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%e propose a version of the t Hooft-Weinberg renormalization-group equation which

is valid in general curved spacetimes. The key idea is to regard the Green's functions as
functions of the metric and to scale the metric rather than the coordinates or momenta.
We apply these equations to the infrared limit of the effective conformal coupling in kg
theory.

I. INTRODUCTION

Recently, there has been much interest in the re-
normalization properties of interacting quantum
field theories in curved spacetimes. ' ' Much of
this work has focused on developing techniques for
extracting the singular parts of Feynman integrals
in general curved spacetimes"' and applying them
to examine the renormalizability of field-theoretic
models such as tt field theory, tt field
theory, " ' and quantum electrodynamics.

In this paper we set up a formalism for studying
the asymptotic properties of coupling constants by
means of renormalization-group (RG) equations
which are valid in curved spacetime. Work along
these lines has already been undertaken by various
authors. "' However, the earlier work has been
concerned with the gravitational action" on con-
formally flat spacetimes. ' The RG equation we
use is based on the idea of regarding the Green's
functions as functions of the metric and scaling the
metric instead of scaling the coordinates or mo-
menta.

The methods we use closely correspond to the
approach of 't Hooft, ' Weinberg, ' and Macfar-
lane and Collins. ' Thus the RG equations we
derive involve an auxiliary scaling variable and are
homogeneous unlike the Callan-Symanzik equation.

We apply the RG equation to examine the long-
distance (low-energy) behavior of the effective cou-
pling constant governing the coupling of the quan-
tum field to the scalar curvature. Earlier work on
the renormalizability of P field theory in curved
spacetime showed that such a coupling must
necessarily arise through the process of renormali-
zation. This is a feature not seen in Aat spacetime
so it is interesting to examine the asymptotic form

of this coupling constant. Curiously, we find that
it tends to the value —, which (for a massless field)

would correspond to a conformally invariant field
theory. This result has been obtained earlier by
Gass' for conformally flat spacetimes. Our result
shows this to be valid in a general curved space-
times as well.

We expect the main applications of our work to
be to non-Abelian asymptotically free gauge
theories in curved spacetimes. Recently, these
theories have become popular as possible models to
explain the cosmological baryon asymmetry. Our
methods can be applied to these theories to estab-
lish that asymptotic freedom is not vitiated by
high curvature. Earlier work on QED has shown

that the renormalization constants are the same as
in flat spacetime and that gauge invariance prohi-
bits couplings of the fields to the curvature. Thus
the asymptotic behavior of the effective electric
charge is the same as in flat spacetime. For non-

Abelian gauge theories, however, the question
remains open.

II. RENORMALIZATION-GROUP
EQUATION IN CURVED SPACETIME

In this section we will derive a renormalization-
group equation valid in a general curved spacetime
and discuss the solutions of this equation. For
simplicity we consider a scalar field theory with a
quartic self-interaction together with a coupling to
the scalar curvature.

The renormalization-group equation has been
discussed in the flat-space limit by Fujikawa' and
in conformally flat spacetimes by Gass. ' In the
former case one obtains renormalization-group
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equations for the one-particle-irreducible (1PI}
Green's functions expressed in terms of the posi-
tion variables. In the later case one uses a confor-
mal transform to Aat spacetime. One can then
Fourier transform the Green's functions and obtain
an RG equation expressed in terms of the scaling
of the "momentum" variables.

We shall begin by considering the position-space
version of the 't Hooft-Weinberg RG equation
(rather than the Callan-Symanzik RG equation).
The derivation closely follows the discussion of
Collins and Macfarlane. ' The Lagrangian for the
theory we consider is

a„(A,,m, p, )
X,(n)=p'-" X+ g

(n —4)"

d, (A, , m, p, )4«}=(+g „=Zygo.
(n —4)"

The renormalized field P is related to Ps by

0a =Zt

(2.3)

(2.4)

(2.5)

L = —,V g [(B„gs)(B+s)g""

+(ms +gsR)gg + „Asks —] (2.1)

where

c„(l,m, p)
(1 —4)"

(2.6)

b„(A,,m, p)
ms(n)=m+ g =Zmm

(n —4)"
(2.2}

where g„„is the spacetime metric tensor and Ps is
the bare (unrenormalized) field and ms, gs, and A,~
stand for the bare mass, the bare conformal cou-
pling constant, and the bare self-interaction cou-

pling constant. The scalar curvature of the space-
time is denoted by R. The renormalized fields and
parameters will be denoted by unsubscripted vari-
ables.

We use dimensional regularization to render in-
finite quantities formally finite. The spacetime di-
mension is n and the singularities of Green s func-
tions will be displayed as poles at n =4. The re-
normalized Green's functions are obtained by mak-

ing the parameters m~ and A,~ depend on n and by
multiplying the Green's function by a suitable
power of the wave-function renormalization con-
stant. To keep A,z dimensionless in n dimensions
we must introduce a mass scale parameter p.

The bare parameters are related to the renormal-
ized parameters by'

The poles in Eqs. (2.2), (2.3), (2.4), and (2.6) are de-

fined to be precisely those needed to subtract the
poles in the corresponding Feynman integrals.

In the usual treatment of the RG equation" we
are concerned with the scaling behavior of a renor-
malized, amputated, and connected I-point Green's
function I'"(p&, . . . ,pi. l, ,m, p) as the external
momenta are scaled. In position space' we are in-
terested in the scaling behavior of the correspond-
ing I-point Green's function
I'"(x&, . . . , x';A, ,m, p) as the external points
x&, . . . , x' are brought close together. This can be
done by considering the Green's function for the
scaled arguments I' '(x&/a;. . . , xlhc;A, ,m, p).
This is meaningful because Minkowski space is a
vector space and expressions such as ( I/a)x 1 are
legitimate. In a general curve spacetime this can-
not be done.

Let I'„'(x|, . . . , x', A,s,ms, p) denote the un-

renormalized, n-dimensional, I-point Green's func-
tion calculated using Feynman perturbation theory
with the bare Lagrangian. Then the n-dimensional
renormalized Green's function is

I'"(x), . . . , xI,A(n), m(n), p, n)=Z' (As@",n)I'„,"(x), . . . , x', As(n), ms(n), n), (2.7)

where

(n) =A(As(, n)p" , )

and

(2.8a)

The physical renormalized Green's function at
n =4 is

I'"(x,, . . . , x, ;X,m, p, )= lim I'".
n —+4

(2.9)

m (n) =ms(n)Z '(As(n)p" ) . (2.8b)
We now differentiate (2.7) with respect to p, and

multiply by p to obtain
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BA, az '8
pa +pa ax+-" a a

P(A, ) —= limp ink(A&(n)p", n),
n~4 Bp

y (A, )= limp lnZ (A,~(n)p", n),a
n 4 Bp

(2.11a)

(2.11b)

y(A, ):—lim p lnZ(As(n)p", n ) .
n~4 Bp,

(2.11c)

Taking n ~4 in Eq. (2.10) and using (2.11) we

have

a a a
+p q„m— ——y r =o.

Qp Q Bm 2

(2.12)

To obtain an equation that gives the short-
distance behavior of these Green's functions we
must use a naive scaling equation to eliminate
8/Bp in favor of derivatives with respect to x.

The scaling equation can be obtained by the fol-
lowing simple considerations. Let the physical di-
mensions of I' ' be mass DI. Then since x has the
dimension mass ' we have

X1 Xi
I (l) . , —;k,cern, up

Q Q

=a 'r'"(x, , . . . , x, ;A, ,m,p), (2.13)

where a is a scaling variable. We now differentiate

(2.13) with respect to a and set a= 1 to get

ZI/2 —1 ~Z I (I)

()p

I I/2alnZ (I)

2 Bp
r

a l~ r'" (»0)
Bp

We now define the following quantities:

From Eqs. (2.12) and (2.14) we obtain

x(j)B( 1)p ( 1+7~ )mP. a

i=1 Bm

+p +D, ——) r'"=o. (2.1s)
ai, 2

This is the position-space RG equation valid in flat
spacetimes. The x"Bz term is the generator of di-
lations and thus (2.1S) shows the behavior of.
Green's functions under changes of the length
scale, This form cannot be used in curved space-
time because we cannot give meaning to an expres-
sion such as x"0&.

In conformally flat spacetimes we can use a con-
formal transformation to flat spacetime and derive
RG equations (in either position or momentum

space) for the conformally transformed Green's
functions. In a recent paper Gass' indicated how
this can be done. For a general curved spacetime,
however, the natural way to proceed is to examine
the change of the Green's functions as the metric
is scaled. Intuitively, this can be thought of as fol-
lows. One can imagine that the position argu-
ments of a Green's function to all lie in a Riemann
normal coordinate neighborhood. One wishes to
investigate the behavior of the Green's function as
the points are all brought close together. This can
be achieved by moving the points along the geo-
desics connecting them to the origin of the coordi-
nate system or alternatively by scaling the geodesic
distance function, i.e., the metric. For the pur-

poses of this paper we will examine metric rescal-

ings that are spacetime constants. A later paper
wi11 examine the effect of rescalings that are
spacetime-dependent functions. '

The derivation of the renormalization-group

equation (2.12) can be carried through almost un-

changed except that now we have nonzero curva-

ture so the gRP term in the Lagrangian cannot be

ignored. Therefore, we have a Green's function

that is also a function of the bare conformal cou-

pling constant j~(n). Thus Eq. (2.12) is modified

to read

{1)
p +p(~)

gp, gg Bm Bg 2

(2.16)

(I) B1—gx~(;)8(;) +m Di I = —p-
Bm Bp

(2.14)

where

a
y~=—lim p — lnz~ .

n~4 Bp
(2.17)
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The scaling equation, however, must be treated
differently. We fix the fiducial background metric
to be g p. We shall then consider a one-parameter
family of metrics s. g ii where ii is a (spacetime-
constant) scaling variable. The Green's function is
now a function of s' as well as of A, , g, and m and
is written 1 ' '(xi, . . . , xi', A, ,(,m, p, v). The quanti-
ty K has effectively the dimensions of mass so if
1 '" has dimensions mass DI we have

(I) gaPI' xi, . . . , xi, l, ,m, g,iu,
K

Xexp ——J y(A, (ir') )
l ",dK'

2 K
(2.21)

with

(I)= ~ 'r'"(xi, . . . , xi;k(~), m(~), p~),p, g p)

I'"(x i, . . . , xi, A, , g,am, ap, as ) ir(BA, /Bs. ) =P(A(ir)), A(1) =Xi, (2.22a)

=a 'r'"(xi, . . . , xi,'A, ,g, m, p, ir), (2.18) &(&m/Bir) = —[1+y ]m (s), m (1)=mit (2.22b)

The differential version of this scaling formula is ~(ag/a~)= —yg(&), Pi)=g, . (2.22c}

p +m +K —DI r =O.c} a a (I)

3p Bm BK
(2.19)

—a —m(1+y~) +pa a a
BK

m

—
gy& +L), ——

y r' '=0, (2.20)
Bg 2

This gives rise to the familiar RG equation

To calculate the scaling behavior of the parame-
ters A, , g, and m we need to know the functions P,
y, and y~. These can be obtained in terms of the
renormalization constants a„b„,and d, respec-
tively, defined in Eqs. (2.2}—(2 4). The constants
a, b„and d are defined to be precisely those
needed to cancel the poles appearing in Feynman
diagrams. The mass scale p occurs only in the
form p "A, so using the expansion

p "=1+(4—n)in@+ 0((4—n)~) (2.23)
where K is now interpreted as the metric scaling
variable rather than as the momentum scaling vari-
able.

Under changes in K the contravariant metric g
scales as K whereas the curvature tensors R p&~

and R p do not scale. The scalar curvature
R =—R ~g

~ will, however, scale as K . Thus as
K~ oo, the analog of the short-distance or high-
momentum limit, we have R ~ op, thus we are also
looking at the high-curvature limit.

This is an important point since there is much
interest in examining the mechanisms for baryon
generation in grand unified theories in the early
universe. ' These calculations are made on the as-
sumption that the theories one uses asymptotically
free at high energies, and hence, one can obtain re-

liable estimates from perturbative calculations.
There is, however, the possibility that the high cur-
vature of the early universe may result in effects
that vitiate asymptotic freedom. The existence of
an RG equation such as (2.20) strongly suggest
that metric scaling together with the associated
curvature scaling lead to RG equations similar to
the original RG equations, and hence, high curva-
ture would not necessarily spoil asymptotic free-
dom.

The solution of Eq. (2.20) is virtually identical to
the solution given by Weinberg' viz.

d
P(Aii)= 1 —kg ai

R
(2.24)

we see that the Feynman integrals will contain
powers of 1nlM. On the other hand, mz and gz
only occur as polynomials. Thus the pole terms
will contain only positive powers of mz and gii for
all n. However, we know that the a and d are
dimensionless and b„, mR, and p have mass di-
mension 1. Thus a„, b, and d, do not depend on

p, and a, and d do not depend on p, and a, and
d do not depend on mR.

The arguments of the preceding paragraph are
well known. ' The only new feature is that we
have applied them to the d„coefficients. The fact
that gii appears in the Lagrangian in almost the
same fashion as does mR allows us to assert that
the pole terms only contain polynomials in gii.
The fact that the d„are dimensionless in n dimen-
sions follows from the fact that R (the scalar cur-
vature) has mass dimension 2 for all n, and hence

g is dimensionless for all n; we do not need any
term such as (p " in our Lagrangian.

We are now in a position to express P, y, and

y~ in terms of the a„, b„, and d„. For P and y
the equations are derived by Collins and Macfar-
lane' and we merely quote the results:
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and

d(bi)
Vm

mR dAR
(2.25)

For y~ we proceed as follows. From Eq. (2.17) we
have

a
y~

——lim p lnZ~ .
n 4 Bp

Since g(n) does not depend on p we have

BZg M.g ~ d

Bp Bp „,(n —4)gii

(2.17)

(2.26)

where d „'—:(d/dA, „)(d„). It is well known that

IM(M, n h)p) can be expressed as

BAR
p =p(A,„)+AR(n —4) .

Bp
(2.27)

Since pB lnZ~/Bp appears in the RG equation for
a renormalized Green's function it must be an ana-
lytic function of n at n =4; hence, we can express
it as a power series

8 lnZg
p =Zo+Zj(n —4)+. . . ,

Bp
(2.28)

where the coefficients ZO, Z~ are unknown. Using
Eqs. (2.28) and (2.27) in Eq. (2.26), we have

Z~d&
Zo+Z, (n —4)+. . . + +

3 1nZg
=Zygo

BJM

(2.29)

Since the right-hand side does not contain any po-
sitive power of (n —4) we conclude that only Zo in
Eq. (2.28) is nonzero. Equating the constant terms
on each side we obtain

XRd]
Zp

den ' and by Birrell. Thus we can use their re-
suIts to obtain p, y, and y~ in a general curved
spacetime.

In the next section we will use these formulas to
obtain the infrared behavior of A, , g, and m in a
general curved spacetime.

III. SCALING BEHAVIOR FOR
THE CONFORMAL COUPLING CONSTANT

IN A,P THEORY

In this section we discuss the long-distance
behavior of the effective coupling constant A, (a.),
effective mass m (a.), and effective coupling to the
curvature g(a. ). The coefficients of the
renormalization-group equations are given by the
coefficients of the (n —4) ' singularities of the re-
normalization constants Z~, Z, and Z~. Because
of the structure of the p function, if A,R is suffi-
ciently small, A, (a.) will go to zero as ~ goes to zero
(the theory is infrared free). Studying the small-a.
behavior of m (a) and g(a) will thus be equivalent
to studying their small-k behavior. This fact lends
some credence to the study of the renormaliza-
tion-group equations in terms of perturbation
theory.

As in the flat-space case y depends only on A,

(not on m or g) so the equation for m (a) can be
easily integrated. We find that m (a)~ao as K~O
[unless mit ——0, in which case m (a) is zero for all
a]. The equation for g(a) is much more interest-
ing, however, since y depends on both A, and g.
Despite the apparent singular nature of the equa-
tion for g(a. ), we are able to extract the small-a.

dependence and show that as n~O, g(z) ap-
proaches —, regardless of gn [unless g~ ——0, in

which case g(z) =0 for all ir]. We are thus able to
show that if ms ——0, the a~O limit of the Green's
function is a scaling factor times the appropriate
Green's function of the conformally invariant
theory. This result holds regardless of what value

g~ takes (as long as it is not zero).
The scaling of A. with K is given by the equation

and thus

~R

4 d~z
(2.30)

The quantities a„, b, and d have been calculat-
ed to second order in A,~ for A,P field theory in a
general curved spacetime by Bunch and Pananga-

a =p(A)
dK

(2.22a)

K=e

with A,(a= 1)=An. The behavior of the solution of
this equation is a little easier to see if we introduce
another scaling parameter' t defined by
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Then ad/de =d ddt, and it= 1 corresponds to t =0,
and K~O corresponds to t~ 00. In this variable

can hope to extract with confidence from the first
few terms in the perturbation expansion of y
We have found that

=p(A, )
dt

(3.1) (2.25)

and A,(t =0)=A,~. We have seen that p is given by
the expression

(2.24)

where now bi is the coefficient of the (n —4)
singularity in the mass renormalization constant
Z . Again bl has been computed to second order
in A, tobe' '

3A2
p(&) =

16
(3.2)

where a i is the coefficient of the (n —4) ' singu-
larity in Z~. a I is computed in perturbation
theory ' ' to be —3A, /16m. . Thus, to second ord-
er in k,

5k
b, = — + +O(A, ),166 12(16&)

hence,

5A,
O(~3)

16m 6(16&)

The equation for m is then

(3 5)

(3.6)

As is expected, there are no )i, or A.
' terms in p.

Let us now assume that kR lies between zero and
the first positive zero of the p function, if one ex-
ists. Then the first (i.e., quadratic) term in the p
function determines the a~0 behavior of A.. Thus
consider integrating equation (2.22a) from it= 1 (or
t =0) to it=0 (or t = —co ). By assumption
p()i, ) & 0 in this range so that

K m (a)= —[1+y ]m (x)
d

dK

5A,
1 — +,+O()i,') m .

16 6(16 )

(3.7)
We can use the renormalization-group equation for
A, to write

dk, =P(A, )dt &0 .

d'= = 3'=P= +O()L, ) .
dt

(3.3)

Thus, as t~ —oo, A, moves from A,R down to the
IR fixed point A, =O. Thus, as K~O, the Green's
functions look like those of the free field theory.

Equation (2.22a) can be written

or

=p(A, )
d d

dK

dm(A, ) —1
1

A, 5A,

p(&) (1617') 6(1617')'

+O(A, ) m()I) .

(3 8)

(3.9)

This equation is easily integrated to give

16' hatt
(t)=,

1 —3A,R t
(3.4)

The p function is itself a power series in A,, begin-
ning with 3A, /16m . Thus

dm 16m A 8
3A, 3~ 18(16m )

16m A.ti
A, (tt) =

1-3xRlnK
' (3.4')

The renormalization-group equation for the ef-
fective mass is

rt =—[1+y ]m(x)
Brn (s.)

BK
(2.22b}

with m (a.= 1 }=mtt. Since small A, corresponds to
small a, it is the small-a. limit of m (a) that we

This gives the explicit K dependence of A, for small

m

mR

16' 1 1 A A,
+ —ln + O(A)

R R

(3.11)

(3.10)

(where A and 8 are constants, the values of which
depend on the coefficients of the A. and A, terms
of the 8 function) with m (A,tt )=ming. Now clearly
if ms ——0, then m (rt) =0 for all a. If, however,
ms+0, the equation for rn (s) is easily integrated
to give
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As K~O, A, ~O and 16m /3A. dominates the expres-
sion for ln(m /mR ). In the limit K—+0, m ~ ao.
Thus, in the long-distance limit, not only does the
effective coupling constant vanish, the effective
mass becomes infinite. It is the 1 term in the RG
equation (2.22b) for m that dominates the K~O
behavior of m. This term comes from the naive
scaling equation (2.19) for I and is present even in
a free field theory on a flat spacetime. The mean-

ing of the m~ 00 result is then clear: As the scale
of the momentum (K) is taken to zero, the mass
scales like ~ ' so that the two point function

group equation for g is

dg(A, )

di, P(A)
(3.13)

[(g——,)+~1(g)&

+A, ((Q,'+. . . ] . (3.14)

A1 wi11 depend on the coefficient of the A, terms
in p, but will nonetheless have the structure

Both y~ and p are power series in A,, y~ beginning
with A, and p with A, . Thus we can expand 1/p
and combine terms in like powers of A, to get

G(p') =
P —7?l ~1(k) ~10+~ ilk (3.15)

stays on the mass shell. In the case of the A,P
self-interacting field, we find that the anomalous

scaling of m (given by y ) is not sufficiently

strong to overcome the naive scaling of I as ~~0.
The same result is true in QED.

Finally, we come to the effective coupling to the

curvature, g(K). Again it is the small-K limit that
is accessible to us using perturbation theory. The
renormalization-group equation for g(K),

g(A. )=——1—1

6

1/18

where A1O and 311 are constants. The other A
terms will likewise be power series in g. It is clear
from the (g/3A, )(g——,} terms that as A, ~O g must

1

go to either 0 or —, in order to be well defined at
X=O. In fact, this first term is easily integrated to

give

K
d (K) (2.22c)

g d(dl)
) m (2.30)

Thus y is

(g——,)A, 5(g ——
30 )&

16 6(167T')'

(3.12)

(Although the first two terms are linear in g, it is
not known what g dependence the higher-order
terms have. } In terms of A, , the renormalization-

is more interesting than the ones for A, and m since

now y depends on g. As with p and y, yg can

be written in terms of the coefficient d1 of the

(n —4) ' singularity in Z~. dl can be computed

using perturbation theory ' ' and the first two

terms are

(gR ——,)&RgR 5(4 —
6

)~R'

167T2 6(2567T")

~R 4
36(2567T )

In terms of d1, y~ is

1 1+
kR

(3.16)

Thus to this order, g does indeed go to —, as K

(and hence A, ) goes to zero. Further, g can be writ-

ten as a power series in k' ' . Because of the
structure of the A 1 term in (3.14), we can again in-

tegrate the differential equation for g with this ad-

ditional A1A, term. Again, we find that regardless
of A,R, A, has the form of —, plus a power series in
g1/18

We point out that the factor —in the above ex-
6

pression for g comes from the —that appears in
1

6

the (g ——, )A, /167T term of y . As noted earlier,

y is calculated from the d1 coefficient for Z~ and
arose from an expression for the scalar propagator
in Riemann normal coordinates. As such, the fac-
tor —, is the same, regardless of the physical space-
time dimension. [Thus, although the K=O limits
of A, and g might suggest a conformally invariant
theory (for m =0) in the IR limit, the fact that we

get g(K =0)= —, for any spacetime dimension n in-

stead of the general conformally invariant coupling
constant g= 4 (n —2)/(n —1) means this is true

only for n =4.]
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IV. CONCLUSION

We have noted that for the AP theory in curved
spacetimes, the (infinite) renormalization constants

Z~ and Z~ are the same (to second order, at least)
as in the flat-spacetime case. Only the finite part
of the Green's functions are affected by the cou-

pling to the nonflat metric. Since the renormal-
ization-group equations for A, and m are deter-
mined by the (n —4) ' coefficients of Z~ and Z
these equations are the same as in flat spacetime.
The new feature that arises in the renormalization
of the AP theory in curved spacetimes is the
necessity of introducing counterterms proportional
to RP, even if no such terms were present in the
original Lagrangian. Thus, we were led to the in-

vestigation of the renormalization-group equation
for the new coupling constant g. The key result is

I
that at low energies (large distances), g= —,. This
curious fact does not come about from any as-

sumptions about conformal invariance but rather
from an asymptotic expression for the Feynman
propagator. This result has been already noted by
Gass' though our expression for the low-energy
behavior of g differs from his.

In the case of electrodynamics on a curved

spacetime, again the renormalization constants are
the same, at least for one-loop diagrams, as in Aat

spacetime. General arguments suggest that this
will be true to all orders. Thus, the renormal-

ization-group equations for e and m, will not be
affected by the presence of a curved background
metric. In the case of electrodynamics the further
requirement of gauge invariance leads to the result
that, unlike in the A,P theory, there are no new

divergences in the curved-spacetime case. Thus,

there are no new coupling constants to study.
We do not know if these results are true also for

non-Abelian gauge theories either without or with
symmetry breaking. At present we can only cau-
tion that each theory needs to be investigated care-
fully to ascertain, or rule out, the effects of curva-
ture on the renormalization-group equations for
the usual parameters and to know whether or not
new interaction terms are required by the curved-
space renormalization scheme. Recent results of
Gass and Dresden show that for a field theory
with a cubic self-interaction in six dimensions, the
presence of a curved background results in a non-
renormalizable theory.

Note added in proof. It is interesting to note
that if the coupling constant A, has a negative sign,
then our model theory (although unreasonable in
some respects) is asymptotically free, i.e., A,(x)~0
as a~ ao. Further, in the large-a limit, m (a)~0,
as one would hope; but, as in the positive-A, theory,
the coupling to the curvature g(a) again goes to its
conformally invariant value —,. Thus in the pres-
ence of (classical) gravity, an asymptotically free
model becomes asymptotically conformally invari-
ant rather than asymptotically minimally coupled
as one might naively expect.
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