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The angular distrubutions for dileptons arising from decays of a virtual photon and the
Z produced in hadronic collisions are calculated at large mass and finite transverse
momentum of dileptons in the lowest order of quantum chromodynamics and the
Weinberg-Salam model with threee fermion generations. Numerical evaluation for coeffi-
cients of the distributions is carried out for pp collisions at &s =S40 GeV and pp at
&s =800 GeV in different (helicity, Gottfried-Jackson, and Collins-Soper) reference
frames. Coefficients of parity-violating terms in the distributions exhibit clean signs of the
Z boson, while those of parity-conserving terms are quite insensitive to the presence of
the Z boson.

I. INTRODUCTION

The electroweak theory of Weinberg and Salam
has been successful in explaining many aspects of
present experimental facts. Yet direct observation
of the intermediate vector bosons is necessary to
study various problems, such as the neutral weak
current, the Higgs mechanism, and the number of
fermion generations. ' lt was pointed out that pro-
duction of lepton pairs in hadron-hadron collisions
provides us with an excellent laboratory for their
detection and investigation. On the other hand, it
is widely recognized that angular distributions of
leptons involve important information about the
production mechanism of the lepton pairs.

In this paper we will calculate the angular distri-
butions of lepton pairs, at large mass M and finite
transverse momentum QT, arising from decays of a
virtual photon y* and Z boson formed in high-

energy hadronic collisions.

hadron (beam)+hadron (targ«)

~(y,Z )+X

l+l (l =e or p),

using the lowest order of quantum chromodynam-
ics (QCD).

As is known the Drell-Yan process via y*
predicts I+cos 0 distribution at Qr ——0, where 0 is
a lepton-pair angle in its rest system. ' For small
values of Qr, intrinsic transverse momentum of
partons in colliding hadrons smears this simple dis-
tribution, although such smearing can be very
small for large M . For large M and finite QT,
where the zeroth order of the Drell-Yan process
gives no contribution and the effect of the intrinsic
transverse momentum is suppressed, the first-order
processes in cz„such as the annihilation process in
which a quark (q) and an antiquark (q) annihilate
into a heavy boson (y* or Z ) and a gluon (G) and
its crossed Compton process, dominate and give
angular distributions other than the simple
1+cos 0. At large M and finite Qr the running
coupling constant a, of QCD is small and results
calculated in this way are infrared insenitive. "
This means that the lowest-order calculation in o.,
is reliable and safe to compare with experimental
data.

Discussions of the lepton angular distributions
given by several authors are concerned mostly with
QCD tests. 9 They took into account only pro-
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and the fermions we assume the standard
SU(2) X U(1) Weinberg-Salam model, with quarks
and leptons in three generations, i.e., six Aavors.

The angular distribution we have obtained can
be written, in terms of angles 0 and y of a lepton
in the lepton-pair rest system, as

cessess of a virtual photon )/ decaying into two
leptons. In this paper we focus our attention on
the lepton angular distributions, where the Z bo-
son also gives contributions in addition to y*. We
have calculated subprocesses q +q-+(y' or Z )

+6 and q+G~(y or Z )+q at large M and fin-
ite QT. For the interactions between the Z boson

I

g)(Ap, Ai, A&,A3,A4)=1+cos28+Ap( 2
——, cos 8)+Aisin28 cosy

+A2 —sin 0 cos2y+A3sin0 cosy+A4cosq, (1.2)

'where the A s (i =0, 1,2, 3,4) are functions of the
total c.m. energy Ws and M, Qr, and rapidity y
of the lepton pair. Coefficients of parity-violating
terms A3 and A4 come from contributions of the
axial-vector neutral currents, while Ao, A ~, and A2
are parity-conserving coefficients arising from the
neutral and electromagnetic currents. We have
evaluated these coefficients in three frames, i.e., the
s-channel helicity (H) frame, the Gottfried-Jackson
(GJ) frame, and the Collins-Soper (CS) frame, for
high-energy pp and pp collisions. We have found
that the parity-conserving coefficients are not suit-
able for the study of the Z, but A3 and A4 pro-
vide clear effects of the Z boson.

In Sec. II, we derive the lepton angular distribu-
tion in high-energy hadron-hadron collisions by
calculating the first-order diagrams of QCD.
Numerical evaluation of the coefficients in the
angular distribution for pp and pp collisions is car-
ried out in Sec. III, employing the Gluck-Owens-
Reya parametrization' for the parton distribu-
tions. We have plotted the coefficients at energy
i/s =540 GeV for pp and at V s =800 GeV for pp,
which will be experimentally feasible in the near
future, as functions of either i/r=M/v's or
r =QT/M. Section IV is devoted to the con-
clusions.

quark-antiquark annihilation contribution, and di-
agrams (b) the quark-gluon Comton scattering con-
tribuition.

A. Quark-antiquark annihilation

The differential cross section of lepton pair pro-
duction for collisions of hardons with initial in-
cident (beam) momentum p and a target momen-
tum P is constructed by convoluting the cross
section of the subprocess of partons with momenta

p& ——x &P and p2 ——x2P with the parton distribu-
tions.

Let us denote by f; a distribution function of
quark i in the incident hadron and by f; that of
the antiquark i in the target hadron etc., and write
the parton differential cross section at fixed M,

, and t=(Q —pi), and a solid angle Qi ——(8,p) of
one of the leptons in the dilepton system as d &q/
dM dt XdQi (caret denotes quantities at the par-
ton level). Then the hadronic differential cross
section of the lepton pair from the decays of the y*
and Z at fixed M, QT, y, and solid angle Qi and
of a jet at fixed rapidity yj is given by

II. ANGULAR DISTRIBUTION
OF THE LEPTON PAIR

IN HADRONIC COLLISIONS P — = mn~mf' gluon
k

s ~ I ~ 0 FO Ifs

In this section we derive the angular distribution
of lepton pairs produced in high-energy hadronic
collisions. Since we are interested in the Z pro-
duction we restrict ourselves to a kinematical re-
gion of high-mass dileptons.

At finite transverse momenta of the dilepton, the
angular distributions are dominated, within the
framework of QCD, by diagrams of Fig. 1. There
are two contributions: diagrams (a) give the

(a)

P2

(b)

FIG. 1. (a) The quark-antiquark annihilation dia-
grams. (b) The quark-gluon Compton diagrams.
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x,x~; (x) );. (x2) „+(i~i ) (2.1)

3

dM dt &6~
(2.2)

where (and hereafter) the summation should be carried out for all relevant quark flavors i =u, d, s, . . . but
not for their antiparticle states u, d,s. . . , and 3 stands for the annihilation.

The parton cross section, giving the angular distribution for one of the leptons (hereafter, for definiteness,

we take l =e or p; the corresponding angular distribution for I+ =e+ or p+ is obtained by replacing

L; + L—;, —K;~K; in the following equations), can be easily calculated for massless quarks and is written as

a product of the differential cross section integrated over the lepton angles d &z /dM dt and a function of in-

itial quark and antiquark momenta p& and p2 in the lepton-pair c.m. system

OA p&q +P2q 2Li
I pr I p&q I p2 I p2q

dM dt dQ)

where p;q (i =1,2) is a projection of p; in the
direction of the lepton momentum q,

Pq Pi„si 0ncso——y +P;, coso (i =1,2) . (2.3)

Note that when calculating the term (i~i) in Eq.
(2.1), one has to replace p ~~pq in Eq. (2,2) I

in the
case of annihilation, we keep the relation:

p~ ——x&P, pz ——xzP for the crossed term (i~i) as

well; see Appendix A].
All information about the neutral currents is

contained in K; and L;, and especially the term
containing L; reflects the intrinsic parity-violating

nature of the Z .

L;=

(a +b, ')(a'+b').
sin 0~cos 0~4

2e aa; Reazo e;
2 + 4 '

sin 0~cos 0~ M M
4aba; b;

. 4 4
s&n 0g cos 0~

2ebb, Rea 0

sin 0icos 0~ M
(2.4)

where a; and b; (a and b) are the vector and the
axial vector coupling constants, ln units of e, of the

quark i (the lepton) to the Z boson, e; is t"e
charge of the quark i divided by e, and 0+ is the

steinberg angle,

a; = —e;sin 0~+b;,

1b;= —, fori=u, c, or t,

{2.5)

1b;= —
4 fori =d, s, or b,

1

a=sin 0~ —4, b= ——, for e, p, or ~,
1 1

a = —,, b = —, for v„v„, or v,
and the propagator of the Z with its mass M,
and the width I, is given by

D,o=(M' M, ,'+ iM—„r,,)-',
ReDzo (M2 Mz 2) ID OI2. (2.6)

The differential cross section doA /dM dt is given
by

dcrA 4 2 & 0-'s
2

T2+U2

dM dt
X

3 ~ M ~ +g )
S tu

(2.7)

Using Eq. (2.3) and putting Eq. (2.2) into Eq. (2.1),
we obtain

4
where —, is a color-averaging factor, and a being
the fine-structure constant. Here kinematical varia
bles are

s=(pi+p, ), u =(pz —g)', i=(g —pl)

U= —M' (2.8)

dM dydgT dyldQi dM dydg dyj

where der&/dM dy dgT dyj is the hadronic differential cross-section integrated over the lepton angles

(2.9)

x&xzF~(x&, x2) (2.10)
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and

with

D(AO(A), A](A),A2(A), (A3(A), (A4(A))=1+cos 8+AD(A)( —,—
~

cos 8)

+A i (A)sin28cosy+A 2(A ) —,sin 8 cos2y

+)A 3(A )sin8 cosy&+ (34(A)cos8 (2.11)

I » lpi. —p2 I pz I

yx ]x 2 Gi (x i,x2 )Li

(=2
gx ix2Fi(x»x2 )K;.

I pilpi* —». I p21

Ilail'+

I
pal'

(2.12)

F(x»x2)=f; (xi)f;. (xz)+f;. (xi)f; (x2), G;(xi,x2)=f; (xi)f (xq) —f;. (xi)f; (xz) .

A in brackets stands for the annihilation subprocess.
Now integration over the jet rapidity y in Eq. (2.9) gives the angular distribution D(Ao(A), A i(A),A2(A),

A3(A),A4(A)) at the hadron level at fixed M, Qr, and y for a given energy v s. The coefficients are written
as

do'g
A;(A)

dM dydg

where

dM d dQ ~dy.
~

~

dy. A;(A), i=0, 1,2,

d Crt

dM dydQ d . "dy ZA;(A), i=3,4,
(2.13)

dOg dc'
dp~

dM2dydgz2 dM dydgz dye
(2.14)

B. The gluon-quark Compton scattering

Expressions for the Compton scattering can be obtained from those for the annihilation cross section, i.e.,
by replacing k~ —k, p2~ —p2 in the corresponding formulas. In this case we have to consider two cases
separately: case 1, a gluon is in the beam hadron and a quark (or antiquark) in the target hadron; case 2, a
quark (or antiquark) in the beam and a gluon in the target.

The hadronic differential cross section for case 1 reads as

do'c do'c
Fi;(xi,x2)xix2

dM2dy dg ~dy. dfI' . ' dM dtdQ'i

where the parton cross section is given by (C stands for Compton scattering)

d&c 3 piq +p2q 2Li
I pi I plq+p2q I P21

dM'd«fl'i i dM'«16~
I pi I'+

I
p2I' +

I pi I'+ If»l'
with

doc & 2aas s+U=—X— ME;
dM dt i 6 3 s —sV

(2.15)

(2.16)

(2.17)
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with S=s —I and —, being a color-averging factor and

Fl;(xl,x2)=fsl„,„(xl)[f;(x2)+f;(x2)] . (2. 1 8)

[fsl„,„(xl } denotes the distribution function of the gluon in the beam hadron, etc.] Similarly as in Eq. (2.9)
we have

d O'C Oc 3 A A A A A
D(All(C), A l(C),A2(C), glA3(C), (lA4(C)) I l,

dM2dy dQT2dyjdQl l dM dy QT dyj l
164r

where

dOC dO~
Fl;(x l,x2 )x lx2 (2.20)

and

with

D(AO(C), A l(C),A2(C), glA3(C), glA4(C))
I l

——1+cos 0+AD(C)( —, ——; cos 0)+A l(C) sin20cosy

+A2(C) —,sin 0cos2&p+glA3(C)sin0coscp+(, A4(C)cos0
(2.21)

2 2
Plx +P2x ~

(C, Plxplz+P2xJ22z

I pl II l.+u2 I p2I „- I pl I J2l. +S 2. I 52 I

2+Fl;(xl x2)xlx2L;

4

QFl;(x l,x2)x lx2K;

(2.22)

The coefficients in the angular distribution D(AO(C), A, (C), A, (C), A, (C), A4(C)) are written as

A;(C) = A;(C}(drrc/dM'dy dQ&')
I
l+A;(C)(drrcldM dy dQ& )

I 2

do.c/dM dy dQT
where

d~C d dOC

dM2dy dQr2 dM dy dQr dy/, dM'dy dQr dy,

(2.23)

(2.24)

dOC
A;(C)

dM'dy dQr'

dOC
dy) A;(C), i =0, 1,2

dM dy dQr dy,

dM dy dQr dyj

(2.25)

The corresponding formulas for case 2 can be obtained by replacing in Eqs. (2.15)—(2.17), (2.19)—(2.22),
and (2.25), Fl;~F2;, t~u, U~ T, and pl~(2, where

F2 =[f'(x )+f «l }]f'l-.(x2}

2+F2;(x l, x2 )x lx2L;

+F2;(x l,x2 }xlx2K;

(2.26)
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(2.27)

Finally, the total angular distribution D(AO, A „A2, A3, A4) of Eq. (1.2) is obtained as a sum of the an-

nihilation and the Compton contributions, where A s are given by

A;(A)do~ ldM dy dgr +A;(C)doc l™ydgz.

daldM dydgr

d~ldM'dy dgr'=d~„ldM'dy dg r'+d~cldM'd ydgr'.

Note that a relation Ao ——A2 holds on account of a p ~~p2 symmetry in this model.

(2.28)

III. NUMERICAL EVALUATION OF A;
IN pp AND pp COLLISIONS

dN =C(1+a&cos8+a'cos 0),2

d cos0

where

(3.1)

AoC= —1+
8 2

In this section we exphcitly evaluate A; in high-
energy pp and pp collisions. Integrating the angu-
lar distribution —3m. dN/dQ& ——

D(Ao, A &,A2, A3 A4), given by Eq. (1.2), over the
azimuthal angle y we get

In our numerical calculations we have employed
as the parton distributions those of Gluck, Reya,
and Owens', i.e., the complete scale-violating par-
ton distributions calculated dynamically. within the
framework of QCD and which are valid up to very
high values of M . We have fixed the number of
flavors as NI=6 and the Weinberg angle as
sin I9+ ——0.23. Thus we have used the values
M 0

——91.56 GeV, which takes into account the in-

crease due to loop corrections, ' and I zo 2 85
GeV, which is obtained in the Weinberg-Salam
model by assuming N~ ——6 and by taking into ac-
count the 0(a, ) @CD corrections. ' For the cou-
pling constant u, we used a formula

3

A4 1 ——,Ao
CZ~ = &, +2=

1+ 2AO 1+ 2A0

And integration over 0 gives

dN 1
(1+P&cosy+Pzcos2q),

2K

where

(3.2)

(3.3)

with A=0.5 GeV. We perform our calculations at
y =0.

In our calculations we consider a kinematical re-
gion of high mass and small Qr (xr =0.005, 0.01,
and 0.02, and also 0.1) dileptons, such that both
the differential cross section doldMdydgr and

Ao A2 1 —a2
Pi= A3 Pz=

16
' 4 4 2(a2+ 3)

(3.4)

We have evaluated these coefficients in the s-
channel helicity, Gottfried-Jackson and Collins-
Soper frames in the c.m. system of the lepton pair
(Fig. 2). The helicity frame (H) is defined by
choosing the direction of a sum of the incident and
the target hadron momentum as a z axis and put-
ting the incident hadron momentum in the x -z

plane in the c.m. system of the lepton pair. If one
chooses the incident hadron momentum to be a z
axis and puts the target momentum in the x-z
plane (P» g0), one gets the Gottfried-Jackson (GJ)
frame. The Collins-Soper (CS) frame is the one
where the z axis bisects the angle between P and
—P . (See Appendix A for variables in these
frames. )

pB

Z

P+P
i( PS

TP

-P

0

8P

ib)

FIG. 2. Definition of reference frames in the c.m.
system of the lepton pair. (a) The helicity frame. (b)
The Gottfried-Jackson frame. (c) The Collins-Soper
frame. P a PMam P T P target



136 M. CHAICHIAN, M. HAYASHI, AND K. YAMAGISHI 25

the decay angular distributions are reasonably large
to be experimentally accessible. Although the re-
sults are finite as QT ~0, at such high energies and
masses for too low value of QT the O(a, ) descrip-
tion of the cross section will be somehow regular-
ized by the intrinsic transverse momentum of the
partons and nonperturbative effects which start to
play a role in that region.

We present in Fig. 3 the differential cross sec-
tion der/dM dy dQr for pp collisions at &s =540
GeV and xz. ——0.005, as a function of M. Among
the curves which are described in the figure cap-
tions we comment here only on some of them.

(i) pp collisions at v s =540 GeV, y =0. We
plot a~ in Fig. 4, a2 in Fig. S, and A3 in Fig. 6 at
xT =0.005, 0.01, 0.02 and also in some cases at 0.1,
as a function of v r. We also show a~(CS) in Fig.
7 and A3(H) in Fig. 8 at QT ——1, 2, 3 GeV, as
functions of r =QT/M No.te that, as seen from
the curves, to a good approximation the coeffi-
cients a&(CS) and A3(H) in Figs. 7 and 8 are, in

this region, functions of M only.

(ii) pp collisions at ~s =800 GeV, y =0. We plot
n& in Fig. 9, a2 in Fig. 10, and A3 in Fig. 11 at
xT ——0.005, 0.01, and 0.02, as a function of V r.

We show a~(CS} in Fig. 12 and A3(H} in Fig. 13 at
QT ——1, 2, 3 GeV, as functions of r. We notice
again, by observing the curves in Figs. 12 and 13,
that the coefficients a&(CS) and A3(H) in this re-
gion are functions of M only.

For completeness, we made calculations for coef-
ficients in pp collisions at v s =63 GeV. The re-
sult is shown in Table I. Note that the coefficients
A3 and n& arising from the presence of the Z are

pp, ~s = 540 GeV

xT =0.1

1Q
37

pp, jism
s = 540 Gev 0.2-

xT =0.005
xT =0.01,'

--xT = 0.02

-38
1Q

E

s
I
I

~ ~
s

I

I
~ ~

c ~
I
I
t

XT — .1

10
39

-2.0
0.2 0.3

I

0.4 +»

10
20

I I
-

I I I

40 60 80 100 120
w (Gev)

FIG. 3. The differential cross section for pp collisions
at &s =540 GeV, y =0, and xT ——0.005.

FIG. 4. Angular-distribution coefficent al for pp as a
function of &~ at &s =540 GeV, y =0, and xT ——0.005,
0.01, 0.02, and 0.1. Solid curve corresponds to Collins-
Soper (CS) frame, dotted to Gottfried-Jackson (GJ), and
dashed curves to helicity (H) frames. Note that in CS
and GJ three curves are almost on top of each other and
thus are indistinguishable.
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1.0;.-
pp, ~s = 5!0 Gev pp, ~s=510 GeV

0.02
0.01

.005

lp
11 x =0

11

tI x =0.005
0.01
0.02

L

li

il

i

0 'iI
li

-0.1 JI
ii)-0.2 i4
~lK

-0.3-~~

-0.4,
-

0
I

0.1 0.2

xT =0.02

~x~ =0.01

xT =0.005
l

0.3~t'

-1.0-

-2.0
0.1 0.2 0.3 0.1. 0.5 ~»

xi=0.01

x =0.02~8 .." ...... /x~=0.1
+14eSOOoyy y

I „',.....MVtaaa. aaftAspAe a+a.

:~x =0.005

xq =0.005
0.01
0.02l

u
ll
~l

t&„qI-xr =0.1
gt

vt

FIG. 5. Angular distribution coefficient a2 for pp as a
function of ~~ at ~s =540 GeV, y =0 and xz ——0.005,
0.01, and 0.02. Solid curves are for CS, dotted for GJ,
and dashed curves are for 0 frames.

FIG. 6. Angular distribution coefficient A3 for pp as

a function of ~~ at ~s =540 GeV, y =0 and

x&——0.005, 0.01, 0.02, and 0.1. Solid curves are for CS,

dotted for GJ, and dashed for 0 frames. Note that in

H, three curves are almost on top of each other.

extremely small at CERN ISR energies, as

expected.

IV. CONCLUSIONS

%e have calculated the angular distributions of
lepton pairs decaying from y~ and the Z boson
produced in hadron-hadron collisions at large M
and finite QT. Our main conclusion is that the
parity-nonconserving coefficients a& and A3 clearly
reflect the properties of the Z . Their general
features are as follows: The curves of both a~(GJ)
and a~(CS) exhibit characteristic structures, i.e.,
they change their sign just before the value of M
reaches Mzo. The values ia~(GJ)i and ia~(CS)i

can be rather large (see Figs. 4, 7, 9, and 12), while

i
a&(H)

i
is small (see Figs. 4 and 9). On the other

hand, the curves of A3(H) exhibit similar struc-
tures as those of a~(GJ) and a&(CS).

i
A3(H)

i
can

be rather large (see Figs. 6, 8, 11, and 13), while
both

i
A3(GJ)i and

i
A3(CS)i are small (see Figs. 6

and 11). Thus, measurements of a~(GJ) and/or
a~(CS) as well as A3(H) are best suited for extract-
ing information on the production of the Z boson.

Several comments are in order.
(1) We have also calculated the coefficients, us-

ing the width I 0——1.76 GeV, which is obtained

by assuming N~ ——4 and the mass M 0
——90.04 GeV

(without the loop corrections). The results, as ex-

pected, are insensitive to such a change in I 0 and

M 0.
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FIG. 11. Angular-distribution coefficients A3 for pp
as a function of &~ at &s =800 GeV, y =0 and
xT=0.005, 0.01, and 0.02. Solid curves are for CS, dot-
ted for GJ, and dashed for H frames. Note that in H
three curves are almost on top of each other.
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FIG. 10. Angular-distribution coefficient a2 for pp as
a function of &v. at &s =800 GeV, y =0 and
xT ——0.005, 0.01, and 0.02. Solid curves are for CS, dot-
ted for GJ, and dashed for H frames.

1.0

QT =3

a, =2

ing in their equations, Eq. (2.9). The scaling viola-
tion is seen in a~ and A3.

(5) For r =QT/M « 1, the momenta P and P
in GJ and CS frames are given by

GJ: P -=(O,o, l),

( —2r, O, —1),

CS: P = ( rO I), —

( rO, 1). — —

Hence for I «1, one has

(4.1) -2.0
0.05

FIG. 12. Angular-distribution coefficient u l(CS) for
pp as a function of r =Qr/M at Vs =800 GeV, y =0
and Qr=1, 2, 3 GeV. Note that, as seen from these
curves, to a good approximation the coefficient a~(CS) is
a function of M only.
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TABLE I. Values of the angular correlation coefficients a~, a2, and A3 for @@~lepton
pair at y =0, xz =0.0635 (Qr=2 GeV) and v s =63 GeV and at different values of
v r=Mlvs.

0.1 0.2 0.3 0.4

a~

A2

A3
H frame

al
CX2

A3

—0.007
0.83
0.001

—0.002
—0.16
—0.008

—0.026
0.92
0.016

—0.002
—0.28
—0.026

—O.OS4

0.9S
0.017

—O.OOS

—0.310
—O.OSO

—0.088
0.97
0.024

0.003
—0.32
—0.079

A;(GJ) —=A;(CS) . (4.2)

This feature can be seen in Figs. 4 and 9.
(6) One can obtain the angular distribution for

the Drell-Yan process via y* and Z" from that for
the annihilation process by taking the limit QT~O.
Using Eqs. (2.12), (2.13), and (1.2) together with

Eqs. (Al) and (A2), we obtain in the GJ frame

1+cos 8+(cos8, for pp collisions
D=

3 dg', 1+cos 0, for pp collisions
(4.3)

pp.~s = 800 Gev

I
) QT =2

I

1

l t

1

-1.0—

) r~l! i r

II l
I

& y
/

I
I li r

I

The presence of the term containing g in pp col-

lisions reflects the parity-nonconserving effect of
the Z boson. For M &&M, we have $~0,
hence we obtain D~1+cos 8, consistent with the
well-known Drell-Yan distribution mentioned in

Sec. I.
(7) Our calculations based on the first-order

QCD perturbation are certainly more reliable for
the pp case. The reasons are as follows: First the
valence quark distributions are much better known

than the sea and gluon distributions. Second, in
the pp case, the O(a, ) annihilation contribution is

large and hence the O(a, ) bremsstrahlung contri-
bution can be safely neglected compared to the an-

nihilation one. On the other hand, in pp collisions,
the O(a, ) bremsstrahlung term, in which both
valence quarks take part in the scattering, gives a
substantial contribution under certain kinematical
condition' ' compared to the annihilation one.
Our calculations, in which this contribution is

completely neglected, are thus less reliable for pp
collisions. The issue of such O(a', ) bremsstrah-

lung contribution in the lepton angular distribu-
tions in pp collisions will no doubt deserve further
study.
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FIG. 13. Angular-distribution coefficient A 3(H) for

pp as a function of r =Qr/M at v's =800 GeV, y =0
and Qr ——I, 2, 3 GeV. Note that A3(H)=ai(CS) of Fig.
12 and that to a good approximation the coefficient is a
function of M only.

APPENDIX A

Let us list kinematical variables used in this paper
in terms of scaling variables.

Initial momenta of constituents are given by
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p, =x,P, pz x——2P for annihilation,

p$ ——x2I', k =x/I' for Compton scattering, case 1,
B

p) =x)P k =x2P for Compton scattering, case 2 .

In the lepton-pair rest system momenta of the incident and the target hadrons are given as follows.
Helicity frame:

vs xT e ~+xT —4~
x~O,

(x cosh y —4r)' ' 4]/&

~s
P =

(xT cosh y —4~)'

xT e +xT —472 2p 2

—xT,O, (Al)

xT=2QTIWs, r=M /s, xr ——V XT +4r .

Gottfried- Jackson frame:

2SXT ~T SXT xr —4T
P = e «(00, 1), P = e« —4~zxT/xT~O, (A2)

Collins-Soper frame:

P = e «(xT, 0,2]/r), P = e«( —xT,O, 2v r)—.
4M

' ' ' 4M

Invariant variables are written as

s =x]xmas, t =s(7 —xlx2+ V)/2~ u =s(r —x]x2 —V)/2~ V=[(x]x2—r) x]x2xT-
Finally, relations of scaling variables x~, x2, and y& are given by

(x] ——,XTe )(x2 —2XTe )=xT /4, x] (xTe——+xre ')/2, x2 ——(XTe +xTe ')/2.
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