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Ward identities in a general axial gauge. I. Yang-Mills theory
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Ward identities are derived in a general axial gauge by considering three distinct ex-
pressions for the gauge-breaking part of the Yang-Mills Lagrangian. The Ward identities
are verified by calculating the one-loop self-energies in the appropriate axial gauge. It is
shown, in particular, that one of the three gauge-breaking terms, namely
(2an ) '(n.A'}i) (n.A'), gives rise to a self-energy which is nontransverse.

'

The latter
gauge includes the planar gauge (a= —1). The effect of the general axial gauge on the
Yang-Mills counterterms is analyzed and the implications for quantum gravity are briefly
discussed.

I. INTRODUCTION

One of the important concepts in modern field
theory is the powerful notion of gauge invariance
which played such a crucial role in the formulation
of the Weinberg-Salam theory and which continues
to be an invaluable tool in many theoretical stu-
dies, including quark confinement and supergravi-
ty. The implication of gauge invariance of a cer-
tain Lagrangian may be expressed mathematically
in a variety of ways. In the context of functional
integrals, for example, discussions on gauge invari-
ance usually start from a generating functional
which has to remain unaltered under a gauge
transformation of the appropriate fields. This ob-
servation leads immediately to certain relations
among Green's functions, called Ward identities,
which express the gauge symmetry of the theory
and constitute a powerful tool in the renormaliza-
tion program.

Manifest gauge invariance demands ipso facto
the introduction of a gauge condition. The latter
imposes additional constraints on the field vari-
ables and ensures that propagators and other
Green's functions are well defined. There is, of
course, considerable freedom in the choice of gauge
condition: it may be linear, such as the Coulomb
gauge, or nonlinear; it may be covariant, like the
Feynman and Landau gauges, or even noncovariant
such as the axial gauge. However, regardless of
the type of gauge chosen, it is mandatory
(anomalies excepted) that the Green's functions of
the theory respect the corresponding Ward identi-
ties and, thereby, the gauge symmetry of the origi-
nal Lagrangian.

The purpose of this article is to demonstrate that

the general axial gauge constitutes a perfectly self-
consistent gauge. This conclusion holds not only'

for theories of the Yang-Mills type, but also for
quantum gravity which we discuss in the sequel to
this paper, henceforth referred to as paper II.

During the past few years the axial gauge has
been used in many calculations involving the
Yang-Mills Lagrangian, ' despite the fact that
the bare propagator in this gauge is substantially
more complicated than in a covariant gauge, such
as the Feynman gauge; The reason for this popu-
larity is the absence of fictitious particles which
lead to Green's functions that satisfy simple Ward
identities. We shall show, however, that this sim-
plicity of the Ward identities does not persist for
certain generalizations of the axial gauge. It is
worth pointing out here that, strictly speaking,
these generalizations are not ghost free, since the
fictitious particles do not decouple in the action.
However, as ghost loops vanish by dimensional
regularization, we can safely ignore them in the
framework of this calculation.

The motivation behind the present Yang-Mills
calculation was to help us understand a rather
surprising result, obtained recently in quantum
gravity: the nontransversality of the one-loop self-
energy in the axial gauge. Since we also obtained
similar results in the Yang-Mills case, we decided
for the benefit of those chiefly interested in appli-
cations to QCD to discuss the Yang-Mills compu-
tations in a separate paper.

The outline of the present paper is as follows.
In Sec. II, we introduce three specific axial gauges
and evaluate, with the help of the appropriate pro-
pagators, the various self-energies. We begin Sec.
III with a derivation of the crucial Ward identities
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and then show that these are, indeed, satisfied by
the respective self-energies. A complete list of in-

tegrals, including those required for the evaluation
of the Yang-Mills self-energy diagram, is given in
the Appendix of paper II.

II. THE GENERAL AXIAL GAUGE

In the axial gauge one imposes the condition

n„Aq ——0, n +0, (2.1}

FIG. 1. The one-loop self-energy in the axial gauge.
(In this diagram, and also in Fig. 2, all lines correspond
to Yang-Mills fields. )

where n„ is an arbitrary but constant vector, on
the Yang-Mills Lagrangian

(2.2) p.n

1 & . 1 1~I' = —, lim
p n '~-o p n+iq p n —ig

F&„is given by

Fpv=BpAv BP„'+g—c' 'ApAv ~

where c' denotes the appropriate group structure
constant and g the bare coupling constant. Condi-
tion (2.1) leads to the following bare propagator in
momentum space:

(2.3}

Ggb( )
5

~ pp v pv p
&b ( n+ n)

i (p +ie)(2~) " " p'n

ppp n

(p n)'
(2.4)

which exhibits unphysical singularities at p n =0.
The latter may be circumvented, in the associated
Feynman integrals, by means of the principal-value
prescription which consists of the replacements

and

1 1 1 1I' = —, lim
(p n) (p n) n 0 (p n+iri)

(2.5)

ll'„".(P») = , g'CvM—(p—iP. P'fi.}1-
c"dcb d=CYM

(2.7)

(2.8}

I, the divergent portion of the basic one-loop in-

tegral, is given by

+ , . (2.6)
1

(p n —iri)

Our aim is to examine, in a general axial gauge,
the infinite part of the one-loop self-energy di-

agram, shown in Fig. 1. This diagram has been
evaluated by several authors for the special case
a =0 and reads (in our notation)

I=divergent part of I 2 2q'(q —p)'

=pole part of
2 2 „i ( —m }"I(2—co)[l (co —1)]

(p ) 1"(2co—2)

2—le
N —2

(2.9)

(2.10)

Condition (2.1) belongs to a general class of axial gauges, all of which turn out to be ghost free. ' One
of these gauges, known as the planar gauge,

" has already been used extensively in @CD. The three axial
gauges considered in this paper may be generated by adding to the Lagrangian density a gauge-breaking
term of the type

n„A PnQ'„,
'

2'
where n is a numerical parameter and f can have the form

(2.11)
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(8) f=(n 3)'/(n')',

(C) f=d /n

each of thyrse cases ~educes to the famihar axial g~~ge (2.1) with ~ro~agator (

values of a, however, Eqs. (2.12)—(2.14) lead to bare propagators of the form

(A) G„' (p)=, , 5„„—(ppn„+p np) ppp„n appp„p

i (p +ie)(2m)". "
p n '(p n) (p n)

(2.13)

(2.14)

(2.15)

gab
(B) G„',(p)=, , 5„„—

i (p'+ i ~)(2n.)'"
(p„n„+p,n„) p~„n' ap„p„p'(n')'

+ 2 +p'n (p n)' (p.n)'
(2.16)

gab (ppn~+p„np) pljp~n (1+et)
(C) G„'„(p)=

i(p +i@)(2m) " p'n (p n)
(2.17)

The next task is to calculate for each of the above propagators, the corresponding expressions for the
one-loop self-energy which one would expect to be proportional to either one or both of the following trans-
verse tensors:

2
~pv=PpPv P &pv r

(p —np~ pn„—)(p np„pn„—) .

(2.18a)

(2.18b)

Computation of the divergent part of the self-energy for the three cases is more challenging than for the
a=0 gauge. Since the former is the prototype of the formidable graviton calculations in paper II, we shall
outline the overall strategy in some detail. The Yang-Mills vertex is the same in all three instances and is
given by

Vp~vA(pl~p2~p3) (2~) gc ~pv(p2 p14+~vx(p3 p2)p+8jlp(pl p3)v

Although it is possible to do the calculations by
hand, it is certainly faster and more reliable to use
an algebraic computer program. We used
Veltman's SCHOONSCHIP program. The calcula-
tiou was carried out in the following stages. (i)
The number of Feynman integrals required is re-
duced considerably by working entirely with in-

tegrands which only involve scalars. With this in
mind, it is more expedient to evaluate the four
scalar amplitudes II&„,pzp„II„'„,p„n„II„'„,and

n&n„II& rather than Il&„directly. It is also advis-

able, in order to minimize the number of different

terms, to keep the number of Lorentz indices to a
minimum. Working out n„n II„'"„,for example, we

find it easier to start with n& V&' p and then to
multiply the resulting expression by the propaga-
tors aud the remaining vertex (of the form

n„V„~p ), one at a time. These techniques are of
crucial importance in paper II: without them, even

a large computer is unable to multiply together the
complete axial-gauge graviton propagators and ver-
tices. (ii) The integrals may be simplified with the
help of the identity

1 1

q n(q p) n —p.n (q —p)n qn

Y(i)= —, i =integer .
d q(q n)'

q'(p —q)'
(2.19b)

Applying the procedure outlined above, we ob-
tain the following results for the infinite corn-
ponents of the various self-energies:

which reduces the maximum number of factors in
the denominators of the integrands from four to
three (see Ref. 3). (iii) Finally, we exploit the free-
dom in dimensional regularization' which permits
us to carry out momentum shifts, such as

q&
—+ —q&+p&, in the integration variable. Conse-

quently we arrive at a certain set of integrals
which are evaluated in the Appendix of paper II.
Apart from massless tadpole integrals, which are
zero anyway, the nonzero integrals are of the form

d 2'
( 2)l

X(i,j)=I . , i,j =integers,
(p q) (q n)J— .

(2.19a)
and
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(B) II„' (p)= , C——5'bg'P„„I,
3n " 3(n )z

(2.20)

(2.21)

(C) II& (p)=CyM5 "g , P—z—, 2aP—&, z—[2p n„n„p—n (p&n, +p„n&)] I
n

(2.22)

It is clear that all three expressions (2.20) to (2.22)
reduce, for a —+0, to the basic self-energy (2.7).

We now consider Eqs. (2.20) to (2.22) in more
detail. The structure of II„' in case A is essential-

ly what one would expect. Since the a-dependent
term in Eq. (2.15) is of order 0 (1) in p, rather
than O(1/p ), we anticipate, from power-counting
arguments, that both N&„and P&„will appear in
the infinite part of the self-energy. Accordingly,
the counterterm in this gauge will be n& dependent
as well as a dependent. We, therefore, conclude
that this particular generalization of the axial

gauge is not likely to be very convenient. The
answer for case B is also reasonable: since the pro-
pagator (2.16) goes like 1/p, power counting im-

plies a contribution to P& only. It is reassuring
that the counterterm is a independent and indepen-
dent of the noncovariant vector n&.

By contrast, the expression for II„'„in Eq. (2.22)
looks almost embarrassing: not only does it
depend on nz and a, but it is also not transverse.
One's immediate reaction to this result might well

be to suspect either a computational error or a
breakdown in the principal-value prescription.
However, repeated checks on the calculations only

III. O'ARD IDENTITIES FOR
THE GENERAL AXIAL GAUGE

It was suggested in the previous section that the
structure of the self-energy in the general axial

gauge could be explained by a careful analysis of
the Ward identities. We shall now derive these
identities. The gauge transformation

5A' =8 A'+gc' 'A A'
P P P (3 1)

on the generating functional for Green's functions,

confirm the correctness of this expression. We
shall prove in the next section that this unorthodox
result, as well as the other expressions in Eqs.
(2.20) and (2.21), follow quite naturally from a
careful derivation of the Ward identities. ' Suffice
it to say here that the choice a= —1 in case C [see
Eqs. (2.17) and (2.22)], leads to the planar gauge
used frequently in QCD. Unfortunately, as men-

tioned in Ref. 15, the one-loop counterterm in this

gauge is both n& dependent and nontransverse. We
shall return to this point in the conclusion.

Z[j&]=fd[A']exp i f dz[ —, (F& ) + n.A—'fn A'+j„'A&]
2Q

(3.2)

gives

f d [A'„][ 5'd&+gc' 'A&—(x)][a 'n&fn A'(x)+j„'(x)].
r

&«xp ~ f dz[ , (F„'.)'+(2a) '—n —A'fn A'+J„'A-„'] =0. ( .3)

As is weil known, functional differentiation of Eq. (3.3) with respect to the external current j'„(y) yields the
required Ward identities. It is usually convenient to consider, instead of Z[j„'] in Eq. (3.2), the generating
functional for proper vertices. In our case it turns out that the results of the previous section can be readily
understood in te~s of the generating functional for Green s functions. Thus, operating with 5/5j p(y) on

Eq (3.3) and .then setting jr=0, we obtain the identity
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f d [A'„][—ia 'A p(y)n. Bfn.A'(x)+iga 'c'b'A p(y)n. Ab(x)fn A'(x)

—5"Bp5(x —y)+gc' 'A p(x)5(x —y)]

&&exp i Jdz[ ——,(F„'„) +(2a) 'n A'fn. A'] =0. (3.4)

The fourth term in Eq. (3.4) can be discarded, since it corresponds to a massless tadpole which vanishes in

the context of dimensional regularization. ' Accordingly, we get the Ward identity

——(T[Ap(y)n. Bfn.A'(x)])+ gc' '—(T[A p(y)n A (x)fn A'(x)]) —5"t)p5(x —y)=0,a a
(3.5)

or, in momentum space,

fnt, D~'p(p»)+ gc"'~—p" (p»)a a

the Ward identity (3.6). Multiplying Eq. (3.6) by
the bare inverse propagator (G„',)

' and consider-

ing only the one-loop contributions, we arrive at
the identity

gee
+ 2„pp=0t (3.6)2' 2" (2m)

ppll~j&(p) = gc' 'FIr '(p); (3.15)

where

(A) f= —1, or

(B) f= —(p n) l(n ), or

(C) f= —p ln

(3.7)

(3.8)

(3.9)
~p'(p) =GIr(p)FIr" (p) . (3.16)

F&
' is the amputated one-loop contribution to

Wlr '(p), shown in the "pincer" diagram of Fig. 2,
namely,

a6"
(A) n~Gq~(p) = pp,

(2m) "ip n. (3.12)

and

( T[A q(y)A „(x)])
=I d~pe't"" "'D„'„(p), (3.10)

nz( T [A p(y)n. A (x)fn.A'(x)] )

= Jd "pe""-"'~p"(p) . (3.11)

Since the second term in Eq. (3.5) does not contri-
bute to lowest order (no loops), DP&(p) reduces to
the bare propagator Ggp(p); hence we find, from
Eqs. (2.15) to (2.17), that

Concerning the derivation of Eq. (3.15) from Eq.
(3.6), the following two points should be stressed.
First, contracting a Green's function with n„ is, to
within a factor, equivalent to contracting a
momentum pz with the proper vertex correction.
Secondly, the explicit appearance of a ' in Eq.
(3.6) is rather misleading, since

(T[A p(y)n A (x)fn.A'(x)])

is itself proportional to a . This implies that the
term a 'igc' Wp'(p) is at least of order O(a); on
the other hand, since n~D~p(p) is of order O(a),
the first term in Eq. (3.6) is O(1). Accordingly,
replacement of the two explicit a's in (3.6) by a=0
does not yield Ward identities of order O(1) in a.

a5"(n )(B) n~GPp(p»)=, „. ,pp,(2') "i (p.n)' (3.13)

(3.14)
ce+ 2

«) n~GPp(p)=
(27r) ip pn.

It is easy to check that all three n~G~'p terms satis-
fy Eq. (3.6) to lowest order.

Let us next examine the one-loop contribution to
FIG. 2. The "pincer" diagram for the one-loop con-

- tribution to I'~~(p).
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It is clear from Eq. (3.15) that the self-energy

II/, will be transverse only in the event that F~z

vanishes identically. So the obvious question is,
what does F&

' really look like? To answer this
question we note first that F+~' depends implicitly
on the operators f appearing in the gauge-breaking
term (2.11). To obtain Ffr ', therefore, we must
analyze separately the effect of the three j's in

Eqs. (2.12) to (2.14).
Case A. f= —1. Ffr ' vanishes identically on

account of the antisymmetric nature of the struc-
ture constants c' '. Consequently, the self-energy
in Eq. (2.20) is transverse.

Case 8. f=(n 8) /(n ) Ffr.
' vanishes again,

but for a different reason. This time the associated
integrals are zero by dimensional regularization
(they reduce to tadpole integrals). Hence the self-

energy is transverse, as seen from Eq. (2.21).
Case C. f=8 /n . An explicit computation re-

veals that the infinite portion of F+~' is given by

Ffbg( )
2ig/c c" 'p p n p n

(2m. ) (co —2) p2

(3.17)

so that the self-energy II„', in (2.22) will not be
transverse for general a, despite the fact that Eqs.
(2.22) and (3.17) satisfy the identity (3.15).

It is interesting to ask what happens to II„' in
case C when a—+0. Remembering that F&

' in Eq.
(3.17) is actually proportional to a, rather than a,
we observe that the right-hand side of Eq. (3.15) is
linear in a and is bound to vanish as a—+0. This
line of reasoning explains why H„', in case C
reduces, for a=0, to the usual form for the self-
energy, Eq. (2.7). We shall see in paper II that the
situation is surprisingly different in quantum grav-
ity, where nontransversality of the graviton self-
energy occurs even for +=0.

IV. CONCLUSION

We have examined the Ward identities in a gen-
eral axial gauge by considering three distinct ex-
pressions for the gauge-breaking part of a Yang-
Mills Lagrangian. These gauge-breaking terms
(2a) 'n A'fn A' are characterized by a differen-
tial operator f which determines, to a large degree,
the structure of the self-energy in terms of the
gauge parameter a and the noncovariant vector n&.
Naturally, the properties of the individual self-
energies manifest themselves in the appropriate

counterterms. These counterterms display, in their
respective gauges, the following characteristics.

(A) For f= —1, the theory leads —apart from
the usual term (F„',) t—o n„-dependent counter-
terms which involve fourth-order derivatives' such
as (B~„F„'„}. Except for the choice a=0, this

gauge does not appear to be particularly useful.
(B) For f=(n 8) /(n ) the counterterm is in-

dependent of a as well as nz and proportional to
the usual (F&„) expression.

(C) For f=8 /n, the counterterm is a function
of a and n„. Since the infinite part of the self-

energy is nontransverse, the counterterms must
contain derivatives other than those occurring in
the covariant curl Fz„.

The choice a= —1 in case C identifies the
p/anar gauge. "Owing to the relative simplicity of
its bare propagator,

gab
G„' (p)=

i(p +ie}(2~)"

(ppn„+p~n~ )
X 6„—

P '7l

this gauge has received considerable attention; yet,
previous authors do not seem to have realized that
the planar gauge leads to complicated n&-
dependent counterterms. ' The consequence of this
result is significant, since it implies that the Yang-
Mills theory is not multiplicatively renormalizable
in the planar gauge. Our interest in case C,
f=8 /n, is essentially pedagogical, since it mim-
ics an analogous situation in quantum gravity.
The gravitational case is, of course, much more
challenging, and will be treated in paper II.

Although we have not calculated some of the
more complicated diagrams, for example vertex
corrections, we anticipate that the conclusions
reached in this paper will also apply to these. Fi-
nally, we reiterate that the above computations
confirm that the principal-value prescription (2.5)
to (2.6) is powerful enough to cope with the more
potent singularities of the general axial-gauge pro-

pagators.
Note added. After completion of this

manuscript, Professor J. C. Taylor informed us of
related work by Andrasi and Taylor' and Fadin
and Milstein.
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