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Asymptotic analysis of the monopole structure
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We analyze the behavior of the magnetic-monopole equations as a function of the ratio of Higgs-scalar-to-vector-
meson mass MH/M~. For very small MH/M~, we find that the mass of the monopole deviates from the Prasad-
Sommerfield limit M~/a by MH/2a, independently of the particular details of the symmetry-breaking potential: In
the opposite limit MH/M~~oo, the scalar field contributes negligibly to the mass, which is found to be
(M~/a)(1. 787 —2.228 M~/MH + ).

Gauge theories with scalar fields admit classi-
cal solutions whose energy is finite and localized
in a small region. Magnetic monopoles are such
configurations of vector and scalar fields, ' which
are stably intertwined as a result of their nontri-
vial topology. ' There exist numerous general an-
alyses of the symmetry-breaking patterns, the
representations of and Ansatze for the fields, the
conditions imposed on the Higgs potentials, and
the topology on which monopole configurations are
predicated, notably within the context of grand
unified theories. '

The size, the mass, and most of the features of
monopoles are usually abstracted from the com-
plicated nonlinear equations that describe the pro-
totype system of this kind, namely an SO(3) gauge
theory with the Higgs scalar in the adjoint repre-
sentation. ' An analytic solution is available in a
special limit, 4 as well as useful numerical work .

for various values of the arbitrary ratio of Higgs-
scalar-to-vector-meson mass. '

Nonetheless, the essential features of these so-
lutions are obtainable immediately through asymp-
totic analysis, which is simple, powerful, and
provides physical intuition on the structure of the
configuration considered. Below, we illustrate
the use of asymptotic. techniques in the two ex-
treme limits of the free parameter q

—=M„/M~.
For q -0, we find that the monopole mass exceeds
the lower bound M~/n of the Prasad-Sommerfield
solution by (M~/c. )&/2=M„/2n. To O(q), the cor-
rection is due only to the scalar field, but it does
not depend on the particular form of the Higgs po-
tential. As q increases, the spatial extent of the
energy concentration of the monopole decreases
and its mass increases, while their scale is al-
ways set by M ~. For & —~, we show that the con-
tribution of the scalar field to the monopole mass
vanishes as the upper bound 1.787 M ~/n is
reached, in agreement with an estimate of Bogo-
mol'nyi and Marinov', the first correction to this
limit, found to be 2.228 M~'/M„a, is also due to
the Higgs field only. We comment briefly- on the
physical interpretation of these results, and sug-

gest applications of these methods to more general
monopole systems.

We restrict our discussion to the SO(3) Georgi-
Glashow model with Lagrangian density

1 Ga Gau, v 1 (~ y)a(~gy)a

where the Higgs field is in the adjoint representa-
tion. Since the scalar has a vacuum expectation
value (P~)=m~/X, the symmetry is broken down to
O(2), and two components of the vector field de-
velop a mass

(2)

A' —0 A' — ""
(4)er ' ' ' ' ' ez

H(r) and K(r) are dimensionless radial functions
which extremize the action, or, equivalently,
since the system is presumed to be static, min-
imize the energy (mass) of the monopole

4n " ~, (K' —1)' H2K' (rH' —H)2
d~ ~'+
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It is convenient to define the dimensionless ratio

MH +A,

Mw e (6)

and to rescale the radial coordinate by M ~, so that
distance is expressed in units of 1/M~. Then the

while the mass of the Higgs field is

MH —OZ ~

The monopole we discuss is a static, spherically
symmetric solution specified by the "hedgehog"
A.nsatz'
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mass of the monopole is given by the minimum of ~ I I } I I I I } I I I I } I ~ I I } I I I I } I I I I }
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The boundary conditions imposed by the finite-
mass requirement and topological stability" are 0

~yy~ . -r-:N'+r~m~ ~aaa
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H(r) 1 as r -~

0 as ~-0,
0 as z-~

K(I )
1 as r-0 ~

The equations of motion are

(8)

FIG. 1. The radial variation of the vector and scalar
fields. For & =0, E is represented by a dotted line and
H/r by a dashed line. For c ~, E is represented by
a solid line and H!x by a dash-dot line depicting a step
function.

K(KI —1} H'{I
'Y t)' (9a}

H"=2 2 +—H 2
—1

For a general q, the two-scale problem (8), (9) is
not easy to solve. However, when the mass of the
Higgs field is switched off (e = 0), an analytic solu-
tion may be found, 4 which we proceed to review.
Equation (7) may be recast as follows':

KH'1 H (1 K') '
C(q) =

li dI K'+ +—H' ———
0 'v 2 „x 'Y

+8, --. + ..(., -{)
I

{10{

By the boundary conditions (8), the surface term
is equal to 1. In the limit g-0, it is possible to
nullify the first two positive-definite terms of the
integral by satisfying the two first-order equa-
tions

KH, H+1 -E2

the integrand of (7)—for q =0 are plotted in Figs.
1 and 2. Although the energy density displays a
long-range (1/I') component as a result of the
massless scalar and the em fields, it is dominated

by a region of size 1 (characteristic of 1/M ~), and

the mass of the monopole has its scale set by M ~.
Even as q -~, we see below that this fact is not
modified: the mass and the size of the monopole
are determined by the mass of the vector boson,
light or heavy.

Asymptotic analysis easily provides the first
correction to the Prasad-Sommerfield mass, for

I I I I ) I I I I } I I I I
i

I I I f } I I I I } I I I I
} I I I

I.O
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[which, of course, reproduce (9) with e=Oj. The
following solution of Prasad and Sommerfield4
satisfies all boundary conditions (8}:

H 1K= . , —=cothy --.
sinhy'' y

From the form of (10}, it is apparent that this
limit bounds the monopole mass from below:

C(0) = 1 C(g) .
The functions K, H/r, and the energy density 8—

~'~I~ I~ ~IIyI
I I I t I~ +OSgiIIggggg~0 I I I I I I I I I I I I I I I I I I I I I ~ ~ ~ ~ ~ ~ ~
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FIG. 2. The radial variation of the energy density $
of the monopole in the e =0 limit (dotted line) and the
g -~ limit (solid line). Both cases involve a long-range
(1/y ) component. The integrals under the entire curves
are 1 and 1.787, respectively.
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sufficiently small p. Taking the boundary con-
ditions (8) into account and studying the dominant
balance' of each term in Eqs. (9}, we readily de-
termine the regions where q contributes to the
solutions.

For large r, the scalar field is best split into
its vacuum expectation value and the (small) de-
viation from it

~2~ 26K

H

Its equation of motion (9b) then becomes

(14) ( — ) 'j, o(.)2 (( qR )
=1+-'+o(&') .

2
(2o)

( g)K2 ~2 Pg
2

+—(r-h) 1
f']

h~Z', I' h& & h }=-2 1-- +q2h 1-- 1-—
x] r ( r&( 2ri' (15)

For x»1, the second term on the right-hand side
(rhs} may not be regarded as a "small perturba-
tion, " since it, in fact, dominates:

Hence, to lowest order in q, the correction to the
monopole mass is a long-distance effect due to
the Higgs field. The lower limit of integration A

may be taken to be large, since at shorter dis-
tances the perturbation term in (15) is not domin-
ant and regular perturbation theory yields a cor-
rection of 0((."); note, for instance, that the de-
pendence on R in (20) only enters in 0(&').

We conclude that the mass of the monopole is

Qfl ~ ~2/

Using the boundary condition, it follows that
~M~c(c}= I~+ +o(c'})
4r
&2 W (21)

6 t'

h-c e '" —-1-c1 y 1 (17)

K"-K K-c e"t 2 (18)

which decays exponentially on the shorter scale of
1/M ~ and does not contribute to (15).

For &x sufficiently small, we may determine the
constant c, by asymptotic matching', in the region
1 «R «1/q, both (17}and the Prasad-Sommerfield
solution (12) are simultaneously valid:

consistent with dropping the subdominant terms in
(15).

As expected, the scalar field exhibits the Yukawa
long-distance behavior controlled by M „(qr rep-
resents distance in units of 1/Ms), in contrast to
(12). Note that if one had attempted to solve (15)
by perturbation theory, each term in the perturba-
tion expansion would be secular, i.e., it would
grow uncontrollably with r in the asymptotic re-
gion» 1/a, as evoked by (17). Given (17), in the
equation for the vector field (9a} the dominant bal-
ance yields

in the limit q -0. In order for the matching pro-
cedure (19) to be valid to - 1%, R & 2.5. Even the
smallest q = (0.1)'+ considered in the numerical
analyses' corresponds to e '"'" - e~'- 0.45,
which is too different fr'om 1 to furnish a reason-
ably accurate estimate. For a 1% error in match-
ing, q must be s ln1.01/arc coth1.01-4 x 10 '.

Observe that the above correction is a broader
result, since it does not depend crucially on the
particular form of the symmetry-breaking Higgs
potential. Any potential normalized to 0 at its ab-
solute minimum which involves a bilinear in the
deviation from the vacuum expectation value for
the scalar

g2 Q2
v(a) =——+ o(h')

2 r2 (22)

will be subject to the above analysis. For instance,
a logarithmic potential of the Coleman-Weinberg
type

1
'

c ~eR-- cothR ——-1 —', hence cy 1,
(19)

(23)

K-O.

We are then able to integrate the contribution of
these asymptotic forms to (10), past 1/q and up to
infinity, thereby obtaining C(q} to O(q) (Ref. 8):

supports a monopole solution with the above mass
for sufficiently small t..'

As q increases, the mass of the monopole in-
creases monotonically, since



1002 THOMAS %. KIRKMAN AND COSMAS K. ZACHOS
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where the equations of motion have been used, as
well as the fact that, by (8), the functions H and
E cannot vary with q on the boundary. Since the
rhs of (24) is positive definite, C(q) is a nonde-
creasing function of q. One may reproduce the
correction (20) by evaluating (24) to zero order in

q, which leaves only the long-distance contribu-
tion to the integral. Around q =0,

K2-1&2
C(~)= I dr K"+ —

' +K'
0 2 2r

The equations of motion for E,

K"=K~1+;K(0}=1, K( )=0,
I' K'

(28)

(29)

a distance of order 1/q —the precise behavior is
computed later. As a consequence, the last three
terms in the integral (V) are at most O(1/e) and
may be ignored in the limit & -~. Consequently,
to O(q'), the Higgs field is pegged to its vacuum
value 1 at the minimum of the potential and de-
couples from the problem —the vector field does
not "see" the Higgs spike at the origin. The mass
of the monopole is then given by the minimum of
the one-dependent-variable, one-scale problem

d OO 26r 2—C(q}= dr q e '" 1 — + O(q)2r

1
dhe "+O(g)= —,'+O(&).

2 ~26m
(25)

For higher values of q, numerical solutions'
indicate that the scalar field rises with r to a level
close to its vacuum value within a region of size- 1/q, while the vector field varies significantly
less on this scale. Moreover, C(q) varies very
slowly with q. %e thus proceed to the asymptotics
in the limit q -~ (i.e., M„»M~) which bring out
these features strikingly, and provide the upper
bound for C(q). For sufficiently large r (q~» 1
automatically}

Ef™K,hence K-c,e" (26)

2C 2e~r 8 2C 2e-2r
i.e., —- 1—

&r (2V)

Asymptotically, both scalar and vector fields are
controlled by the smaller mass M ~.

Remarkably, by the same reasoning, this be-
havior (h"-0, h-2K'/q'z) is valid for small ~ as
well, down to r O(1 q/). -Because of this small-
ness of the overall coefficient of h, the contribu-
tions of the Higgs field to the monopole mass of
the last two terms in (V) are negligible in the re-
gion r» 1/&: they are suppressed by 1/e' and
1/z', respectively. The contribution of the third
term is likewise K'+O(q ).

Even at distances of order 1/& and below, very
little energy resides in the scalar field. Spec-
ifically, H/x must rise from 0 at r = 0 to 1 within

as before. However, the dominant balance analysis
of Eq. (15}is now different, because h - e '" makes
the second term on the rhs of Eq. (15) subdomin-
ant, while e~"/~ does the same to the first term.
The only self-consistent analysis results in h"-0,
whence

C(,)=C( )+- C(&)
1 d
edl e

+o(e )

1:f'" r2q H2=C(-)-- II «, -1 +o(. ')

1 p2 ~2 2
=C( )-- dp—,-1 +O(~ ). (»)

0 4

Since the natural scale of the Higgs field is p
—=er, we

have rescaled the radial coordinate, which is now
measured in units of 1/M „. To preserve the vac-
uum value 1, we also rescale H=qH. The Higgs
equation of motion now reads

~e 2 &p

H—-0
p

for p=0, (32)

H
for p=~ .

p p

The "potential" K' in Eq. (32) may be set equal
to 1, since X does-not vary appreciably over the
scale under consideration, for sufficiently large

may be solved numerically. The solution E and the
energy density h are plotted in Figs. 1 and 2. [At
g-0, K-1+r'(-'lnr+0. 342+ ~ ~ ~ ); and at r-~,
K-e "2.275(1-1/2r+ ~ ~ ~ ).] The integral in (28)
is then evaluated to yield the upper bound to the
monopole mass

C(~) = 1.V8V

to an accuracy of 10 ', in good agreement with the
number quoted in the first of Refs. 5.'

As in the small-q limit, the first correction to
this value of order 1/& is given by the Higgs field
through Eq. (24}:
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p' &' l' 1 —, &~' (
+ —H'- —I+I, —1 =O.

8 p j 2 p j (p'
(34)

Through this expression, C is readily identifiable
with the coefficient of I/q in (31).

This correction is evaluated directly to yield

~ I I a ~ a I ~ ~ ~ a I ~ ~ ~ ~

-0 I 2 3 4 5 6 7 8 9 10

P
C(g) = I.V8 t —2.228-+ O(e ~}1

(35}

FIG. 3. The radial variation of the Higgs field 8/p
for very large & plotted on the scale characteristic of
the Higgs mass: p=&y. In the q ~ limit this curve is
identified with the dash-dot line of Fig. 1.

e. Equation (32) is solved numerically for H(p),
which is plotted in Fig. 3 (for p-0, H/p 0.358p;
for p-~, H/p-1 2/r' 6/~'+ ~ . ~ ).

One may observe that, upon setting %= 1, (32)
reduces to the description of an isolated static
Higgs system in three space-time dimensions with
a "hedgehog" Ansats (4). Its equation of motion
then results from the following integral, which
may also be obtained by subtracting (28) from (7),
after suitable rescalings, and setting X=1:

p'(H2 ' 1&, H&2 (IT'
C= i&' dp —I, 1 +-]H —~+~,

p& ip'

(33)

Note that the constant term -1 in the integrand is
indispensable in order to preserve the finiteness
of C, given the boundary conditions. It is also
necessary in order to escape a naive interpreta-
tion of Derrick's scaling argument, " which does
Not exclude the solution obtained, since the right-
most term in parentheses in the integrand is neg-
ative. In fact, since the solution H(p) extremizes
V, if H is varied by a scale transformation of its
argument p- p/a, the derivative of C with respect
to a must vanish at a=1. This leads to the follow-
ing expression, which was also checked numeri-
cally to an accuracy of O(10 '),

for large g, in analogy to the small-g result (21}.
In contrast to (21), however, this correction re-
ceives substantial contributions from the small-p
region, where the scalar field differs appreciably
from its vacuum value. Thus, in general, the
correction is not independent of the form of the
Higgs potential. -

The purpose of this paper is to indicate how to
use asymptotic analysis for a rapid determination
of the limiting behavior of the fields and the mass
of the simplest monopole system. In particular,
in the q -~ limit the two fields decouple allowing
a relatively straightforward solution to the prob-
lem. We observe that the field configurations for
various values of p generated numerically' are
enveloped by the limiting curves in Fig. 1. It is
striking that, even though the scalar field provides
stability and magnetic charge through its boundary
condition at the origin, " the Higgs mass scale
affects the results very little: the overall variation
of the mass is by less than a factor of 2 between
the extreme cases discussed.

In conclusion, we point out that a similar analy-
sis could be implementable in determining the ap-
proximate nature of the monopole solutions sus-
tained by the larger groups and the multiple mass
scales of grand unified theories. '
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