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Solutions to the gauge-field equations in the presence of a classical, time-independent
source are given in terms of elementary functions. Certain aspects of the linear stability
of the ensuing field configurations are discussed. The physical electromagnetic fields of
all our solutions are those of a magnetic monopole surrounded by an electric-dipole distri-

bution.

I. INTRODUCTION

In the past few years, nonperturbative features
of some quantum field theories have been dis-
covered through the semiclassical approximation.
In this scheme, quantum expansions in some cou-
pling g are performed around classical field config-
urations which are, typically, nonanalytic about
g =0. Thus, the resulting quantum-mechanical
amplitudes are unattainable in any finite-order ap-
proximation that begins with the trivial g =0
term.!

Since the nonperturbative regime of all nontrivi-
al field theories cannot be fully understood by ex-
isting techniques,’ the study of classical field con-
figurations is of primary interest.

In non-Abelian gauge theories, the most promis-
ing models of the physics of elementary particles,
many aspects of the classical theory are known.
The self-dual sector, for example, is almost com-
pletely solved. However, in the case of these
theories, some areas still remain far from under-
stood. In particular, the properties of field config-
urations produced by external sources are only par-
tially known. Indeed, the concept of an external
source itself is somewhat obscure.

In an effort to understand the physics of non-
Abelian external sources, a large amount of work
has been done recently in this area.’~>

In electrodynamics, the Abelian counterpart of
Yang-Mills theory, the physics of external sources
is fully understood. The general solution of the
field equations is the static Coulomb potential plus
an arbitrary radiation field. The situation with
non-Abelian theories is much more complicated
due, chiefly, to the inherently nonlinear nature of
the theory. Here, it is known, there exist many
solutions of the field equations which carry less en-
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ergy than the Coulombic solution. In fact, it has
been proved* that an extended, spherically sym-
metric source produces fields which are always less
energetic than the corresponding Coulombic ones.

The sources considered in previous analyses have
been purely electric.® In this work we consider
sources with both electric and magnetic content.
Our interest in this case is twofold. Firstly, this
allows us to construct simple, explicit solutions to
the field equations which, in turn, make it possible
to explore analytically many of the properties of
the ensuing field configurations, particularly their
stability under linear deformations. Secondly, as it
turns out, the properties of field configurations
produced by electric sources emerge as well from
our analysis.

We will be concerned here with extended, spheri-
cally symmetric sources.” When such sources are
purely electric, it is known that the resulting field
configurations fall into two broad classes termed
type I and type IL* These two types are distin-
guished by the asymptotic behavior of the spatial
components of the gauge potential. The perturba-
tive (in powers of the source strength) and numeri-
cal analysis of these fields reveals the following
basic properties.* Type-I fields resemble the
Coulomb configuration in some ways: They exist
for all values of the source strength Q, and their
energy as a function of Q is, although always
smaller, similar in structure to the Coulomb ener-
gy. Type-II fields have very different properties.
There exists a minimal charge Q. below which no
type-II solutions exist. Moreover, for any charge
above Q,, there are always two solutions of dif-
ferent energy. A graph of energy versus Q thus
shows a bifurcation at Q.. These properties are ex-
plicitly verified by our solutions. However, we
find new properties as well. In particular, we ob-
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serve that bifurcation is not an exculsive property
of type-II fields.

A general, abstract analysis of the stability of
these configurations under linear deformation®
shows that, for small charges, type-I fields are
stable. Most interestingly, it was also shown that
one of the branches of type-II configurations was
necessarily unstable, whereas the other shares the
stability properties of the critical solution. Thus, a
deep connection between bifuraction and stability
for type-II fields was seen. We argue that bifurac-
tion and the onset of instability are always two as-
pects of the same phenomenon. This observation
allows us to determine explicitly maximum stable
charges as well as bifurcation charges from the
solution of algebraic constraints.

This paper is organized as follows. In the fol-
lowing section we discuss some general properties
of Yang-Mills fields in the presence of time-in-
dependent, spherically symmetric sources with both
electric as well as magnetic content. Here we point
out the existence of two new classes of configura-
tions which are absent in the case of purely electric
sources.

In Sec. III we give some representative examples
of the solutions we have found and discuss their
properties. Conclusions are given in the last sec-
tion.

II. PRELIMINARIES

The field equations for a non-Abelian gauge
field in the presence of a current denisty J,, are
given by

D, F¥=J", (2.1)
where

F,,=0,4,—0,4,+[4,,4,] (2.2)
and

D, ¢=0,0+[4,,4]. 2.3)

In the above we have used a compact matrix nota-
tion for all objects. For the gauge group SU(2),
A, =A;0°/2ig with o° the three Pauli matrices.
The coupling constant g has been incorporated into
the definition of J u» Ay, and F,,,. Since the only
effect of this rescaling is to multiply the action by
an overall factor of g 2, we will henceforth take g
to be unity.

Under gauge transformations specified by

U=exp esu(2), 2.4)

éGa(x)a“

—1 —1
A,—~U"'4,U+U'3,U,

i 2.5
Fu,—U"'F,U.

Equations (2.1) are therefore not gauge invariant;
they are covariant provided J, transforms as a vec-
tor,

Jy—>U"J,U . (2.6)

Owing to its definition, the double covariant diver-
gence of F,, vanishes. This imposes a constraint

onJ,,
D*J,=0. 2.7

In striking contrast with electrodynamics, this
integrability condition depends on the gauge poten-
tial. Thus, gauge invariance of the classical action
is no longer automatic for a coupling of the form
Tr(4#J,). For the time-independent solutions to
(2.1), which we shall construct below, Eq. (2.7) is
satisfied by a conserved current (in the ordinary
sense) so that we meet the independent conditions

oJ,=9dY;=0, (2.8a)
[AO,JO]:O ’ (28b)
[4%7;1=0. (2.8¢)

In terms of the electric and magnetic com-
ponents of Fy,

EL=Fi°, (2.92)

Bl = —€kFk (2.9b)

the total energy of a given configuration takes the
form

E= [ d*x[(EJE]+BiB)+JiAq] .
(2.10)

Solving Egs. (2.1) for an arbitrary source is out
of the question. However, the spherically sym-
metric sector of the theory is considerably simpler.

The most general, radially symmetric form for
the current density and potentials can be written

Ad=a%, | @2.11)

Al =a,6%F; +a, (8" —FF%) 4 a 77 (2.12)

and
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J2=j%, , (2.13)
Jo=j €7 +jH 8 —FFP) + 3PP . (2.14)

This ansatz reduces the field equations to a set
of ordinary, coupled differential equations for the
functions a,,(r) and j,(r). Inspection of these
equations reveals some redundancy in the ansatz,
Egs. (2.11)—(2.14). To resolve this redundancy
and satisfy the constraints on J,,, we specialize to
the case a; =a3;=0 and j, =j;=0. The remaining
equations can be written in terms of a dimension-
less variable x =r /ry with r, an arbitrary scale.
To do this, we rescale the current ansatz functions
by defining q(x)=rq>jo(x) and m(x)= —ry’j,(x).
With primes denoting x derivatives, Egs. (2.1) are
finally reduced to

—x2f" 424 f =x’q , (2.15)

—x%a"+(@*—f’—Da=x’m , (2.16)
where

a=l—ra,, f=ra,.

These equations correspond to the non-Abelian
counterparts of Gauss’s and Ampere’s laws, respec-
tively. They are identical to those in Ref. 4 except'
for the appearance of a magnetic source in Eq.
(2.16). It is this extra term that allows us to write
down simple solutions.

In terms of a(x) and f(x), the components of
F,, are given by

roEi= e | L
X
(877 “—J: : (2.17)
X
. 2.—
ro'Bl= —pe | 41
X
—(80—pp) | & (2.18)

The total energy [Eq. (2.10)] now becomes
E=Eg+E,, where
2
a’—1
x

2
o A [%{-J l (2.19)

_4m e o 1
Es="7 fo dx | @'V

and

8w
E,,z—r:fo dxxm(a—1). (2.20)

Partial integration together with the equations of
motion reduce Eg to a simpler form involving ¢
and m explicitly:

4T o
Es=—— | d 2x%ma’
S Y fo X +2x%ma

® [~

x3q

(2.21)

We define the total non-Abelian electric and
magnetic charges of a solution as the volume in-
tegrals of ¢ and m. These are given by

o 2
Q=8r,* [ dxfx—f (2.22)

and

M =4gry’ [a( ©)—a(0)

2

+ I dx(—a—#}. 2.23)

The above expressions do not, of course, corre-
spond to physical, measurable quantities. The phy-
sical electromagnetic fields and charges are ob-
tained by a gauge-invariant projection® of the ex-
pressions given by Egs. (2.17) and (2.18). Before
constructing these fields we discuss the require-
ments which must be met by smooth solutions of
Egs. (2.14) and (2.18) so that the fields carry finite
total energy. '

From Eq. (2.19), finite energy demands that

a0)=aXw)=1, (2.24)
f0)=f(o0)=0. (2.25)

For a purely electric source, the ansatz does not
fully fix the gauge; there still remains a residual
U(1) subgroup defined by rotations around the
direction in group space specified by J§. This
symmetry reflects itself in the fact that the m =0
theory is invariant under a — —a. Hence, in that
case, Egs. (2.24) and (2.25) define only two distinct
classes of configurations given by, say, a(0)=a(w) -
= + 1 and a(0)=—a(w)= + 1. These have been
called type-I and type-1I fields, respectively.* The
solutions approach their asymptotic values as

8a=8f=0(x2), x—0
8a=8f=0(1/x), x> .

(2.26a)
(2.26b)

The above analysis is modified when J; 0,
since, in this case, J}, specifies fwo orthogonal
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directions in group space, thereby fixing the gauge
completely. The two new families of solutions,
type Im and type IIm, follow from the previous
solutions by transforming a — —a; the degeneracy
seen for m =0 is removed by the asymmetric term
in the total energy E,, given by Eq. (2.20). These
solutions, which are particular to the case m=40,
will not be discussed further. Rather, in the next
section we will concentrate on the properties of
those configurations which have a direct m =0
counterpart. As we shall see, the properties of the
latter solutions are in essence identical to those of
the purely electric objects and so will be referred to
as type-I and type-II fields.

As remarked above, J§ defines the direction of a
U(1) subgroup. This fact allows one to define the
physical electromagnetic fields produced by the
source: Calling p* the direction of J§, the Abelian
fields are given by®

y;w‘:ﬁaFZv_fabcﬁaDpﬁbDvﬁc . 2.27

For the radial ansatz, using Eqgs. (2.17) and
(2.18), one finds

g=Fy=i 2 |L (2.28)
dr | r
and R
! ik fi
.@‘.3_761-]7((/ :-r‘—Z , (229)

these correspond to the fields of a magnetic mono-
pole of unit charge located at the origin surround-
ed by an electric-dipole cloud’ [recall Eq. (2.26b)].
Thus the Abelian magnetic and electric charges of
all the solutions are one and zero, respectively.
The fact that #; is independent of the ansatz
functions is not as surprising as it might at first
seem. It is well known'? that, in a coupled Yang-
Mills-Higgs system, the topology of the gauge field
is completely determined by that of the Higgs
field, whose role is played here by J§. In fact, for
a general configuration, the divergence of the dual
of #,, defines a magnetic current. This is easily
seen to be given by

Mﬂzéeuvaﬁeabcavﬁaaaﬁbaﬁﬁc , (2.30)

which is independent of 4.
We pass now to the discussion of some represen-
tative examples of the solutions we have found.

III. SOLUTIONS

Solving Egs. (2.15) and (2.16) for an arbitrary,
prescribed source is, in general, extremely difficult.

Moreover, even if this is done, there is no guaran-
tee that the results thus obtained would be useful
in understanding the general properties of such
configurations: A simple source does not neces-
sarily produce simple fields. However, a different
approach to this problem is possible. It was noted
by numerical analysis,!! and borne out by our ex-
plicit solutions, that most of the important proper-
ties of a given solution are, to a large extent, in-
dependent of the detailed shape of the charge dis-
tribution. More precisely, it is usually possible to
distinguish general properties of these configura-
tions from those which are specific to the particu-
lar source considered.

Thus, for a wide range of sources with the gen-
eral properties of being concentrated in a small re-
gion of space with a fast decay at large distances
(faster than x —*), the properties of the ensuing
field configurations can be established by studying
a particular source distribution. A convenient
source can be constructed using the numerical
solutions for m =0 (Ref. 4) as a guide. For purely
electric sources the system of equations (2.15) and
(2.16) is too restrictive. Examples of analytic solu-
tions for these sources are generally too complicat-
ed to be useful.'”> However, the freedom afforded
by a nonvanishing magnetic source in Eq. (2.16) al-
lows one to construct simple solutions for simple
sources.'?

In light of the above discussion, in this section
we present the details of two examples correspond-
ing to a type-I and a type-II solution. These exam-
ples validate numerical and perturbative analyses*>
and permit the explicit evaluation of critical and
bifurcation charges. The main purpose of this ex-
ercise is to demonstrate the usefulness of our ap-
proach; it is by no means an exhaustive study of
possible solutions to the field equations.'*

The ansatz functions for the two examples con-
sidered here can be written in the form

f(x)=po(x) (3.1a)
and
ayn(x)=vY;n(x)+Ad(x) , (3.1b)

where 1 and A are real parameters and
2

x
=—", (3.2)
=
P(x)=1 (3.3a)
for type-I solutions and
1—x*
=— 3.3b)
¢Il(x) 1+x4 (
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for type-1I solutions.

We have plotted f and a; for several values of
(u,A) in Fig. 1. The corresponding curves for ay
are shown in Fig. 2. These functions resemble the
numerical results of Ref. 4 and constitute the input
in our analysis.

The charge distributions corresponding to Egs.
(3.1) are simple rational functions which, for the
choice given in Egs. (3.2) and (3.3), satisfy the re-
quirements discussed above. These functions are
shown in Figs. 3 and 4 for several values of p and
A

A useful feature of our parametrization is that,
for both classes of solutions, for fixed A, Q is
linear in pu whereas M is quadratic. The explicit
results are readily obtained from Egs. (2.22) and
(2.23). They are given by

Q=171 %)&+4A+27 , (3.4a)
3
7Tr0 2
M= [ MmA? 242+ 167)
—uX A +8)] (3.4b)

for type-I solutions, and

1 1 i

1 2 3 4 X

FIG. 1. The functions aj(x) and f(x) for a type-I
solution for several values of u and A.

FIG. 2. The function ay(x) for a type-1I solution for
several values of A.

3

¥o 2
Ou 7 w(A*4+4), (3.5a)
My =4mr,’ %(kz*#2+4)—2 (3.5b)

for type-II solutions.

Apart from the total charges given above, the
most useful object for the analysis that follows is
the total energy. From Egs. (2.19) [or (2:21)] and
(2.20) a straightforward computation leads to the
results

E{=E,[ AX(25A2+192A+672)

+2u%(56—5A7)], (3.6a)
En=E{ A[25A2—8A+10(36—u?)]

+40M 2 —12)+8(242—7u?) )},  (3.6b)

where
2
T
Eog=—+—.
07 128V 2r,
m(x)

1 2 3 4

L

FIG. 3. The charge densities for a type-I solution.
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FIG. 4. The charge densities for a type-II solution.

The energies can be written as functions of the
total charges by fixing the parameters to satisfy
some specific relation u=u(A). Then, Egs. (3.4) to
(3.6) can be thought of as the parametric equations
defining E=E(Q,M). The choice of parametriza-
tion is important. As we discuss at length below,
bifurcation as well as destabilization occur when,
as functions of y, E and Q (or E and M) have a
common extremum. This condition imposes strong
constraints on u(A). Given such a parametrization,
the known or conjectured properties of the solu-
tions*> emerge quite naturally. We find that our
solutions for m =40 differ in nature from the previ-
ously known m =0 fields by factors whose origin
can be identified. That is, it is possible to extract
the properties of the m =0 configurations from
our analysis. Thus, a type-I class as well as a

(a)

- Q
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type-II class with bifurcation can be found easily.
Examples for the present case are shown in Figs.
5(a) and 5(b).

Analysis of the small fluctuations around a
time-independent solution to the Yang-Mills equa-
tions in the presence of a radially symmetric
source can be carried out by studying the spectrum
of a Schrodinger-type Hermitian operator L:

LY =0%, (3.7)

where X is a vector of small fluctuations and w? is
the square of their frequency. (In this analysis,
fluctuations are assumed to be monochromatic.
The following results depend on this assumption.)
The explicit form of L has been given for the

m =0 case,’ its extension to the present case is
trivial. For the solutions given in Egs. (3.1) to
(3.3), one can show that LY is a continuous func-
tion of u and A. Therefore, if a stable oscillation
(w*> 0) becomes unstable (> <0) as u and A are
varied along some curve in the u—A plane, u(A), a
point on this curve must have w?>=0. Although
we cannot, in general determine w?, if we know its
sign for some point of the curve, we can determine
the critical point where this sign changes. At such
critical points the energy and charge (Q or M)
must have a common extremum.

If 0E/0Q (or dE/0M) is continuous across this
point o still changes sign, but there is no bifurca-
tion; this can occur only if the common extremum
is an inflection point. If the extremum is either a
minumum or a maximum, the point of destabiliza-
tion will also correspond to a bifurcation in E(Q)
[or E(M)].

Choosing A as the parameter, the critical points

E (b)
180+

160

140, y g
30 40 50

FIG. 5. (a) Energy versus total electric charge for a type-I solution. (b) Energy versus total electric charge for a bi-

furcating type-II solution.
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are determined from the solution of

OE  du OE _
9Q  dudQ
Y + o =0. (3.8b)

This system will have a nontrivial solution if]
and only if, its determinant vanishes. Therefore,
the critical point along the curve p(A) is such that
the “Poisson bracket” of E and Q (or E and M)
with respect to (A,u) vanishes:

_OEQ3Q OE3Q
T oA du  op oA

The critical slope, u'(A) is given by Egs. (3.8) for
the solutions of Eq. (3.9).

We now illustrate the application of this formal-
ism in the above examples (we look for critical
electric charges only; the procedure to find critical
magnetic charges is entirely analogous).

The curves in the p-A plane for which w?=0 for
the type-I solution are shown in Fig. 6(a) with crit-
ical slopes shown in Fig. 6(b). They correspond to
the functions

{E,Q 0. (3.9)

AM25A% + 1440+ 336) %A2+4k+2w
:u’crit2: 37 ’
Tx3+16x2+38wx+224
(3.10)
o _pQ2rA+16)
gy = L 2mA+16) (3.11)

TA 4+ 16\ +87

evaluated at the critical point. Since this solution

(a) H

is stable for small charges,’ a parametrization ()
which starts with Q=0 and crosses the curves
(3.10) with slope (3.11) will have w*=0 at Q(A,)
and, by continuity, ®> <0 for Q > Q(A.). For
dE/3Q to be continuous across this point, u(A)
must also satisfy

ST 4 2mA+ 16— 7 512
an 12
e L ang 2

at A.

The corresponding results for the type-1II solu-
tion are shown in Figs. 7(a) and 7(b). These curves
are given by

) (2503 — 6%+ 180A — 120)(A%+4)

il =— (3.13)
Heri SA3— 30A2—76A + 40

with
—2uA

Pia (3.14)

Hrir=
evaluated at the critical point. The upper branch
is unstable for all Q, whereas the lower one is
stable for Q, < Q < Q,, where Q, is the bifurcation
point obtained from the above equaions and Q, is
a second solution with 32Q/dA%=0 at the critical
point. We have checked this analysis for specific
choices of the parametrization.

There are, of course, solutions for which p(A)
does not satisfy the requirements given above for
®? to change sign. Since it is physically unlikely
that such configurations are stable for arbitrary Q
or M, we conjecture that they are always unstable.

.
/.L
4
3 e
/”
2 Ve
//
1 /
5 -4 -3 -2 -1 l 2 \/3 4 s
)
/ ! A
//""‘ !
e 1
- -2 |
e ]
- ]
- 3 1
g 1
T -4 i
1
1

FIG. 6. (a) Points in the pu-A plane for which @?=0 in a type-I solution. (b) Critical slope for bifurcation or desta-
bilization of type-I solutions. The dashed line corresponds to gt <0.
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1

(b) #

FIG. 7. (a) Points in the u-A plane for which ®*=0 in a type-II solution. (b) Critical slope for bifurcation or desta-
bilization of type-II solutions. The dashed line corresponds to pcr; <O.

IV. CONCLUSIONS

We have presented an analysis of the nature of
gauge fields associated with extended, radially
symmetric classical sources. The crucial ingredient
which allows the calculability of all objects of in-
terest is the observation that global properties of
the configurations depend only weakly on the de-
tailed shape of the charge distribution.

Our analysis of linear stability is based on the
assumption that monochromatic fluctuations are
the relevant ones. Other than this, our results only
depend on the continuity of the fluctuation equa-
tions, which could, in fact, include general, radially
asymmetric oscillations.

When magnetic sources are included, we find
four distinct classes of solutions; the twofold de-

generacy observed in the case of purely electric
sources is removed by the specification of two
orthogonal vectors in group space inherent in the
definition of the source.

The interesting problem of point sources is not
discussed. Some recent work in this area!® should
complement our results and clarify some remaining
problems. The physics of non-Abelian sources
remains obscure, but we hope that the availability
of explicit solutions may serve as a basis for furth-
er understanding of the classical theory.
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