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One-meson sector in static models
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The explicit T matrix is given for a general static model in the one-meson subspace of
the Tomonaga resolution of the meson field operator. A particular choice of the meson
internal-mode function is made. The effective raising of the phase-shift threshold in the

ground channel that is observed in pion-nucleon scattering is shown to occur in a natural

way in the static model.

Consider the Hamiltonian for a meson field in-

teracting with a single static source:

f co(k)a t(k).a (k)dk

—p. f [v*(k)a(k)+u(k)at(k)jdk .

f=(q»f)q+fi

(q),fi) =f q ~(k)ft(k)dk =0 . (3)

The l subscript will be used to indicate orthogonal-
ity to y(k); any function f(k) satisfies

Here a (k) is the annihilation operator for a meson
of momentum k and energy co(k) =(k +m )'
the operator a (k) and the source current operator

p can be scalars or vectors in isospace or color
space and/or configuration space. The case of
isovector-vector or SU2)& SU& is the usual static
model for pions interacting with nucleons, which
has been widely treated in the literature, ' and
which has recently received new attention in con-
nection with theories of the interaction of pions
with composite-quark nucleons. The SU3 case has
also been considered recently.

In this paper, a general treatment of the Hamil-
tonian is given in the one-meson sector, where the
one-meson sector is defined in terms of the Tomo-
naga intermediate-coupling approximation. A
particular form for the Tomonaga internal mode is
shown to have favorable properties. The effects of
the orthogonality of the mesonic scattering states
to the internal mode on the meson scattering ma-

trix are calculated.

With the separation of Eq. (2), H takes the form

H =H&+H&+Hr+H

Hg ——WA A —Vp (A+A ),
H i ——f co(k )a i(k ) a i(k )dk

= f ~l(p q)al(p) al(q)dpdq

Ht = —p f ui(k)az(k)dk

+A" f co(k)|p*(k)az(k)dk,

W= f co(k)
i
qr(k)

i
dk,

V= f g&*(k)u(k)dk

cot(p, q) = co(p)5(p —q)

—[co(p)+co(q) —W]y(p)q *(q) .

FORM OF THE INTERNAL MODE

(4)

SEPARATION OF AN INTERNAL MODE

The first step in treating H is to follow Tomona-

ga and separate a (k) into an internal part, with
normalized wave function y(k) and annihilation
operator A, and a residual part az(k):

a (k) =Ay(k)+aj (k) .

Usually the mode function y(k) is chosen' so as
to minimize an approximation to Eqg(W, V), the
lowest eigenvalue of Hz', this leads to the form

v(k)
~+.(k)

G =
[A, +co(k)]
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where the single free parameter A, is determined by
the minimization. Note that the form (5) is the
most general form for which (in the following G is
written for G~)

(CO+)g ~ Vg

[in fact,

ural

and for which, therefore, HI involves only the sin-

gle function u~(k), or, equivalently, Xq(k), where

X(k)=G 'u (k) =ro(k)q(k),

Xq(k) = [co(k)—W]q(k);

specifically, HI is given by

Hr =(A Gp). f I—x(k)az(k)dk .

Yukawa dependence on r, namely e "/r, is ob-
tained when u(k) is chosen to have the usual form.
Second, the lowest-order effects of virtual I me-
sons are minimized, since the expectation value of
the source current is zero by Eq. (13). Finally, the
unphysical values of A, determined by minimization
of Ezg(A, ) that were noted by Friedman, Lee, and
Christian are avoided. Numerical calculations
have shown that (a) the change in Eqs(A, ) between
A, =O and A, =A, ;„ is quite small, (b) A, ~O as the
variational subspace size is increased, and (c) the
single mode with A, =O gives a value of the
ground-state energy that is comparable in accuracy
with the value determined in a calculation using as
many as six distinct mode functions.

Thus, the first result: in the Tomonaga separa-
tion of Eq. (2), the function q&(k) should be chosen
to be

With the choice of y given by Eq. (5), it also fol-
lows that

(1O)

Let the ground state of Hz be denoted
~ gq &,

u(k)
Gro(k)

'

Gz f Iu«) I'dk
co (k)

(15)

H~ Ig~ &=&~g
I g~ & .

With this choice for the function q&(k), the Hamil-
tonian is

In the Tomonaga procedure,
~ gz & is the "no-

meson" approximation to the ground state of H;
the number of "mesons" is the number of Qz

operators acting in a state (minus the number of az
operators). The source current operator is A t —Gp.
With Hq given in Eqs. (4),

H =Hw+Hj +HI+Hi

Hg ——W[A .A Gp (A+At—)],
Hg = cog P, Q' Qg P 'Qg g dP dg,

Hr ——(A —Gp). f Xg(k)ag(k)dk,

(16)

[A,Hg ]= 8'A —Vp,

and it follows, using Eq (10), th. at

&g. IA' —Gp lg. &= G&g. I pig. &
JY

(12)

(13)

where roq(p, q) is the kinetic energy of the I me-

sons,

~i(p, q) = ~(p+(p —q)

—[ro(p)+~(q) —~q (p)q '(q),
The state

~ gz & also has static field or field expec-
tation value given by

V
&g lplg &q«&.

the function Xz and the constant 8' are given by

Xj(k)= [co(k)—$Vjq(k),

W=G-2
co(k)

and p(k) and G are given by Eqs. (15).

COMPLETE SPECIFICATION
OF THE INTERNAL MODE

The special choice A, =O for q(k) in Eq. (5) has
several advantages. First, the static field of Eq.
(14) has momentum dependence such that when it
is transformed to configuration space the correct

SOLVABILITY OF H
IN THE ONE-MESON SUBSPACE

The significant feature of the Hamiltonian of
Eqs. (16) [or also of the Hamiltonian of Eqs. (4)
with the more general choice (5) for y leading to
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Eq. (9)] is that the interaction depends only on the
single function Xj(k), and that, therefore, the sys-
tem can be solved explicitly within the one-meson
subspace M& consisting of eigenstates

I
a ) of Hz,

H„
I

a ) =E„,
I

a ), (19)

SYMMETRY AND COUPLING

As a preliminary to considering the details of
the solution in Ml&, some features of the classifica-
tion of the eigenstates of H according to their
transformation properties relative to the sym-
metries of H must be mentioned. In general, the
states

I
a ) of Eq. (19) are degenerate because H is

invariant under isospin rotations, color rotations,
space rotations, or their various combinations; the
state

I
a ) will be written

I
ap, ),

together with states of the form aq(p) I
a ). In the

remainder of this paper the solution will be exhi-
bited and compared with the case of a similar sys-
tem without an internal mode. The threshold
structure in M& and the vanishing of the source
current diagonal matrix elements of Eq. (13) can be
used in a simple model to show that scattering in

the channel with the quantum numbers of the
ground state can be expected to be quite small well

above the actual threshold for the scattering pro-
cess. This picture provides a qualitative under-

standing of the observed pion-nucleon phase shift
in the P» partial wave.

where (R ~A, ,Rqp
I

R v) are the appropriate coupling
coefficients determined by the symmetry group of
H. With the usual orthonormality properties for
the coupling coefficients, it follows that

.(Rap
I
R'Pq &. =5RR'5 Pw'5j(p q»

Rap
I
H

I
R'Pq

=5RR 5~+ [E„5(p,q)+~&(p, q)], (24)

„(aIH IR'pq)„

=5a'a( )5 Xg(q)„(a I tA —Gp, I p) )„
Since H and the identity operator are diagonal in R
and v, the parameters R and v need not be written
explicitly; the system to be solved is

(al p&=5,
(ap

I pq) =5 p5q(p, q),

(a IPq) =0,
&a IH

I
p& =E~ 5.p (25)

&ap IH I pq & =(E~.5i(p»q)+~i(p»q)]5. p,

(a IH
I Pq) =(Pq IH

I
a)*=Yg(q)C p,

c.,=(a
I

~~"—Gp,
I p&] .

For a given representation R, the coupled states are

I
a) for which R(a)=R and

I Pq) if Ro and
R (P) can be coupled to give R.

Ha I aP ) =+& I
aP' & ' (20)

where the irreducible representation to which

I
ap) belongs will be called R (a) with degeneracy

dz~ ] and p runs from 1 to dq( ]. The one-meson

states are

x(p) I p),
(21)

(ap I aux(p)au. (q) I
Pv' & =5xx 5» 5.@i(p,q),

COUPLED EQUATIONS

In the one-meson subspace, only states of the
form

ls&=XO la&+y J dqklp(q)
I pq& (26)

where 6z is the 6 function for I functions:

5J(p q) =5(p q) 0'(p)V'*(q)— — (22)

Because of the symmetry, it is useful to couple the
representation Ro, to which a j belongs, to R (a) to
obtain the one-meson states in the representation

R,

are considered. If
I
s ) is a bound state, the

parameter s can be taken to be its energy. For
scattering states, s is taken to be y,po" or y,po"',
where po is the incident or outgoing momentum
and

I y) is the eigenstate of Hz in the asymptotic
state; that is,

I
Rap &„=g(Ro7,R(a)p

I
Rv}ak(p)

I ap &

A,p

(23)

I
)',po" &

I )'po &

I

}'po"'& I)po&

(27)
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in the usual asymptotic sense. The energy of
~
y,po" ) or of

~ y,po"') is Ezr+co(po). Let A, be
the energy of the state

~

s ); then

H,
~

s ) = iL
~

s ) =A.(s)
~

s ),

where H& is the restriction of H to the one-meson
subispace; HI has the matrix elements of (21) with
all others being zero, while H has many other
nonzero matrix elements. The equations for 0 and
( then follow from Eqs. (25):

(A. —Eg )8 =gC p Jg~(qg'~p(q)dq,
P

[A, —E& —~(p)]gj (p)=X&(p) g Cp 8p q(p—) I ~(q)cp'(q)g& (q)dq,

(29)

where Ez~ is used for states n that belong to the
representation R of the scattering channel, while

Ez indicates that the state o. belongs to a repre-
sentation R' that couples to Ro to give the channel
representation R.

SOLUTION OF COMPARISON SYSTEM

Pap =, g apqpi( )= "' C'
A, —Eg~ —co p p

(31)

Equations (29) are similar to the set that arises
in an extended Lee model, namely, Eqs. (29)
without the condition that g is orthogonal to y(k):

(A, —Eq~}ri~=g C~p f x*(q)gp(q}dq,
P 00)

EA. ~(p»—}]0.(p) =x(p) y C pnp .

It is the comparison of the solutions of Eqs. (29)
with the solutions of Eqs. (30) that shows how the
orthogonality to q(k) acts. Since Eqs. (30) are
simpler to solve, their treatment is given first; it
follows the standard procedure for separable poten-
tials.

For the solution, it is first necessary to write the
solution of the second of Eqs. (30). Suppose first
that s is a bound state, so that k is real and below
any threshold Ez +m. Then g (p) is

D(A, ) =A, —Eg CI(A, )C— (35)

Equation (32} has nontrivial solutions only if A, is
such that

detD (A, }=0,
and the values of A, that satisfy Eq. (36) are the
bound-state energies. For such values of A,, the
vector r)p of (32) can be determined and (31) gives
the rest of the bound-state wave function.

If
~

s) is the scattering state
~ y,po) then the

solution for g has a 6-function part,

4(p) = ~., P(p —po}

x (p)
+~ E, ( )g aP)P~ (37)

where A, is Ezr+co(po)+i 0 if
~

s ) is an "in" state
and E„'&+co(p) i 0 if

~

—s ) is an "out" state. Sub-
stitution gtves

yD ~.p(z)C»x*(p, ),
P

g. '(p) = ~.,P(p po}—
x (p)(C"D '(A, lC) rx*(po)

+
Eg —co(p)—

(38)

In matrix notation, with Ez and I (A, ) diagonal ma-

trices,

so that the first of Eqs. (30) becomes

gD p(A. )gp ——0,
P

(32)

The orthonomality of the scattering and bound
states can be demonstrated in the usual way, ' and
the T matrix turns out to be

where the matrix D p(A. ) is given by

D p(A, )=(k—Eg )5 p
—gC „I„(A,)C„p (33)

T~~'p (C D '(&+I0——)C)~px (p)x*(q),

Eq +co(p) =Eqp+co(q) =A, ,
(39)

with I&, (A, ) given by

E„'„—co(p),— (34)

as would be expected from the form of g (p) in
Eq. (38).

In order to relate this to a phase shift, consider
the case that just one channel g is open, so that
I (A, ) is real (for A, real) unless a is g. Then
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D p(A, )=8 p(A, ) —C~gIg(A, )Cgp,

B~p(A, )=(A,—E )5 p
—g C „Iq(A,)C„p,

P@t

(40)
ki (p) = 5 r5(p —po)+xV(p)

Vp
Eg——co(p)

(46)

where 8(A, ) is Hermitian. Now D ' can be
worked out,

where the constants x and y must be determined so

that

D '
p

Ig

1 Ig(C—8 'C)gg

(41)

(&,g,.) =0=5.~*(po)+x+yJ.(~)

and the second of Eqs. (29) is satisfied, namely,

taking coefficients of cp and cocp, respectively,

(47)

and, therefore, in this case of one open channel

1/(C'8 1C)gg -Ig(A, +—l 0)
'

~=E~g+~(p) .

The discontinuity in Ig(A, ) is

Ig(k+i0) —I (A, —i0)= 2~i ~x(p)
~

~

dc'

(42)

(43)

(A, —Ew )x+y = —W(C 0)a —5m~(po)g&*(po)

—Wx+y —(A, Ez )J—(A, )y,

—x =(C 0)~,

where

J (A, )=I—, —dp.le(p) I'
A. —Ez —co(p)

(4&)

5(A, ) = —phase
1

(C 8 'C)gg
—Ig(A, +i 0)

so that the phase shift in the open channel is

(44)

Since A, is Ezr+co(po )+i 0, the solution of these

and of the first of Eqs. (29) is straightforward.

The matrix b, (A, ) that is the analog of D(A, ) of the

comparison system is given by

This is the many-channel generalization of the

we11-known one-channel formula

&(&)=2—E„—CK(A, )Ct, (50)

5(k)= —phase[A, —E„~—
~

C
~

Ig(k)]

= —phaseD(A, )

where the diagonal matrix K(A, ) that replaces I(A, )

is given by

that describes the scattering when C is 1 by 1 and

8 1s fust A, —Eg i.
E(X)=A, —Eg —W' —J '(&) (51)

SOLUTION OF ORIGINAL SYSTEM

In order to solve Eqs. (29) for the scattering

case, note that the solution of the second of these

equations has p dependence of the form

with J given by Eq. (49). Note that only y(p) ap-

pears, since xz(p) is related to p(p) by Eq. (18).

Now the bound-state energies are the solution of

detb, (iE) =0 .

The solutions to the scattering equations, analo-

gous to Eqs. (38), are

0 '= [b, '(A, )C] ~*(po),
g(p)[J 'C ~ 'CJ ' J']aym*(po)—

g, '(p) =5 P(p —po)+
Eg~ —co(p)—

(53)
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Again, orthonormality can be demonstrated. The
T matrix is

T~p p, [J——'C b, 'CJ ' J—']~pp(p)y¹(q),
(54)Ez +co(p) =E&~+co(q)=k,

where 6 and J are to be evaluated at A, +iO. For
the case of a single open channel,

5(A, ) = —phase[(CtBa 'C)~ +Js(A, +i 0}],
—],(Ba)~p=h p

—C sJ sCsp .

The T matrices of Eqs. (39) and (54) both satisfy
the unitarity constraint

TtT =TTt= (T Tt) . —
2m'

(56}

SIMPLE CHECKS

The first check of the one-meson-approximation
T matrix is to compare it to the T matrix for sys-
tems where the answer is known. Two such sys-
tems are (a) vanishing coupling and (b) scalar or
invariant field a (k), where H of Eq. (1) can be
solved by the well-known canonical transformation

a(k) =a (k)—U(k)

co(k)
(57)

In the set of equations (30), the only way to ap-
proach zero coupling is to let C~O. Then (42)
shows that T~O as it should. This does not hap-
pen in Eq. (54). For the set described by Eqs. (25)
and (29), note that X~(q) and p(q) do not depend

Hz and C ~. In fact, as G~O, Hq goes to
WA .A =Hz(0), with ground state

l
0) satisfying

& =Hq (0), with ground state
l
0) satisfying

&
l
0)=0 and excited states of the form

(& )"
l
0). The first scattering process couples

l
~I & and a&(p)

l
0 &, and from the definition of

C in Eqs. (25), it is clear that C =1. The matrix
&~ in Eq. (46} has the single entry W, while E~ in
Eq. (47) has the single entry 0. Thug,
&(A, ) =J '(}{)in this case and Eq. (54) shows that
T is zero, as it should be.

In the case that a (k) is a scalar field, so that Hz
1s Hgp

Hga 8'(3 A —G(A +——A)}

and a z(p) l
0 ). Again C is one and T vanishes as

above. In the lowest channel, the well-known re-
sult that there is no scattering by a static source of
scalar mesons is recovered. In higher channels, for
example, (A —G)

l
0) coupled to a j (A —G)

l
0),

the one-meson approximation is no longer exact; it
gives a nonvanishing T matrix.

SCATTERED AND UNSCATTERED PACKETS

For the case of Eqs. (30), with T matrix given

by Eq. (39), it is not surprising that wave packets
orthogonal to x (q) are not scattered. That is, let
the wave packet

l ya ) be defined by

I
y~&= Jy(q) I aq&&q ' (59)

then the off-shell T matrix for going from
l ya)

to another state is proportional to

(x,y)= Jx*(q)y(q)&q,

and if (x,y) =0, the state
l y,a) is not scattered.

This is a general feature of scattering processes in-

volving separable potentials or their equivalent me-
sonic interactions. On the other hand, the form of
Eqs. (25) or (29) seems to indicate scattering of }.
wave packets, but the solution (54) for the T ma-
trix shows that I wave packets are not scattered.

THRESHOLD BEHAVIOR

Now let the ground state of Hz belong to the
representation Rz of the symmetry group of H,
and let the various eigenstates of Hz belonging to
Rs be

l OR&),
l
1R&),

l
2R&), etc. where

l OR&) is
the ground state of Hq. Similarly Iet the represen-
tation of the first excited state of H~ not belonging
to Rs be R&, with states lOR&),

l
1R&), etc. For

example, for pions and a nucleon Rs is (T = —,,
S =—,even parity) or "N"' and R

~
is (T = —,,

S =-, , even parity) or "6".
A very simple picture for the system involves

neglecting all but the two eigenstates
l
ORs )—:

l g )
and

l
OR ~ ) =

l
h ) of Hq. Consider first the

scattering in states belonging to R &. In the one-
meson subspace M~, the coupled states are

= W((A —G)t(A —G) —G ),
the coupled states are again (A —G)t

l
0), where

the ground state
l
0) satisfies (A —G).

l
0) =0,

(58)
lgp&=[ai(p) lg&]

' (61)
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From Eqs. (25) and (13) with A, =O it is seen that

(It iH ibad) =0, (62)

6 AS SOURCE IN H

In treatments based on the quark model the
Hamiltonian is different from that of Eq. (1); there
are additional 6 terms, since the 6 is regarded as
an excited state of the quark-gluon system. In the

so that in this two-state approximation, the set of
states (61) breaks up into one unscattered state

~
hp ) and the coupled states

~

h ) and
~ gp ). The

states
~ gp ) have their threshold at Es+m, so that

the phase shift in the R ~ channel starts to be
nonzero at Eg+m. The separation of

~
hp ) sim-

plifies the problem but does not otherwise alter its
characteristics.

In the Rg states a similar splitting occurs. The
state

~ gp ) is unscattered and uncoupled from the
states ~g) and

~
hp). However, now the

~
hp)

threshold is at E&+m, and the phase shift starts to
be nonzero at E&+m. The physical threshold for
the phase shift is at Eg+m, which is well below

E~+m. The result is that in this first approxima-
tion, the phase shift remains zero above the physi-
cal threshold until the energy E&+m of the second
threshold is reached; at this latter energy the phase
shift exhibits normal threshold behavior. '

Of course, when higher-energy channels are cou-

pled, the previously uncoupled scattering states are
coupled to the system. However, the preceding ar-
guments show that this coupling goes through ex-

tra vertex factors C~p and higher-energy virtual
states; therefore, the Rg phase shift would be ex-

pected to be small in the interval between E +m
and E&+rn.

The ground channel of the nucleon-pion system
is the N channel and the corresponding phase shift
is the P~~ phase shift 6g. The phase shift 6g is in
fact quite small until an energy above the energy
Ej +I, where E& is the energy of the resonance in
the 6 channel. The above simple picture gives a
qualitative explanation of this behavior.

one-baryon sector 0 takes the form

H = I co(k)a (k) a(k)dk

—p I [v*(k)a(k)+v(k)a (k)]dk+e,

(63)

where e is a diagonal 20)&20 matrix that has zeros
in the N entries and E~ —Ez in the 6 entries, and

p is a 20&20 matrix whose leading 4&(4 part is
the p of Eq. (1) while the remainder describes Xhm.
and Ab, tr vertices. Since the form of H of Eq. (63)
is essentially the same as the form of H of Eq. (1),
all of the preceding discussion applies to it as well.
The only change is that Hz picks up the term e.
In particular, the effective elevation of the thres-
hold in the X channel is unchanged.

GENERAL REMARKS

The T matrices of Eqs. (39) and (54), with
corresponding elastic phase shifts of Eqs. (44) and
(55), differ significantly. The explicit forms given

may be useful in determining the existence of
characteristic features of the scattering that can
distinguish the presence of internal meson modes.

The important question of the range of validity
of the one-meson approximation has not been dis-
cussed; I have nothing to contribute in this area
beyond rather ordinary speculations.

SUMMARY

For general static models, the Hamiltonian has
been shown to take the form given by Eqs.
(15)—(18), when the preferred form for the internal
mode is used. In the one-meson sector the explicit
solution for the T matrix is given by Eq. (54). ln a
simple model that uses just two eigenstates of Hz,
the threshold for scattering in the ground-state
channel is raised above the physical threshold for
scattering in this channel.
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