'/n .

This completes the definition of the SLAC lattice
QCD theory to the extent required by our analysis.

To continue with our discussion, we further ob-
serve that, working to order 1/g in the large-g
(large-distance) regime in the fluxless sector of the
Hilbert space associated with H, the SLAC group
has derived the effective second-order Hamiltonian

1 ~ 6'(n)5'( n) gaf-
eff ' j...p (2)g'In ICF

Pf tPf' ag'
p~j +np~j +nlr p~j (10)

where we have used the notation of Ref. 10. Thus,
af

the spinor field g- at site j carries color index a
J

and flavor index f. The operators E-
&

measure

the units of color flux created by the operators
U=& on the link joining site j to site j +p, . The

a& are Dirac matrices; we will always represent
them in the convention of Bjorken and Drell. '

The parameter a is the lattice spacing and, to re-

peat, g is the gauge coupling constant. Finally, we
note that the quantity 5'(n) in (5) is defined so that

d„g-, = ~& 5'(n)g-, +„it
1

(6
n

is the SLAC derivative on a lattice. Thus, taking
2N+1 lattice sites along each coordinate axis, we

have
N

5'(n)= g ik(m) exp[ —ik(m)n],+ m= —X

III. THE DECAY WIDTH I (p+ ~+g )

We wish to use the interaction (10) to compute
the rate for p+ a+a . We begin by discussing
the relevant aspects of the particle spectrum associ- .

ated with (5) and (10).
More specifically, in the particle spectrum atten-

dant to (5) and (10), the SLAC group has found, '

among other things, that both the p and the m are
Goldstone particles of an approximate SU(12) sym-
metry. The corresponding broken charge densities
are as follows:

p+: g-, y 8 A, +g-, s
& +( j ),

~+: q'-, y, (gX+q-, .,

(13)

where

and where, here, we suppress color and we take A,
+

to be equal to the usual isospin raising Gell-Mann
matrix. The analogous correspondences hold for
the p, p, m. , and m. . Of course, the correspon-
dences for the pions are well known. Thus, as a
first step toward our computation, we may define,
with the idea that the particle states are pseudo-
Goldstone manifestations of the same broken sym-

metry,

X, —1
Cp ——

2Nc

In the case of primary import, X, =3. The matrix
a„ in (10) is represented by

(12)

in the familiar notation of Ref. 13.
It is this interaction (10) which we shall employ

to compute p+ —+~+m. . We turn to this calcula-
tion in the next section.

by the standard degenerate state perturbative
methods. Here, X, is the number of colors, and
CF is the value of the quadratic Casimir operator
of SU(N, ) in the fundamental representation

(OI goy, SA, 1(0 I
~+(p)) =is 2f p /(2p )'~

(15)
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=~2fpmpl(2p )'~

where f is the familiar pion decay constant, fz is
the p decay constant, e is the polarization vector
of the p+ in the state

~
p+(p), F) of four-

momentum p =(m&, 0), and
~

~+(p)) is the n+
state of four momentum p. We continue to
suppress color. It is well known that

(16)

f =98.4 MeV . (17)

Further, the value of fz is also well known' to be
(see Appendix A)

fp- 140 MeV—. (18)

We shall now show that (17) and (18) allow us to
evaluate the amplitude for p+~a. +~ using (10).

Toward this end, we employ two key techniques
well tested in other problems in theoretical particle
physics. The first is inspired by the idea of Gell-
Mann' to abstract the properties of a quasirealistic
model field theory and attribute them to the full
hadron interacting currents. Here, we will argue
that, although the "currents" in (10) are restricted
to the lattice, we are only going to use (10) in re-
gimes where the dominant strong-interaction ef-
fects are already represented if we use the algebraic
structure of the interaction in (10). In this regime,
the fact that the currents in (10) are on a lattice
does not prevent us from remembering that these
currents have been derived by restricting the fully
interacting @CD theory to the lattice. For the
evaluation of our matrix elements, we shall so

FIG. 1. The decay p+ —+m+n. .

(19)

The relevant kinematics is summarized in Fig. 1,
where we work in the p+ rest frame so that
q ~

——(m&, 0). The vacuum-insertion technique then
invites us to evaluate the following four expres-
sions:

remember. We discuss this point in more detail in
Sec. VI.

The second key idea to be employed here is bor-
rowed from the work of I.ee, Primack, and Trei-
man' on AS+0, b,Q =0 effects in what were once
candidate gauge theories of the weak and elec-
tromagnetic interaction. Here S is strangeness and
Q is electric charge. We have reference to the
vacuum-insertion technique for evaluating the
light-hadron matrix elements of four-fermion ef-
fective interaction Lagrangians. This technique al-
lows one to understand, ' quantitatively, phenome-
na such as Kl ~pp and mz —m~, where mz is

the mass of A, A =XI,E&. We may now proceed
with the computation of p+~w+m .

First, we observe that the amplitude for
p+ ~~++, is, to lowest order in H,~~,

W=(n+m'~ i I. —dkII', frj
~

p+) .

(20)

(21)

(22)

(23)

Here, cr~, o2, v&, and vq are Dirac spinor indices. We note that the expressions (20) and (22) vanish by the
Wigner-Eckart theorem in the flavor space associated with the indices f, f'. Thus, we only have to evaluate
(21) and (23).

To evaluate (21) and (23), we use the standard Dirac matrix algebra to write

16

, /~~M"g~ Mn~, „,—sgn(M"),
q=1

~pf' pj ~ &pf' „ pg~ j +npcr&~ j +npv2 X 4 ~ j +n~ 0j +n~v~n~ g
q=l

where, in accordance with Refs. 10, we take the notation of Ref. 13 for the Dirac matrices M:

(24)

(25)
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M"= l, yp, —I op~ys, ysy

and sgn(M&) is such that

(M") sgn(M")=1 .

The results (24) and (25) allow us to write (21) as

——
i6 g(ir+ir

~

f+ M"Q~
~

0)(0
~
g-, +„~"g~+„p ~

p+) sgn(M")sgn(M" )tr(M"aqua" a„);

(26)

(27)

(28)

an entirely analogous expression may be written for (23). Thus, our problem is now formulated as the
evaluation of (28).

For this purpose, we use our variant of Gell-Mann's idea' to reimplement the Lorentz group so that, for
example, we identify

where

iP x~ t f sP x~— .
J (29)

x-, :(r, j a)—, (30

P",~ is the four-momentum operator and, now, i}7t (0) is the fully Lorentz-covariant Heisenberg field of the
QCD theory at the origin of Minkowski space. With this identification, the expression in (28} becomes

——Xe ~'+q' ~'

'&~+cooly'(0)~"y

f(o) I»&olq'if(0)~" Pf(0)
I
p+)

YJ 7

&& sgn(M&)sgn(M" )tr(M"u&M" a&) . (31)

For, since qi ——(m&, 0), the factor exp(+i qi nPa) produced when exp( iP,~ x-, +—„&) acts on
~ p ) is equal

to 1. Thus, (31) is independent of n

Note that the analog of (31) for the expression (23) will also be independent of n ultimately because qi ——0
so that, after summation over j, q2+ q3 will also be constrained to be O. This renders

exp[i (q2+q3) x-, +„&] independent of n; and, the latter phase is the only possible source of n dependence in

the analog of (31) for the expression (23). (The neglect of umklapps will be justified presently. )

To proceed further, we need to evaluate the expressions

tr(M "a~M"a~)

in (31). One easily verifies the following. If

AM" =sz (P, )M" a&,

where s& (p) = + 1, we have

(32)

(33)

tr(M"a&M" a„)=s„(p)tr[M"M" (a„) ]=s„(p)tr(M"M" )=4s„(p) g s(Mn")5„.v

We list the values of s„(p}and sgn(M") in Table I. In Appendix B, we show that only M"=a; and
M"=y contribute to the amplitude in (28) and (31) and that only the contributions of M"=a; are signifi-
cant The M. =y terms are small because mz /mz is small, where mz is the SU(2) symmetric u and d
current quark mass. ' Using (34), the results in Table I and the results (B3)—(B18) in Appendix B, we find
that (31) is approximately the same as

' [(~+~'
~

y' (0)~,y (o)
~

o) (o'~ y'i' (0)~,yi' ('o)
~

p+ ) ( —1) '~]

'"&~+~'I g (0)y'p (o}
I
o)(o

I

g~f'(o)y'y'(0)
~

p+).
l i 6

(2q')'~' (2q')'~'(2qi)'~' (35)
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where F is the pion form factor, and we have restored the factors of a which have been scaled out of the
fields in (10). The expression (23), which only differs from (21) in the interchange ((m. +m I, I

0))~((0 I,
I
p+ ) ), can easily be seen to give a result which only differs from (35) in that the phase

exp[i (q2+q3 —q1) x ] is replaced by exp[i [(q2+q3) x, +„&
—q1 x-]J. Thus, the sum of (21) and (23)

glvcs

i(q2+q3 —q&)x . i[(q2+q3)x . —q&x . ] 5. —] ~ ~ ~ & 'L~p J 'Lq3 —q2r a+' " )( 1) " '2fPemP3' o 1/2 o 1/2 o 1/2 .
(2q, ) (2q, ) (2q, )

The result (36) is sufficient to evaluate (19).
Indeed, introducing (36} into (19), one finds

i "
3 5'(n)5'( n)—11e2+e3—v~1»-; ~'[(q2+e31.»-„+„-„—e1 «-;l

~
dta e '+e

2g'acp —
-, I

n
I

s, 2f e"mpF (mp }(q3—q2)'a
X(—1)

(2qo)1/2(2q0)1/2(2qo )1/2

(36)

(2i) F (q3 —q2}mpa 1

2 fP P 0 1/2 0 1/2 0 1/2 X 3
g aCF (2q3) (2q2) (2q1) ~0 I

n
I

(2i) mpa e (q3 —q2)
(2~) 5 ('ql q2 q3} 2 fPF ™P 0 1/2 0 I/2 0 1/2 [

(2q1) (2q2) (2q3)

where g(3) is the Riemann g function evaluated at 3. This expression (37) is our basic result. A few com-
ments about the steps in deriving it are in order.

Namely, we have passed to the limit of infinite volume. Thus, in (37), we take

(38)

and

3
——2g(3) . (39)

Here, we anticipate that 2n. /a —1 GeV so that, by conservation of energy, no reciprocal lattice vmtors ap-
pear in (38). With these remarks, we may now proceed with the calculation of p+~1r+m. .

In particular, the standard methods can easily be seen to give

I (p+~n+n )= J(2m) 5 (q1 —q2 —q3) I fp I IF~(mp )
I mp [2((3)]

g CF

, I q3 q21 1 1 1 d 'q2d q3Xa
2q1 2q2 2q3 (21r)0 0 0 6 (40)

2 [2P3)1'
I
F.(mP'}

I

'
I fP I

'a'(mP'/'4 —m. '}'"
r(p+ ~+~') =

3m c 2g4

where, for simplicity, we take m+ -—m + -=137.3 MeV—:m~. The formula (41) is the advertised result of

(41)
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this paper. The issue of its relationship to the experimental result'

I (p+~n+n )=158 MeV (42)

will now be discussed in some detail.
More specificially, to evaluate (41), we need theoretical and/or experimental values for the parameters (a)

the lattice constant a, and (b) the coupling constant j. From (11),we know that, for N, =3,
N, CF 4=——16. Further, fz is given by (18) and, the experimental results' for F (mz ) are consistent with

F (mp )=—6.0.
In addition, the Reimann function of argument 3 in (41) has the value

g(3) —= 1.202 .

Thus, values of a and g will allow us to compare (41) with (42). We discuss these two parameters in the
next two sections. We consider the constant a first.

(43)

(44)

IV. DETERMINATION OF THE LATTICE CONSTANT a

In this section, we wish to determine the value of the lattice constant a to be used in the evaluation of
I (p+~m+m ) in (41). We proceed by analyzing an appropriate normalization condition on the lattice.

We observe that a formula such as (15) for f allows one, on a lattice, to determine the relationship be-

tween f, the effective quark mass m& on the lattice, and the lattice spacing a. For, the momentum transfer
on the lattice to the current in (15) is small, m, and, thus, the current is being probed at large distances.
The fact that the pion is a Goldstone particle on this lattice then gives us confidence that the standard
PCAC (partial conservation of axial-vector current) ideas should be applicable for the appropriate m~.
What this means is that we can reduce in the pion in (15) and use PCAC to write (15) as '

v 2f p i I d k, i(k&+m~)y y~li(k2+m, ~)y y5A+ im

(2p ) ~attice 2~ (k) m +ie)(k2 m +i&) iv 2f po+2po
(45)

where the kinematics is summarized by Fig. 2 and k2 ——k, . The only unusual things about (45) are the fol-
lowing:

(a) The "integral" over the lattice is

~»a dk f ~»a dk» ~»a dk )
d k)= dk) ~ dk) (46

lattice —ao ~ —ao —n./a 2~ —n. /a 2~ —m/a
k (

where k~=(k~, k&,k&). This restriction to latticed Fourier components is forced by the lattice current in
(15)—it only contains such Fourier components.

(b) The exact fermion propagators for the quarks in Fig. 2 have been replaced by the effective free propa-
gators

l l

k) —mq+Ee k2 —mq+E6
(47)

with the effective mass parameter m&. For, in the theory (5) we are working to leading order in 1/g, in the
large-distance regime. The interaction (10) already represents the interactions to this order. Thus, we can
treat the quarks as "free" (ignore further terms of order 1/g ) as long as we use the large-distance quark
mass: this mass parameter is well known' as the constituent mass

mq —-343 MeV . (48)

The result (45) becomes, in the approximation of replacing the integration region I
—m/a & k

&
& ~/a,

n la &k»& &m/—a, n/a &k& &m—./a. I by a sphere of the same volume centered at the origin of k& space,

q
1

vr(6/m )'

Qmq

7r (6/7r) ' 77(6/m )' 7r (6/7r)1+ 1+
a m q

am a m
(49)
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TABLE I. The a„commutation signs s„(p) and square's signs sgn(M") of the 16 Dirac
matrices M as defined in (27) and (33) in the text. Here, e;Jk is the totally antisymmetric
tensor in three dimensions, with @~23——1; and 5;j is the Kronecker 5 function.

Dirac matrix M'I s„(p) sgn(M" )

a= —ia~ Ojj—l
J&I'k~

f5

j5
$5

1

—1

( 1) lP

( —1)
1 —5I

—1

( —1) '"
1

Solving for a by the Newton method one finds

a —=5.74 GeV (50)

This completes the determination of the effective
lattice constant a. Our value for a is consistent
with (38). We turn next to the effective value of
the coupling g in (41). A—=0.34 GeV . (53)

with A obtained from experiment. We choose to
use (52).

More precisely, when one includes nonperturba-
tive effects, the various results from deeply in-
elastic lepton-hadron scattering and e+e annihi-
lation are consistent with

V. DETERMINATION OF THE EFFECTIVE
COUPLING g

This gives, from (52),

g =-12.5. (54)

The lone remaining ingredient required for the
evaluation of (41) is the value of the parameter g,
the strong-coupling gauge coupling constant. We
determine this in a phenomenological use of the re-
sults in Refs. 1.

More specifically, we first observe that g is not
to be confused with the value at a in (50) of the
function g(a) used by Creutz' in his Monte Carlo
work. For, Creutz's function is the effective gauge
coupling at lattice spacing a in the presence of an
appropriate renormalization-scheme asymptotic
freedom scale. What we want is the value of the
gauge coupling that characterizes momentum
transfers

We now have all of the parameters required for
the evaluation (41). This evaluation is effected in
the next section, where its ramifications are also
discussed.

VI. COMPARISON OF THEORY
AND EXPERIMENT

I (p+~~+m )=162 MeV (55)

Using the formula (41) and the results for a and

g, we find the theoretical result

Q =q~ ——mz ——(0.776) GeV

=0.602 GeV2 . (51)

To determine this value of g, we should add that
we do not care whether one uses a lattice function

g (a) or a continuum-space formula' such as 0 Vo Y5"

g 12m.

4n' 231n(Q /A )
(52)

FIG. 2. The PCAC soft-pion equation for f on a
lattice. The factor of 3 in Eq. (45) represents the sum
over color for the quark loop.



1338 B. P. L. WARD 25

to be compared with the experimental value 158
MeV. As one can see, the theory is in reasonable
agreement with observation. This is the advertised
state of affairs. One can ask: What are the major
ramifications of this agreement?

The primary ingredient in (55) is the SLAC lat-
tice interaction (10). Thus, we may consider (55)
as a direct support for the deeper significance of
(10). The obvious issue of the application of (10)
to other large-distance phenomena is then extreme-

ly pertinent. This issue will be taken up else-
where. 24

Somewhat subordinate to the interaction (10)
were the various theoretical methods used to apply
it to p+~m+m . These were as follows:

(a) Dur variant of Gell-Mann's idea of abstract-

ing for the physical hadron currents properties de-

rived from quasirealistic field-theory models.

(b) The vacuum-insertion technique for hadron

matrix elements of four-fermion operators.
(c) The use of the large-distance quark mass m~

in an effective free-quark propagator in the evalua-

tion of a.
(d) The identification of g with the asymptotic-

freedom formula (52) evaluated at q =mz .

We wish to discuss these key theoretical in-

gredients in turn.
Concerning (a), it should be realized that the

identification of the currents in (10) with the phy-
sical hadronic currents is more than an abstraction.
For, the interaction Hamiltonian (10) contains, to
order 1/g, all of the effects of the strong interac-

tion in the sector of Hilbert space of interest.
Thus, using the full hadron currents is entirely jus-
tified to leading order in 1/g in the strong cou-

pling regime.
Concerning (b), we refer the reader to Ref. 16

for a detailed understanding of the nature of the
approximation involved in the use of (b) in our
work. Phenomenologically, this approximation ap-
pears to be accurate to approximately 20% or,
perhaps, even better —when properly used.

The procedure (c), which was essential in the
evaluation of the lattice constant a, asserts that the
dynamics on the lattice is indeed large-distance
dynamics for the relevant value of a. Please
understand that this does not preclude one from
considering, in theoretical work such as that in
Ref. 12, the limit a~0, the continuum limit.
Rather, our point is that, in our particular applica-
tion, the theory is probed to large distances. The
short-distance regime, which is perturbative, gives,

2

S 4~

Using (52), we see that, in our problem,

iz, A.=-0.317,

(56)

(57)

so that we have reason to believe that the pro-
cedure (d) is not a gross approximation.

Our basic conclusion is that the procedures and
methods used to compute (55) are all entirely rea-
sonable, although one can hardly claim complete
rigor.

VII. DISCUSSION

What we have accomplished here is the compu-
tation of the width I (p+~7r+n ) to leading order
in the 1/g expansion of the SLAC lattice Hamil-
tonian theory. The agreement between the theoret-
ical result and observation is a reasonable agree-
ment. It gives us additional evidence of the inti-
mate relationship between the confining property
of the strong interaction and the detailed structure
of light-hadron dynamics. More importantly, our
result for Pp+ +n.+rr ) supports t—he specific
QCD theory —its short-distance behavior as com-
puted in Ref. 1 and its long-distance behavior as
computed in Refs. 2 and 4. The natural question
is how does one obtain further checks of this QCD
scenario for the strong interactions of light ha-
drons?

An obvious answer to this question is to apply

in the simplest view, a small correction to the
corresponding large-distance effects. It is these
large-distance effects which we have calculated.
Correspondingly, the effective lattice constant a
then represents the distance cutoff for large-
distance phenomena in hadron dynamics. It is
seen that a is of the order of the radii of the typi-
cal light-hadron bags in the MIT bag model, for
example. This gives us additional confidence in
the procedure (c).

Clearly the crucial point in (c) is the use of the
large-distance mass m~. We feel that, given the re-
sulting size of a, the use of mq —-343 MeV is self-
consistently justified. Had we found a much
smaller value for a, one could then question (50)—
but, we did not.

Finally, we emphasize that the procedure (d) is
extremely natural because of the recent results for
the QCD scale A. For, the result (52) should be
reliable whenever a, /m. is' small' compared to uni-
ty, where
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the ideas and methods in this paper to further
large-distance processes, such as K'~K~, P~KK,
g~mwm, etc. Such processes will be taken up else-
where.

We do wish to emphasize, however, that the
methods in this paper should pertain only to
large-distance-dominated hadron dynamics. Thus,
a process such as flJ +pm. —would require argu-
ments in addition to those given in this paper.
For, m~/J =9.6 GeV is well within the scaling re-

gion of the QCD theory, i.e., it is well above 1

GeV . But, to be sure, one should be able to use
the methods presented in the text above for the
purely large-distance aspects of processes dominat-
ed by short-distance interactions when the
corresponding large-distance effects are not trivial.
In general, we expect that the respective appropri-
ate synthesis of large- and small-distance QCD
behavior may be quite involved, but tractable.

In summary, we feel the following is a fair as-
sessment of the results of this paper: The decay
width I (p+~vr+n)has b.een used to test the ap-
plicability of the SLAC lattice QCD Hamiltonian
theory to light-hadron dynamics; the theory passed
this test.

Notes added. (1) It should be emphasized that
the value of I'(p~m. m) derived in (55) is extraordi-
narily dependent on the value of A in (52). When
A varies between 300 and 400 MeV, g2 varies from
10.84 to 15.54 in (52) so that I in (55) varies by a
factor of 2.06.

(2) J. J. Sakurai [Phys. Rev. Lett. 17, 1021
(1966)] has derived the following formula for
I'(p +n n)using —the ". current-field identity":

I'(p —+em ) =— (m l4 —m )3i2
3 4~f 2 P

P

=129 MeV .

In view of the uncertainty in g in (52), this result
of Sakurai can be considered to agree with experi-

FIG. 3. The decay ~+~p+v, in the tree approxima-
tion in the standard SU2XU& model.

ment as well as our result (55) does. Thus,
knowledge of fz allows one, without the use of a
lattice formalism, to compute I'(p~m~).
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(2n) 5 (p —ki —k2)
k',

' 1/2
1/2

( tg~)—
v, (p)y„(1—y, )v„(k, )

—ig&

m —Mg2 2
P

X (p+(k2), e
i
J„(0)

i
0),

2 2
(A2)

where the kinematics is summarized by Fig. 3. Here, e is the p polarization vector, g~ is the SU2 coupling
parameter in the SU2)&U& model, M~ is the mass of the charged intermediate vector boson in the model
and the weak vector hadronic current J„is the adjoint of the current whose latticed spatial components ap-
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pear in (16). Thus,

&p+(k2), e
I
J„(0)

I
0&=v 2f e~

(2k )'i (A3)

The spinors u and v„are defined in the well-known convention of Ref. 13.
T

On taking the squared modulus of (A2), summing over final states, averaging over initial states, and in
tegrating appropriately over (2n. ) Q (p —k, k2) d k&d k2/(2m. ), one finds the partial width'4'~s

r62m2m2m2+2m2
(A4)

where we have identified the Fermi constant GF as

GF g~
2

8M'.

and have neglected m& /M~ compared to 1. The experimental result, for the standard model, is

I'(r+~p+v )=0.22[1/(2. 7X10 ' sec)]=0.00054 eV .

Using (A6) and taking m, =1.784 GeV, one easily finds, from (A4),

fz- 140 MeV—.

This is the desired result. ' ' It coincides with (18) in the text.

(A5)

(A6)

(A7)

APPENDIX 8: VACUUM- TO-PARTICLE-STATE
MATRIX ELEMENTS FOR p+ ~~++

For the evaluation of the amplitude M in (19) for p+ —+n.+m, one needs the values of the various matrix
elements in expressions of the type (31) in the text; such matrix elements involve all choices of the Dirac
matrices M". [We shall work in the p+ rest frame so that its four-momentum is q~ ——(m&, 0). See Fig. 1.]
We consider the various choices of M" in turn and compute the respective matrix element required in (31).

For M"=1, we observe that (henceforward, whenever we omit the argument of a field, it is to be under-
stood as evaluated at x =0)

0 qP
&0IP ~"81s'&=&olÃ~)'os le'&= &old 1'o4 la'&= &old )'p0 Is' &

mp mp

"&olÃ~'(o)deaf(0)e "'"ln'& I„,
m&

~ &ole "V'f'(0) """y "'"g~f(0)e ' "
I

+&
I =

m

~~&0 I 8 (xb"Hf(» I)o+&
I

=o=o
P

for, by CVC (conserved-vector-current hypothesis), the current

Pf (x)y„Pf(x)

is a conserved current. It follows that M"=1 will not contribute to (31) in our approximations.
For M"=y0, we have

&0IP ~V' li'& = &0
I

0'~ 7'of~
I

p'&= &0
I
Ã~(0)4~ (o) Is+&=0

for, the p+ is a 1 state, whereas the operator

(Bl)

(B2)
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Pf (x)Pf(x)

is a Lorentz scalar. It follows that M"=yo does not contribute to (31) in our approximations.
For Mv=y', we have

« I
y"~"8'Ip' &

=«
I
P'y.y'8'Is '&

The matrix element (0 I
pf yoy pf

I
p+ & can also be written as

0
'

&oI p~yoy'8 lp+&= &olÃ~giy'8 lp+&= "&oI+'y"y'pe "' lp'&I. =o
mp mp mp

"'y"y'e"" *pf(0)e '""
l s
'

& I. ,
mp

"« I 8 (x)Yy'8 (x)
I
p' & I.=. ~

mp

But, by the standard "current-algebra"' manipulations,

i8+ (x)=mv'P (x), i@~—(x)p=mvgf(x),

where, in the light-quark case of interest to us here, we take the flavor-SU(2)-symmetric hmit so that'

m& =5.9 MeV .

Thus, we can write

(B3)

(84)

(B5)

(86)

&oI 8 yoy'8 I p
mp

&ol p 'i&A I p+&+ (ol p i&y'p In' &

mp

' &old'y'8 Is'& — &old y'isla'lp'&+ &ol+ [y'iPIH ls'&
mp mp mp

'
&o

I 8 A'
I s '&+ « I 8 ~'8

I
p'& . (B7)

mp mp

The second term on the right-hand side (RHS) of (B7) can be seen to be small, in a general sense, as fol-
lows. Observe that

Pf'(oy, gf(0) =Pf'(0)gf(0)+ Pf'(0)a'Pf(0) -Pf'(0)gf(0)
mp mp

=Pf'(0) P~(0)+ '
a,gf(0) —Pf'(0)gf(0)

amp

=P~ (0)[P~(0)+0 22a B~P~(.0) J P~ (0)P—~(0)

Pf (0)gf(0—.22al ) Pf (0)gf(0—), (BS)

where we have used the result (50) for a. Since
I
p+ & is a 1 state, the Lorentz-scalar P (0) P (0) term

on the RHS of (BS) does not contribute to (0
I

d'
I
p+ &. Thus, using the parity operator P we have

(ol 8'I p+&=(ol p (0)p~(0.22al ) Ip+&=(OIPp~(0)P 'Pp (0.22al )P 'PI p+&

= —(0
I
P~ (0)P ( —0.22al )

I
p+ &

so that, from (B8),

(B9)
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«I e (0}ef(022al }
I
p'&=&o

I
&

I
p'&+» &-—

3t
(810)

On our lattice, we have excluded variations in fields described by momenta & m/a. Thus, variations of the
fields over distances smaller than a are suppressed. It follows that, on our lattice,

(0
I P (0)gf(0 22.al )

I
p+ ) —(0

I
Pf (0)tlt@(0)

I

p+ ) =0, (811)

in the sense of the size of the respective matrix elements in (87). Thus, we conclude that

(1/m )(0
I

Pf (0)BPf(0}
I

p+ ) is negligible compared with the coefficient of 2m~ /mz on the RHS of (87},
(0

I
pf (0}y'1(@(0)

I
p+ ), in our calculational scheme. For future reference, note that, since (~+~

I
also

has J = 1 here, we can replace the pair ((0 I, p+ ) ) with the pair ((rr+~ I, I
0) ), respectively, everywhere

in (87)—(811). Thus, (1/m&)(a+a
I
Pf B Pf 0) will also be negligible compared to (a+a

I

Pf y+f
I
0)

in our scheme.
The contribution of the first term on the RHS of (87) to the amplitude (31) will be evaluated in terms of

the respective matrix elements of M"=n;. Such an evaluation will then be seen to complete the discussion
of M"=y'.

Turning now to M"=u;, we have

«10'f~"Hfl p'&=«l 0'fa 0 Is'&=&ol 0'f( i)a"Pf—ls'&

= &0
I

0'~ y'y'Wf
I
p+ &

= &o
I

P~ r'4~
I

p+ & (812)

As we indicated in the discussion of (13)—(16}in the text, the
I p ) will select, in (31), the combinations of

f'f in (812) corresponding to the isospin lowering operator A, in Gell-Mann s notation,

—I)
—F2, (813)

if (I&,I2,I3) are the generators of isosopin SU(2). Thus, to obtain the contribution of (812) to (31) we will

only need to know

(0
I

1(j y'A, p I
p+ ) =v2f e'm p—

P P (2 0)i)2
(814)

where e, is the p polarization, and where f~ has been computed in Appendix A but is already well

known. ' '

Observe that, as we promised, for i =l in (87) and (811) the RHS of (812) is equal to [—mz/(2m~ )]
times the y' term on the RHS of (87). Thus, we can indeed evaluate the dominant part of the (0

I
to

I
p+ )

matrix element for M"=y' in terms of the analogous matrix element for M"=aI. For, since m~ /m && 1,
I p

we may neglect the y' term on the RHS of (87) compared to (0
I
Pf y'P

I
p+ ). Further, by (811) the 8'

term on the RHS of (87) is also negligible compared to (0
I

Pf y'Pf
I

p+). (The complete neglect of the
M"=y contribution to (31) relative to the M"=a; contributions will be justified when we show that

(a+nlg~yoy P. I
0) is negligible compared to (m+m.

I
P~y P~

I
0). We will do this presently. )

To complete the computation of the contribution of M"=a; to (31), we will need to know

(~+~'I P~y'Pf'I 0) =(~'I Pfy'Pf'I ~ ( q, )), -— (815)

where we have used crossing to substitute an antiparticle in the instate for a particle in the outstate of the

appropriate four-momentum. See Fig. 1 for the kinematics. In the case of interest, when the p has select-

ed the operator A, as in (814), the operator A,
+ =I&+iI2 will have been selected in the contributions of

(815) to (31). Thus, we will need

(816)(~o
I
Py'X++

I

~-( —q, ) ) =v 2I..(m, ')(q, —q, )'/(2q30)'"(2~', )"',
where I' (mz ) is the usual pion form factor. This completes the discussion of the matrix elements required

for M"=a;.
The contribution of M"=y' will also be complete if we relate
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to (816). Repeating the steps from {83)to (87), one finds

Pal P mP

Thus, using the analog of (811) we may conclude that, for the f,f', of interest,

I
&~+~'I P~r,r'P~'I o&

I
« I

&~+~'I P~riPf'I o&
I

.

(817)

(818)

The matrix elements necessary to compute the contribution of M"=r to (31) are all negligible compared
with the respective matrix elements involved in the contribution of M"=a; to (31). It follows that the con-
tribution of M"=r' to (31) is negligible.

Considering next M"= io;——:( i l2)e—jkoj where ejk is the totally antisymmetric symbol on three la-

bels and e&23 ——l, we need to evaluate

—i&014' ~d is'&=&old rorsr"81&'&

where i,j,k are cyclic in (1,2,3). The operator

(819)

is even under parity whereas p is of odd parity. Thus, by parity conservation, the RHS of (819) is zero.
It follows that M"= io; —does not contribute to (31) in our approximations.

For M"=ysy, we have to consider

&010" ~"8 Is+&=&oI 0'"r5rV'Is+&= &oI—P r58' s'&. {820)

(821)

The matrix element

But the pseudoscalar operator 17Sfr5+~ cannot annihilate the spin-1 p+ and conserve angular momentum.
Thus, the RHS of (820) vanishes. It follows that Mv =r,ro does not contribute to (31) in our computation
scheme.

Considering M"=rsr', we need

~"8 Is+&=&014' f rsr'8 Is+&=&0I 8 rarer'8 Is '&

is the same as

{822)

(823)

0

ls+&=&oI 8 ror58 ls'&= &0IP'rory

&oIP 'P(g rory'8)P Pls'&=&olÃ~roror~r'roPP Is' &

= —&oI 8 ror5r'P~ls+& '

it vanishes due to the parity-symmetry difference between p+ and Pf roar'Pf —the former has P = —1,
the latter has P =+1. Thus, M"=r5r' will not contribute to (31) here.

Finally, we consider M'I =y5. We need

"&old r"r O'
I p

mP P

(824)

The RHS of (824) is easily seen to vanish by conservation of angular momentum and G parity. It follows
that M"=r5 does not contribute to (31) in our approximations.

This completes the discussion of the various matrix elements involved in evaluating (31) in our calcula-
tional scheme. We have found that, in this scheme, only M"=r and M'i=a; will make contributions to
(31) within the framework of our approximations. For all other choices of M", the matrix element
&0

I
Pt~~M"g~

I
p+ & in the respective contribution to the expression in (31) is 0. Further, the contribution

of Mv=r' to (31) has been argued to be negligible.
Our findings here are consistent with what is stated in the text.
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