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An analysis of a model for the generation of leptonic mass that considered only symmetric solutions is extended to
include the possibility of asymmetric solutions. This possibility arises from a breakdown of a permutation symmetry
between muon and electron. This broken symmetry also furnishes in a natural way a quantum number which
distinguishes muons from electrons. A numerical study of the solutions of the extended model is performed, and it is
shown that indeed their structure has a region with asymmetric solutions. The observed p-e mass ratio lies within
the range of estimates using this model, but the mass-splitting estimates thus obtained are seen to be very sensitive to
computational errors as well as assumptions about unknown non-QED physics. The reasons for this sensitivity and
sources of these errors are discussed. By an extrapolation of the model beyond the r, a new yet heavier lepton is
predicted, and a comparison is made to those predicted by some other models. Experimental tests of these
predictions shoud be possible using coming generations of accelerators.

I. INTRODUCTION

Recently a self-consistent model for the genera-
tion of leptonic mass was proposed, ' hereafter
referred to as I. In I, symmetric solutions (equal
masses) were studied. Since the work herein is
an extension of I to investigate the possibility of
asymmetric solutions (unequal masses) a brief
review of I is in order.

The basis of I is the fact pointed out by Heisen-
berg and co-workers' that since the equations of
quantum field theory are nonlinear, symmetries
present in those equations may not be manifest
in their solutions. Developing this idea along dif-
ferent lines, it has been proposed' that a dynam-
ical symmetry breaking could lead to self-con-
sistent solutions with nonzero fermion mass. A
fermion model with dynamically generated physi-
cal masses was considered by Baker and Johnson, 4

who found that consistency required a null bare
mass. While this scheme breaks the formal y,
invariance that obtains in QED having fermions
described by the massless Dirac equation, it has
been shown' that the breaking of this y, symmetry
is immune to the Goldstone-boson dilemma. '

In the formulation in I, then, it was assumed
that the bare lepton masses are zero, the physical
masses being totally dynamic, deriving from the
QED self-interaction. This assumption leads to
the self -consistency equation

SZ
g

which is to be satisfied by the (approximations
to) 5m„ the QED self-masses. Equation (1), of
course, applies only to the charged leptons. It is
worth mentioning that since leptonic mass in this
model is due to the self-interactions of electric

charge, the observed fact that neutrinos are mass-
less, or nearly so, finds a natural explanation:
they are electrically neutral.

Figure 1 shows a graphic depiction of the gener-
al functional expression' for fermion self-mass.
In terms of renormalized quantities, a self-con-
sistent perturbation expansion for the QED self-
mass was developed, and it was shown that a sum
of graphs containing vacuum polarization loops
diverges before the momenta reach infinity. This
causes a singularity in the (completely renormal-
ized) photon propagator (which point we use to
define the "Landau mass" M~) first found by
Landau and his co-workers, ' who used a somewhat
different analysis. This difficulty, i.e. , a non-
Borel summable set of graphs, ' has also been
shown to exist in the perturbation expansion for
the anomalous magnetic moment. "

Within the above framework, there appears to
be no obvious means to eliminate this singularity
in the complete photon propagator"; renormaliza-
tion circumvents the difficulty without addressing

SF (P-k)
FIG. 1. A. graphical depiction of g(p), the proper self-

energy of a fermion of four-momentum p. D&(k)„„is
the complete photon propagator, $&(p —k) is the complete
fermion propagator, and'I'"(p, p —k) represents the
vertex function. The cross hatching indicates that these
@ED functions are complete summations of the appro-
priate proper Feynman (sub) graphs.
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it. (Qf course, the grand unification schemes
offer another possible resolution of this difficulty.
The motivation for not pursuing this avenue was
discussed in I.) Accordingly, the Landau singu-
larity is a feature of the model in I as well as
in its extension here. It is tacitly accepted that
this singularity is a mathematical abstraction
of physical aspects of pointlike fermions.

It was shown in I that self-consistent solutions
for a dynamically generated leptonic mass could
be obtained by utilizing an abrupt or "hard" ultra-
violet cutoff put in by hand just below the Landau
singularity. In order to eliminate this arbitrary
cutoff and still obtain convergent expressions, it
was assumed that the functional form of the com-
plete photon propagator is the same above the
Landau singularity as it is below and that there
is a physical cutoff at the Landau singularity. The
use of this (phenomenological) cutoff implies that
there is structure to the electronic charge with
a scale of the Landau length (5/Mzc). Landau
and his collaborators' long ago considered such
structure as a possibility; unfortunately, struc-
ture on this scale (-10~' cm) is well below pres-
ent experimental observability" and hence resides
in the realm of theoretical speculation. Never-
theless, this concept has received considerable
attention, in particular in connection with the

gravitational interaction. "
In this formulation, then, the momentum inte-

grations in the expressions for the self-mass are
extended to infinity. Using analytic continuation
to extend the domain of the expression for the
photon propagator assumes that the functional
form found by summation of the perturbation
series, which is (presumed to be) valid below the
Landau singularity (or Landau mass) is of greater
significance as a solution to the problem than the
original series itself. This philosophy is in the
same vein as that employed in Borel's method of
summation. ' Thus, while the perturbation ex-
pansion is clearly not a complete solution to the
self-mass problem, it furnished the mathematical
basis for this model which offers a possibility of
solution.

Following these ideas, the perturbation expan-
sion for leptonic self-mass was converted to a
series in which the order g„denotes the number
of photons, each photon carrying (an approxima-
tion to) its own vacuum polarization. In the limit
wherein n„=, the graphs of this expansion can
be put into a one-to-one correspondence with the
graphs of the usual expansion in which the order
or power of the electron charge n, =~. In this
new series, however, the Landau singularity is
contained in the (dressed) photon propagator, but
with the above assumptions its divergence is now

(b)

(iy)

FIG. 2. (a) The one-photon fermion self-mass graph
(left-hand graph with the hatching) is defined as the sum
of graphs of vacuum polarization loops indicated on the
right-hand side of the equation. From this series approx-
imation is derived the one-photon estimate of the self-
mass 6m . (b) The additional graphs which are used
to define 6 m "", the two-photon piece of the fermion
self-mass. The hatching indicates vacuum polarization
loop sums as in (a).

under control. Thus, this formulation for the
self-mass is well defined since there is an ef-
fective, self-consistent ultraviolet cutoff and the
non-Borel summability problem (or Landau sin-
gularity) is not evident in the other divergent
quantities of QED, i.e. , the fermion propagator
and the vertex function.

Using a leading-logarithm approximation, good
agreement with the Landau result was obtained
with one photon, dressed as in Fig. 2(a). A two-
photon self-mass calculation was also carried
out in I [see Fig. 2(b) j, giving results which were
qualitatively the same as, and quantitatively close
to, the one-photon calculation. It is conjectured
that higher-order expansions with additional
photons would exhibit no further qualitative
changes, quantitatively converging to a final
result.

It was shown that self-consistency in this model
requires that M~ be in the neighborhood of the
Planck mass M~ [(Rc/6)' '-10"Gev/c'], "prob-
ably on the high side. In addition, an estimate
(of —I) for the value of the hadronic R in e'e an-
nihilations was derived. This estimate is con-
sistent with present data, "and anticipates the
discovery of some new quarks and/or heavy
leptons.

II. THE MUON-ELECTRON SYMMETRY

In the context of this model, we are now ready
to pursue the idea of Baker and Glashow, "that
the p -e mass splitting could be associated with
a (second) symmetry breakdown. The symmetry
in question is I permutation symmetry. As in
I, it is assumed (as did Baker and Glashow) that
the Lagrangian and Hamiltonian are of standard
QED form, symmetric in the bare (massless)
muon and electron wave functions. (The only
known physical difference between the muon and
electron is their rest mass. ) Thus the operator
I', permuting muon and electron, leaves the
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FIG. 3. Vertices forbidden by the conservation of the
leptonic quantum number associated with Kq. (2).

Hamiltonian H invariant. That is,

[~,a]=o. (2)

It has been shown" that Eq. (2) results in a con-
servation law; the eigenvalues of I' are constants
of the motion" yielding a quantum number (+1}
which distinguishes muon from electron. This law
forbids reactions containing vertices such as those
shown in Fig. 3. In this regard, it is relevant
to note that it has been established" that the
process p

'- e'y is highly forbidden; its branching
ratio is &1.9 x 10

Bui-Duy, who has studied a model incorporating
the idea of a permutation symmetry, "has shown
that Eq. (2) holds for both symmetric and asym-
metric solutions, and that no transitions are pos-
sible between these two regimes. He has pointed
out that when a discrete symmetry, such as the
permutation symmetry assumed here, is broken,
one does not generate any Goldstone bosons, which
have been shown to be associated with the breaking
of a continuous symmetry. ""

III. THE COUPLED EQUATIONS

m„=M(m„P) . (4)

The principle of self-consistency applied to the
function M means that the appropriate solutions
to the two-fermion mass-generation problem will
be given at the intersection points of the lines

Baker and Glashow pointed out" that the self-
consistent, self-mass equations for the muon and
for the electron are coupled through the masses
of the fermions in the vacuum polarization loops.
Since the initial Lagrangian is symmetrical in
muon and electron, the resulting solutions for
the electron mass and the muon mass will be of
identical form, the muon mass being one of the
parameters in the electron solution and vice versa.
Therefore, if using this formulation one arrives
at; a solution for the electron mass

m, =M(m„, P),
where M is some functional form and P stands
for all other parameters which enter the problem,
then from the symmetrical formulation of the
problem, the same solution will also apply to the
muon, i.e. ,

determined by Eqs. (2) and (4) plotted on a graph
with m and m„as coordinate axes. Thus, from
the permutation symmetry of the original La-
grangian, one expects that symmetric solutions
w'ith m„=m, can be found.

The definition

ln
A

(5)

where z = ~ is the fine-structure constant, en-
ables the more convenient (dimensionless) param-
eters $, to be used in place of m, As in I, A is
placed at the ultraviolet cutoff. When convergence
is obtained by means of a hard cutoff, A is just
below M~. When a (phenomenological form of
a) physical cutoff is used, A =M~.

Equation (5) enables us to replace Eqs. (2) and
(4) by

5g =+(h.)

(6)

$2 =&(hg),

where the function E is appropriately derived
from the function M, and notation of the parame-
ters P is suppressed. The symmetric solutions
are, of course, characterized by $, = g, .

In the case of interest in this paper, where the
symmetry is a simple permutation symmetry, the
disposition of the self-consistent solutions is
easily visualized graphically by using what we
shall call the mirror plot. In Fig. 4(a}, g, = const
(independent of g, ) is plotted, which is the result
given by the usual second-order perturbation
calculation [which uses only the first graph on
the right-hand side of the equation shown in Fig.
2(a): no vacuum polarization and hence no cou-
pling]. The same coordinate system, but where
the roles of abscissa and ordinate are reversed
(by reflection in the 45' symmetry axis), can also
be employed for $, = const. Such a curve is also
plotted in Fig. 4(a) where the intersection of the
two lines (on the symmetry axis) yields the sym-
metric solution (g, = $,). As is seen below, when
one goes to higher-order calculations, one gets
a functional dependence of g, upon g, such that
g, diminishes as g, increases. Curves schemat-
ically depicting this functional dependence are
plotted in Fig. 4(b). Again, of course, the sym-
metr ic solution is on the symmetry axis.

Now as mentioned above, asyrn. metric solutions
are also possible; one can imagine a functional
dependence such that g, =F(g,) and g, =E(g,)
intersect at points other than on the symmetry
axis. These additional intersection points are
also self-consistent solutions to the problem, but
are asymmetric. In Fig. 4(c) a function F that
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displays both symmetric and asymmetric solutions
is plotted. These solutions may be stable, un-
stable, or degenerate (as defined below).

If there are self-consistent solutions, a simple
criterion for their stability based upon self-con-
sistency (rather than energy) may be developed. "
One first imagines that a small perturbation
temporarily moves the physical system away from
the point of self-consistent solution. To represent
this occurrence mathematically, one chooses a
point (g,', $,') on the &, =E(f,) curve, say, near to
but off of the intersection point in question. To
test for (self-consistent) stability one then iter-
atively calculates g, =E($,'), 4 =E[E($,')j, etc.
One will be led by this procedure either toward
the intersection point or away from it, independent
of the side on which ($,', g,') was chosen. If such
iterations lead one toward the intersection point,
then that point shall be defined as stable; if they
lead one away from the intersection point, then it
shall be defined as unstable.

If we consider the symmetric solution, we see
that if, on the symmetry axis

d$x dE(4)
d$, dg,

then such an iterative calculation will lead one
toward the symmetric solution point, and. that
solution will be stable. Conversely, if dg, /dg,
& —1, the solution will be unstable. If df, /d$,
= —1, the solution will be called degenerate.

This criterion for stability can be applied in
general to any intersection on the mirror plot.
At the intersection point (g„g,) one needs only
to determine the sign of the quantity

dE 1

dg dE/d$
C~ K2

Q& 0- stable,

Q & 0- unstable,

(8)

(9)

I
2

FIG. 4. Schematic plots of the mass parameters $~
=F($2), full curves, and $ 2

=F((~), dashed curves, as
symmetric functions of each other. The self-consistent
solutions to the problem, which are located at the inter-
sections of these curves, are indicated by the heavy
dots. The symmetric solutions are on the 45 symmetry
axis (all plots). In (c) the function F is such that there
are also asymmetric solutions not on the 45' symmetry
axis. A line segment indicating the quantity D((2)=—F($2)
—,F[F($2)l is drawn in (b) and (c). This quantity is equal
to g (&2) as defined in Appendix C. A point defining the
appropriate $ 2 to use as the function argument is in-
dicated by the smaller dot on the $~ =F($ 2) line.

Q =0- degenerate.

Equation (9) will be employed below as the criteri-
on for stability. It can be seen that this criterion
dictates that the stability of adjacent solutions
in the mirror plot will alternate.

IV. DEGENERATE SOLUTIONS

As discussed in Sec. I, the symmetric solutions
of the model in I were studied using a perturbation
expansion in which the order n„denoted the number
of photons, each photon carrying an approxima-
tion to its own vacuum polarization. Covergent
expressions were obtained by analytically continu-
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ing the functional form of the photon propagator
beyond the Landau singularity and employing a
"soft" physical cutoff at M~. A Lorentz-invariant
mathematical form was used to phenomenological-
ly represent this cutoff, and the resulting integral
was evaluated using the principal-value prescrip-
tion.

We wish to maintain these features for the study
of the asymmetric solutions. Unfortunately, the
integral of the self-consistency equation using
the Lorentz-invariant cutoff cannot be integrated
in closed form. However, the slope of the func-
tion F(g) is obtainable analytically. This slope
reveals information about the stability of the
solutions and, as it turns out, about the function
E($) as well.

In Appendix B it is shown that in this formula-
'

tion one obtains a slope of the form

dE d$g R+2
d$ d$, E' (B28)

dgg ]
dg,

(10)

It is pointed out in Appendix B that this result
is independent of the details of the form of the
(phenomenological) Lorentz-invariant cutoff; it
need only be continuous across the Landau singu-
larity, which on physical grounds is just what one
would expect. It is also shown that this result is
independent of the value of dimensionless param-
eterA', whereA' is defined by Eq. (B12). Thus,
assuming that (as indicated by the analysis in I)
higher-order estimates of the leptonic self-mass
merely alter somewhat the requisite value of A. ',
Eq. (10) is valid to all orders of n„.

Since Eq. (10) is true in general, for $, 0 g, as
well as for $, = g„ in this approximation $, =E(g,)
and $, =E(g, ) plot as straight lines on the mirror
plot, perpendicular to the symmetry axis. And
since these lines must coincide at the point g,
= $„ they coincide everywhere. By the criterion
of Eq. (9), therefore, in their limiting form, the
solutions to the coupled, self-consistent self-mass
equations are degenerate everywhere, forming a
continuous set.

This degeneracy arises because, in essence,
the slope calculation is dominated by divergence
of the integrand at the Landau singularity. In the
limit, A ' is a function only of the sum ($, + g, ),
which occurs in the denominator of the vacuum
polarization integral, and which specifies the
location of the Landau singularity. While this

where E' is a divergent quantity going as lim„, l/ri,
and R represents the (effective) number of "ha-
dronic"" pointlike fermions which couple to the
photon. Thus, in the limit with g = 0,

((, + $,) symmetry is permutation symmetric, it
goes beyond what'is required in general from the
original specification of permutation symmetry of
the Lagrangian. It follows, then, that the (g, + $,)
symmetry can be broken; as is discussed below,
this leads to discrete solutions.

V. DISCRETE SOLUTIONS

One can see that if, as one approaches the
limiting (degenerate) form of F, the ($, +$,) sym-
metry found above is broken, even infinitesimally,
then the solutions to the coupled self-mass equation
will be discrete. It follows that effects that are
of negligible consequence for the symmetric so-
lutions can be crucial for the asymmetric solu-
tions; the degeneracy in the limiting form of F
entails a sensitivity to any effect, no matter how
small, that breaks the ($, + (,) symmetry

This sensitivity precludes for this model the
standard method for solving the coupled-mass
problem: i.e. , calcu1.ating order by order in n,
and examining the mirror plot of the resultant
function J"; since the Landau singularity is as-
sociated with the sum of an infinite number of
vacuum polarization graphs, one anticipates that
n, would have to be taken to a very large number
before features relevant to the possibilities of
asymmetric solutions would appear. (Further-
more, to be usable this very-high-order quasi-
divergeAt calculation would have to be carried
out to infinitesimal accuracy. ) On the other hand,
by using the limiting form as a reference solution
and correcting it only by those effects which break
the (g, + g, ) symmetry, the prohibitive but irrele-
vant complications associated with the standard
high-order calculations can be obviated.

For the purposes of analysis, the approach to
the limiting form will be studied by imagining that
our self-mass calculation is being performed iri

a cubical box of side B and volume V =J3 . In this
situation, the (effective) number of fermion phase-
space states N (including a factor 2 for both spin
orientations) which are available for the inter-
mediate-state integrations is 8v/3(BA/h)' where
h is Planck's constant. Thus for a large but finite
box, N is a large but finite number. This step
furnishes a (physically relevant) small parameter
1/N in which to expand the discrepancy 6 between
the limiting or (g, + g, )-symmetric form and the
actual function J" as it approaches this limiting
form.

In Appendix C, by expanding b in a power series
in 1/N [cf. Eq. (C5)], it is shown that indeed dis-
crete solutions exist and that they are stable and
independent of N as N (and V)-~. [For Eq. (C5)
to be valid it is, of course, required that the sym-
metry-breaking effects that comprise 4 each
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vanish like 1/N as N- ~; it is argued below that
this is the case. ] Therefore, in the limit N
we recover the (appearance of a) continuous set
of solutions, but at the same time have in actual-
ity a set of stable discrete solutions. Subsequent
numerical investigations discussed in Sec. VII
show that, in fact, there is (independent of N) a
region containing stable asymmetric solutions to
the coupled self-mass problem.

VI. BREAKING THE ()g+ t'2)SYMMETRY

A. Then = j. approximation

In deciding where to look for (g, + (,)-symmetry-
breaking effects, we first recall that the coupling
of the self-mass equations occurs only through
the masses of the fermions in the vacuum polariza-
tion loops in the photon lines. We next note that
the ($, + $,) symmetry has been shown to exist for
the n„= 1 approximation (and evidently exists for
all orders of n„). Thus, it is appropriate to study
the n„= 1 approximation for (g, + $,) symmetry
breaking. We argue further that the omission of
consideration of the vertex function I'" and the

, fermion propagator Sz (see Fig. 1), 'which come
into play in the higher-order approximations,
does not lead to significant error because the
Ward identity" dictates that renormalization
effects due to these two functions cancel exactly
to all orders. Any effects associated with photon
lines internal in 1""and Sz must therefore (tend
to mutally cancel and) be inferior to those which
are found in the photon propagator D„' already
under direct scrutiny [see Figs. 1 and 2(a) J in
the n„= 1 approximation. (An important exception
to this conclusion is investigated in subsection
C 2.)

In looking at the A ' of Eq. (813), which is de-
rived from the n„=1 self-mass integral, we
anticipate that (g, + $,)-symmetry-breaking effects
can enter through: (1) the (lower) limits y „and
y„(2) possible variations of the functional form
of the integrand over the range of integration, and
(3) modifications of the integral in the neighbor-
hood of y~= 1. In the sections that follow, effects
which break the ($, +g, ) symmetry are indeed
found which, respectively, fall into these catego-
ries: the fermion-mass-damping effect, the first
Pauli effect, and the second Pauli effect.

B. The fermion-mass-damping effect

The fermion-mass-damping effect comes about
because for small photon momentum vacuum
polarization loops tend to become inoperative or
damped out by the mass of the fermions in those
loops. This damping, which is intuitively ex-
pected, derives from the one in the argument of

the logarithm in the expression for the one-loop
vacuum polarization integral [see Eq. (A4)]. It
can be seen from Eq. (B22) that this effect, which
leads to a curvature or nonlinearity" in F($), is
active when g of the principal-value prescription
40, and furthermore that it goes to zero in pro-
portion to p. This proportionality to q is impor-
tant because through the second Pauli effect (sub-
section C 3, below) it leads to a proportionality
to the parameter 1/N, as is required for the
validity of the expansion of Eq. (C5).

In Appendix A, the fermion-mass-damping effect
is included in the hard cutoff approximation by
dropping from the integral the contribution of
loops of the ith type of fermion when the photon
E'&m&',. expressions for 4 in this approximation
are given there for four regions of the mirror
plot. To obtain simpler calculations, these hard
cutoff solutions will be used in the numerical anal-
ysis of Sec. VII, in which is investigated the struc-
ture of the solutions.

C. The Pauli exclusion principle

l. A brief review

Since in this model proper treatment of the
Pauli exclusion principle plays a crucial role in
the generation of mass splittings, it is useful to
review briefly how the various electron self-mass
calculations take the Pauli exclusion principle
into account.

While the classical electromagnetic energy of
an electron diverges linearly, Weisskopf27 showed
that a calculation using the Dirac positron theory
diverges only logarithmically. This reduction
in the severity of the divergence occurs because
the presence of the electron in question perturbs
the vacuum energy through the Pauli exclusion
principle. In brief, vacuum fluctuations having an
intermediate state identical to that of the original
electron are precluded by the Pauli exclusion
principle, and hence their energy must be sub-
tracted from that of the unperturbed vacuum.
This subtraction removes the most severe diver-
gences associated with the "one-electron theory, "
leaving only a logarithmic ultraviolet divergence
in the (second-order) self-mass calculation.

Following Weisskopf's approach, in time-ordered
perturbation theory" one thus calculates the ener-
gy of the graph shown in Fig. 5(a) and subtracts
the energy of the appropriate piece of the graph
shown in Fig. 5(b). Orle'of the beauties of the
Feynman diagrammatic formulation is that the
graph in Fig. 5(c) is numerically equal, but op-
posite in sign, to (the appropriate piece of) that
in Fig. 5(b), enabling one to combine the time-
ordered graphs in Figs. 5(a) and 5(c) [instead of
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(c)

(4)
FIG. 5. Graphs of the electron propagator that are

associated with the second-order electron self-mass.
Graphs (a), (b), and (c) are time ordered with time
increasing from left to right. . (a) The electron emits
a photon at g and reabsorbs it at y. (b) A vacuum fluc-
tuation emits an electron-positron pair and photon at x
and reabsorbs then at y. This graph is Pauli excluded
when the electron is specified to be in the same state
as the original electron whose self-mass is being cal-
culated. (c) The vacuum at y emits, along with a posi-
tron and a photon, the final electron in the state of the
initial electron. The photon and the positron annihilate
with the initial electron at x. This graph is Pauli ex-
cluded because the initial and final electrons. are in the
same state at the same time. (d) Standard depiction of
the second-order graph which is calculated by the Feyn-
man rules to yield the second-order contribution to the
proper electron self-mass. Points x and y are arbi-
trary, and the graph is evaluated by integrating x and

y over all space-time.

those in Figs. 5(a) and 5(b)] to obtain the standard
single second-order self-energy graph given in
Fig. 5(d); it is simpler to forget about the vacuum
bubble in Fig. 5(b) and just apply the Feynman
rules to the graph of Fig. 5(d) to get the second-
order contribution to the proper electron self-
mass. "

It was emphasized by Feynman" long ago, in
his discussion of the diagrammatic method for
calculating QED processes, that the effects of
the Pauli exclusion principle in the intermediate

states are automatically taken into account. He
recognized that whenever one used what are now
known as the Feynman rules for calculating a
graph (to some order in e) of a process, one er-
roneously included certain time-ordered pieces
of that graph which actually should be omitted
because of the Pauli exclusion principle. He
pointed out, however, that this error does not
really matter, because there is always another
graph of the same order for the same process
in which these very same Pauli -excluded pieces
are likewise erroneously included, but with the
opposite sign; and therefore, these calculational
errors (which always come in pairs) always
cancel. He showed in general that any calculation
of a QED process which contains all graphs of
a given order in e has in principle automatic and
full compensation for the erroneously included
(but Pauli-excluded) intermediate states; no
errors are incurred in the final sum for that
process and hence, when the Feynman rules are
employed, no thought need be given to the opera-
tion of the Pauli exclusion principle in the inter-
mediate states.

If follows that in an analogous manner, the
Feynman rules properly (and to all orders) in-
corporate the Pauli-excluded time-ordered pieces
of higher-order (self-mass) diagrams on the elec-
tron propagator as appropriate compensation for
the Pauli-excluded pieces of the higher-order
vacuum bubbles, whose energy is to be subtracted
from that of the unperturbed vacuum. The pieces
of the vacuum fluctuation bubbles which have no
Pauli overlap with the self-mass diagrams may
be ignored"; it has been shown in general" that
in the perturbation expansion for the vacuum ex-
pectation value of time-ordered products of
Heisenberg fields, which can be used to construct
the S matrix for any process, the effect of these
vacuum bubble graphs cancels out, leaving the
perturbation expansion only in terms of the con-
nected parts of the Feynman graphs.

2. The first Pauli effect

We recognize, then, that the proper method to
determine the function I" would be, order by order
in e, to evaluate and sum all relevant graphs in
the self -mass perturbation series. Using this
procedure, by Feynman's compensation theorem,
there would bq no "effect" of the Pauli exclusion
principle. But we have already noted that this
method is not feasible; we have therefore used
an expansion in which order denotes the number
of photons. In this expansion, we do not get the
benefits of this automatic "Feynman compensation»
for certain Pauli-excluded states, because to be
tractable the approximation selectively sums (what
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(a)

(b)

&:2
(c)

FIG. 6. This sequence of Feynman diagrams indicates
the "Pauli overlap" of two self-energy graphs (fourth-
order in e) of different topology. The intermediate-
state interaction points x and y are labeled in each graph
to clarify the relationships between the two types of
graphs. The arrows on the fermion lines indicate the
direction of fermion motion and the (intermediate-state)
fermions to which the Pauli exclusion principle is to
be applied. (a) Standard depiction of a one-photon
diagram with one loop of vacuum polarization. Four-
momentum p enters the diagram at the left; the loop
momenta k and q circulate as indicated. (b) Diagram
(a) deformed to depict the possibility that the two fer-
mions in question can be in the same (Pauli-excluded)
state. {c)Diagram (b) with the fermions interchanging.
Since the two fermions are indistinguishable, diagrams
(b) and (c) are indistinguishable. (d) Diagram (c) re-
drawn in the form of the standard depiction of a self-
energy graph. The topology of this latter graph differs
from that of the graph in (a), but these two graphs are
seen to share exactly the same Pauli-excluded inter-
mediate states. The signs of these two (Pauli-excluded)
contributions differ due to the minus sign associated with
the vacuum polarization loop.

we believe to be) the most significant graphs.
These are the vacuum polarization graphs [Fig.
2(a)] which are of only one type of topology and

which give the Landau singularity, the major
feature of our self-mass solution. Figure 6(a)
gives an example of a graph included in the one-
photon summation that has a Pauli-excluded piece
whose (Feynman) compensation graph is omitted
from the summation. %e will call the effect of
this deficiency the first Pauli effect for short. "

- It is important to observe that this omission
acts asymmetrically. That is, the graph in Fig.
6(d) which is missing in the one-photon expansion
for 6m, would compensate for an exclusion effect
associated with leptons of type 1 (which by our
convention is the lepton that we are "dressing»),
but there is no equivalent (omitted) graph for
leptons of type 2. Therefore, the omission of
this and all other such graphs symmetrizes the
contributions of the different fermion types to
the vacuum polarization component of the self-
mass calculation. Thus we see that the above
found (g, + $,) symmetry in the limiting form of
the function E is an artifact of our approximation,
and not something which one expects to hold exact-
ly from any general principle.

It is relevant to reiterate here that there are
two options for graph calculation. On the one
hand, while relying on the principle of Feynman
compensation, one can (in principle) use the
standard Feynman rules to calculate all of the
graphs of a complete perturbation series to obtain
the self-mass, or on the other hand, one is also
(in principle) permitted to leave out the Pauli-
excluded pieces calculating and summing only
the Pauli-allowed pieces of these graphs. Feyn-
man showed that these two options are numerical-
ly equivalent.

Since the standard method to determine the
amount of ($, + $,) symmetry breaking is not feas-
ible, the approach adopted here is to use the
latter of the above options for graph calculation
along with physical arguments to estimate direct-
ly the asymmetry induced into the n„= 1 approx-
imation by the first Pauli effect. To do this, we
recall that our calculation is being performed in
a box of volume V containing N phase-space
states. Since one of these N states is already
occupied by a lepton of type 1 (the lepton we are
dressing), one expects the vacuum polarization
integrals associated with leptons of type 1 to be
slightly different from those associated with the
lepton of type 2.

In order to estimate the magnitude of the piece
of the vacuum polarization integral which should
be Pauli excluded, we must examine the relation-
ship between the fermion momentum in a typical
loop and that along the line of the lepton being
dressed. The Pauli exclusion principle will apply
when two like fermions are in the same inter-
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mediate state. In the diagrams that are included
in the one-photon estimate 5m ""', this relation-
ship is straightforward [looking at Fig. 6(a) shows
that the Pauli exclusion condition is q P -k].
But as pointed out above, the effect we are trying
to estimate here involves all of the self-energy
graphs, as schematically depicted in Fig. 1. As
we attempt to go into finer detail and use more
elaborate graphs, we see that this relationship
involves more momenta of integration and quickly
becomes prohibitively complicated.

The complicated physical motion which the set
of higher-order graphs of the fermion propagator
mathematically describes is called ZQtexbesee-
gung. " This Zittexbneegu ng, involving the fer-
mions in the vacuum polarization as well as the
original fermion line, in effect randomizes the
relationship between the (instantaneous) momem-
tum in a given vacuum polarization loop'and the
(instantaneous) momentum being carried along
the original fermion line. That is, when one looks
into the details of the propagators, one sees that
the state that the original fermion excludes by its
mere presence is, in effect, uncorrelated in mo-
mentum with the states in the vacuum polarization
loops. Thus, the Pauli-excluded state (for type-1
leptons) may be accounted for by removing it with
an appropriate random probability from the N
available phase-space states over which the loop
sums (integrals) are taken.

The probability of removal can be represented
by an effective probability density function P,(y),
which then yields a factor [1 -P,(y)] in the vacuum
polarization integrand. The variable y is defined
by Eq. (82}. The notion of Zitferbewegurg leads
one to expect that the distribution p, (y) will be
very broad and relatively flat, ranging out to the
Landau momentum. We can represent this p, (y)
by a (Fourier) series expansion. The zeroth order
or dc term of this expansion will equal 1/N, since
fp, ( y) dy= 1/N, with higher-order terms causing
P, (y) to fall off to zero at large y.

Keeping only the zeroth-order term and dropping
the higher-order contributions to the vacuum
polarization integral enables a straightforward
zeroth-order estimate of the first Pauli effect.
We merely associate a factor

1-& =1-—1
N- (11)

with each vacuum polarization loop in which a
fermion of type 1 circulates. It is easy to see
that this modification, applied to the self-mass
series depicted in Fig. 2(a}, will give a perturba-
tion series which sums to yield

a &' a &' Rn E'
1 —(1 -t', )—ln, ——ln, — ln-1 3r ml2 3r m22 3r m 2

(12)

as the vacuum polarization denominator.
At first it might be surprising that the pieces

of the graphs in I'" and 8„' brought into play by
this accounting for the Pauli exclusion principle
have the same functional form as does (the sum
of) the vacuum polarization graphs; that means
that they contain (infinitesimal) non-Borel sum-
mable components (entering with like, rather than
alternating, sign). But then this must be the case
because the graphs with which they share a Pauli-
excluded overlap are non-Borel summable, a fact
which brings about the Landau singularity in the
vacuum polarization integral (which accounts for
the electric charge renormalization). .Since this
singularity is not manifest in the individual graphs
but rather is evident only by their (non-Borel)
summation, then, too, the components of I'" and

S~ that are associated with the first Pauli effect
would be manifest in the standard method with
the above functional dependence (proportional to
e, ) only by summation. Thus, until one has the
ability in the standard approach to (exactly)
calculate and sum to very high order all of the
graphs in the self-mass series, what is here
called the first Pauli effect would not be revealed;
the infinitesimal non-Borel summable part would
be totally obscured at the level of the individual
graph by the much larger Borel summable parts.

Equation (12) tells us that the first Pauli effect
(re vacuum polarization loops) acts like an in-
finitesimal charge renormalization of the lepton
of type 1, but Eq. (11) tells us that as the normal-
ization box size goes to infinity, the first Pauli
effect goes to zero as 1/N, eliminating in the limit
this charge renormalization. Nevertheless, as
the E' of Eq. (B23) becomes large (because of
the L'andau singularity) Eq. (12) leads to a slope
at the symmetry point of

(13)

That is, inclusion of this correction to the limiting
form yields a symmetric solution that is discrete
and unstable.

3. The second Pauli effect

The second Pauli effect is a saturation phenom-
enon associated with graphs of extremely high
order. It comes about because we are using a
physical cutoff at the Landau mass and are per-
forming our calculation in a finite box.

It is clear that when we perform our analysis
in the box of volume V, graphs of order»N will
have so many fermion 'lines that they must be
comprised (almost) entirely of Pauli-excluded
pieces. It follows, therefore, that by taking the
point of view of the second option for graph cal-
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culation, these graphs may be entirely omitted
from the perturbation summation. That is, among
these graphs (for some specified order & N) it
is appropriate, because of the Pauli exclusion
principle, just to truncate the perturbation series. "

For the purposes of estimation of this second
Pauli effect we shall truncate the summation of
graphs associated with the one-photon estimate
when the power of n exceeds N' = (R+ 2)N; for
many loops and high momentum the fermion- loops
will be equally populated by the (R+ 2) different
types of fermions, giving the additional factor"
of (R+2). One expects there to be a factor (of
order unity) correcting the (effective) location
of this saturation point; this is included in the
list of errors below.

In the hard cutoff solution, this Pauli saturation
effect can be taken into account simply by sub-
tracting a second infinite series, which starts
at n=N', and then resumming: i.e. ,

(14)

In the one-photon approximation, the Pauli satura-
tion effect will become active at the value y =1
—1/N', which is infinitesimally below the Landau
singularity. Therefore, with a hard cutoff, this
Pauli effect will be negligible; while we expect
that A. is a number of order unity, even if it is
large, the self-consistent value for the hard cutoff
will fall well below the value y = 1 —1/N'.

From the above discussion, it follows that when
we include a Lorentz-invariant cutoff at M~ and
a momentum integration to infinity, for a finite-
sized normalization box, this second Pauli effect
will prevent the photon propagator from actually
diverging at the Landau singularity; the propa-
gator becomes very, very large at E'=M~', but
nevertheless remains finite, -N'. For y&1, this
result follows directly from Eq. (14); there are
N' terms in the summation, each of which for
y = 1 equals unity.

We now assume that the influence of this Pauli
saturation effect upon behavior of the (analytically
continued) photon propagator for y& 1 is sym-
metric. That is, the negative excursion of the
propagator at y=1' is also finite and -¹.Such
an assumption is required for the mathematical
stability of the principal-value prescription; its
basis could be sought either in a physical descrip-
tion of features on the scale of the Landau length"
or in mathematical analysis. " In either case it
can be taken into account by setting the g.in Eq.
(826) to a constant rather than taking it to zero.
From the discussion associated with Eq. (14) we

have seen that this constant should be -1/N'.
One can see that the second Pauli effect acts

in the opposite sense to the first Pauli effect,
tending to stabilize the symmetric solution (in-
creasing the slope d(,/d$, ). Correcting for both
Pauli effects, one rewrites Eq. (13) as

&hx
(15)

~2

both &, are greater than zero and of comparable
size.

We assert that while there would, of course, be
no Pauli effects, as such, in a standard self-mass
calculation, because of the equivalence of the two
options for graphs calculation, , the slope of the
function I" determined by such a calculation in a
finite box to sufficiently high order would still
be given by Eq. (15). As the normalization volume
V is taken to infinity, N goes to infinity and these
Pauli effects become infinitesimal as 1/N, ef-
fectively vanishing. The Landau singularity of
the photon propagator then recovers its (limiting)
1/(1 -y) form.

For the purposes of the numerical study in Sec.
VII, it is useful to rewrite Eq. (15) as

(16)

where

p=—

It will be seen that the structure of the solutions
is a function only of the ratio p, in which, as
required by Eq. (C5), the value of N cancels.
This cancellation enables one to make an estimate
of the leptonic mass splitting.

VII. NUMERICAL ANALYSIS

A. Mathematical formulation

An analysis which includes the above features,
which vanish as 1/N, faces certain practical dif-
ficulties; self-consistent integral equations in-
corporating these features cannot be solved an-
alytically in closed form, and the computer can-
not deal with infinitesimal quantities. There is
a computational approach, however, which can
be used to circumvent these difficulties. This
approach is based. upon the results of Appendix
C which show that for large N, the locations of
the self-consistent solutions are independent of
the actual value of ¹ This means that we can
perform an analysis using a value of N tractable
to computer calculations obtaining the same re-
sults that would be derived in the limit as N goes
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to infinity.
It is possible to carry through this approach

using the results in Appendix A, which employ
the hard cutoff; parameters in that approximation
are used to simulate the Pauli effects, but with
a tractable (effective) value of N Fu. ll self-con-
sistency, however, must be given up when the
hard cutoff results are employed. That is, both
the mean mass parameter g

—= ($,+ f„)/2 and the
mass splitting g, —f„cannot be determined at
the same time. This is not a serious drawback
since in principle g can be determined from the
self-consistent symmetric solutions, which are
not influenced by the infinitesimal Pauli effects.

We recall that in I, R was determined by using
the self-consistency condition 6nz/m = 1, setting
the value of A. ', of Eq. (34I), according to the
order of the approximation. On the other hand,
using the hard cutoff solution precludes a self-
consistent relationship between A. and A, leaving
them both as free parameters. As free param-
eters A. and A can be used to set the value of the
slope at the symmetry point (mainly through'),
and the value of g (mainly through 8). g, assumed
to be already determined from the symmetric
solutions, thus determines the value of & to be
used in this numerical study. It can be seen from
Eq. (B27) that setting the slope at the symmetry
point in this way simulates the second Pauli effect
and is like choosing an effective value of N for
the problem. With these steps taken, a variation
of the parameter G (1-G goes like e, of the first
Pauli effect) will now yield a parametric study
of the structure of the solutions.

B. Structure of the solutions

This analysis has been carried out using Eqs.
(A7)-(A10). The values of the parameters em-
ployed areA =1 for convenience, $, =0.06345
(thisisequivalenttom, =20GeV/c'forA=M~; A is
arbitrarily set to M& rather than self-consistently
determined. As will be seen below, other errors
will completely dominate the one introduced by
this choice") and R =13.377 to yield E= 0.0757
[equivalent to m = (m,m„)'~' for A =M~]. The
choice for g, is slightly coupled to the choice for
A, but variations of g, do not qualitatively affect
these results and hence are unimportant here.
(It will be seen below that calculational errors
and unknown non-QED physics preclude a quant-
itatively convincing calculation. ) The choice of

A. =1 fixes the amount of the second Pauli effect,
and via Eqs. (16) and (17) effectively sets a scale
for the first Pauli effect. It is the relative size
of the two Pauli effects as given by the parameter
p which is relevant to the structure of the solu-
tions; the N dependence cancels out.

P
0.8 1.0 I. I I. 2 I.5 1.4 1.5

0.14—

0.12—

0.10—
—Symmetric

Q.Q8 —Solu tion

(Stable}
0.06—

0.04—

0.02—
I

0.018
I

0.022
1

—Q

I

0.026
I

0.050

The results, plotted in Fig. 7, reveal the fol-
lowing structure. When (1 -G) =0, the first Pauli
effect is null. In this case, as we anticipate from
the above discussion, there is one solution (since
E'& ~), a stable symmetric one [as depicted in
Fig. 4(b)]. As (1 -G) is increased (i.e., G is
diminished) a degenerate or trifurcation point
is reached; this point represents equality of the
two Pauli effects at the symmetry point, defining
the location of p =1, and hence the scale of the
abscissa in terms of p. As (1-G) is increased
yet further (the first effect now exceeding the
second), one enters a region having asymmetric
as well as symmetric solutions [as depicted in
Fig. 4(c)]. By the criterion of Eq. (9) the asym-
metric solutions are stable and the symmetric
ones unstable.

The structure of the solutions given in Fig. 7
can be shown to be independent of the selection

FIG. 7. A representative plot of the self-consistent
solution points in the parameter ( of the self-consistency
equations versus 1 —G along the lower abscissa. As
discussed in Sec. VII, this plot simulates the inclusion
of the two Pauli effects. A scale for p, the ratio of
these two effects, is indicated along the upper abscissa.
For 1 —G close to zero, there is only a stable sym-
metric solution [corresponding to the mirror plot in
Fig. 4(b)]. As 1 —G increases, a trifurcation point is
reached, indicated by a dot at (1 —G) =0.02014. At
this point the two Pauli effects are equal, defining the
point p =1, and the solutions are degenerate. Beyond
this point there are three solutions, an unstable sym-
metric one and two stable asymmetric ones Icorres-
pondingtothe mirror plot in Fig. 4(c)]. The more mass-
ive of these stable asymmetric solutions is labeled
"muon branch" and the less massive "electron branch. "
A range in which the estimate of p is expected to fall
(see Table I) is indicated by the cross hatching along
the upper abscissa. This range includes p=1.00546
for which the observed muon and electron masses are
stable asymmetric solutions at $„=0.0716 and $, =0.0798
are indicated.
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of the effective value of N. That is, increasing
the value of A. merely moves the trifurcation point
closer to 6 =1, rescaling the abscissa and at the
same time the "parabola" of the asymmetric
solutions. This assertion has been numerically
verified on the SLAC IBM 360/91 computer to
the extent possible (quadruple precision, going
up to A =3). Several values of A were selected
and the analysis repeated. Independent of the
value of A, relative to the trifurcation point, the
general structure of the solutions as a function
of p remained invariant; only the overall scale
of the abscissa was changed, and taking this scale
change into account, the parabolas of the asym-
metric solutions were (essentially) congruent.
The fact that values of A. in the range 1&4 & 3
(which is equivalent to the range 60~N~ 5.3x10')
yield solutions with the same structure indicates
that A. = 1 already simulates a value of N in the
asymptotic region.

1
2L(1)Nf ' (18)

where L(1) is the value of the phenomenological
Lorentz-invariant cutoff at the Landau singularity
(y = 1), and f is a factor expected to be of order
unity. Using Eq. (18) gives the estimate

1/N
P [2L(1)Nf] i ()f' (19)

Several possible functions L(y) are listed in
Table I, with their value at y= 1, i.e. , at K'=A',
where E is the Euclidean four-momentum defined
in Appendix A. While these different functions do
not yield significantly different results for the
symmetric solutions found in I, the asymmetric
solutions under study here are extremely sensitive
to the value of L(1). The range of p associated
with the span of L(1) of these functional forms is

TABLE I. Some phenomenological cutoff functions.

L (y) L (1) p= 2L (1) Note

e-h. /K 0.632 1.264 Vsed in I, Eq. (34I}

C. Estimate of the splitting

To estimate the splitting $, —g„we must de-
termine p from the relative magnitudes of &&. As
indicated in Sec. VIC 2, &, may be approximated
by 1/N. In Appendix B, we see from Eq. (B27)
that the one-photon estimate for &, gives

plotted in Fig. 7. Since there is already a range
of -2 uncertainty in p due to the value of L(l), no
additional error is included for the factor f, which
has been set to unity. As indicated in Fig. 7,
it can be seen that this span of p includes p
=1.00546, which yields the observed $, =0.0716
and f, =0.0789.

D. Discussion of errors

Errors in the estimated I„/m, enter in two
places: (1) the factors relating the e, to N and
(2) the conversion of the estimated value of p (us-
ing the solution structure depicted in Fig. 7) into

$, —$~, which by exponentiation yields m„/m, .
The former category includes estimates, via
phase-space arguments, of the specific influence
of the Pauli-excluded pieces of the Feynman dia-
grams, the influence of the strong interactions of
the hadronic pointlike particles, and the unknown

physics associated with the phenomenological func-
tion L(y). The latter category includes factors
which chang6 the shape of the parabola of Fig. 7,
such as the modification of the vacuum polariza-
tion by the strong interaction, the representation
of masses of the heavier fermions by m3, and the
approximation used to represent the fermion-
mass-damping effect.

Since the span of reasonable values of p includes
both regions, i.e. , stable symmetric and stable
asymmetric solutions, until more is known about
the phenomenological function L(y), one cannot
estimate the mass splitting using this model.
Furthermore, the estimate of the mass splitting
is very sensitive to the estimate of p. For ex-
ample, the upper limit of the range p =1.26 is only
about 25/e away from the

' correct" value, yet at
this point one has m„/m, = 8x 10 '. It is easy to
see that this extreme sensitivity of the deduced
mass ratio m„/m, to small changes (errors) in
the estimate of p is because m, /m, is determined
by the exponentiation of the logarithmic quantities
$, ; specifically, from the curve in Fig. 7 one can
deduce that to determine m, /I, to an accuracy of
10% requires that the estimate of p be accurate
to -2 ppm. Thus, now and for some time to come,
the unknown non-QED physics will in this model
preclude a satisfactory estimate of m„/m„even
though it may be possible (in principle given suf-
ficient effort) to reduce the QED associated errors
to an acceptable level. On the other hand, one
can make an extrapolation of the model in which
these difficulties are minimized.

1
(K2 g& 0 5

exp~ ———+1
IA K2

1.000 A pseudo- Fermi
functional form

VIII. EXTRAPOLATION OF THE MODEL

e -g2/x2 0.368 0.736 Standard exponential If the mass splitting of the muon and electron
are generated by the breakdown of a permutation
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TABLE II. Heavy-lepton-mass predictions for several models.

Model Mass predictions Comments

Tennakone
and Pakvasa"

Rosen'

Blaha'

Bjorken'

Pais~

Krolikowski"

Caldirola

This model

22, 4554, . . ~

1.915, 15.67.

31.52, . . .

-380

1.786 08,
10.2937, . . .
25.5, 455, . . .

0.1056, 1.794,
21.58, . . .
380

Discrete scale
transformations

QED self-mass formulation
including gravitation

Wave equation with a
relativistic potential

Logarithm of mass is
a smooth function

Quark-lepton mass relationship
extending "standard model"

Quantized magnetic
self-energy

Second-order difference
equations for mass and charge

"Chronan" hypothesis including
"internal" states

QED self-mass formulation with
symmetry breaking between
pairs of leptons

~ In GeV/c2
"Reference 42.' Reference 43.
d Reference 44.' Reference 45.
~ Reference 46.
~ Reference 47.
h Reference 48.

Reference 49.

~SR mg

which yields mr =380 GeV/c . This estimate is
compared in Table II to heavy-lepton mass esti-
mates given by some other models.

(20)

IX. SUMMARY AND CONCLUSIONS

This paper continues the study of a model based
upon the suggestion of Baker and Glashow that the

symmetry as analyzed above, then the simplest as-
sumption is that (charged) leptons must come in
pairs. If there is such a permutation symmetry
between e and p, , then by extrapolation there will
also be one between the. 7 and a yet heavier lep-
ton which we here call the T. While we have seen
that the splittings within a pair cannot be calculated
with a sufficient degree of accuracy, one expects
the computational and other errors associated with
each pair to be similar. Thus, anticipating that to
first order the ratios of the masses in each pair
are the same, we use the observed p.-e mass ratio
to make our extrapolation

p.-e mass splitting might be associated with a
symmetry breaking in the QED self-mass formu-
lation. The initial paper, I, developed a self-
consistent formulation for the (leptonic) self-
mass and considered the symmetric solutions.
This paper considers the possibility of asymmetric
solutions. The symmetry that is broken to yield
these asymmetric solutions is a permutation sym-
metry. This broken permutation symmetry in-
troduces in a natural way a quantum number which
distinguishes muon from electron, and which for-
bids p, -e transitions. It is noted that the experi-
mental upper limit on the branching ratio for
p-ey is indeed very, very small ((1.9x10 ).

Here, as in I, we have seen that vacuum polar-
ization plays a crucial role in the physics of this
model for the generation of leptonic masses and
their splittings. In I, it was accepted as part of
the model that vacuum polarization led to the ex-
istence of a (Landau) singularity in the photon
propagator. Here, as in I, this difficulty was
controlled by assuming that the photon propagator
has the same functional form above Ml. as it does
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below (where it was determined by the summation
of a perturbation series) and that there was a
physical cutoff at M~.

It was shown that in this formulation the Landau
singularity dominates the self-consistent, self-
mass calculation yielding a (continuous) set of
degenerate solutions. These degenerate solutions
manifest in their limiting form what we call a
($q+ f2) symmetry and are sensitive to effects that
break this symmetry, no matter how small. Be-
cause of this sensitivity, it was shown that two
new aspects, not considered in I, are significant.
These aspects, also intimately associated with the
vacuum polarization, are called the fermion-
mass-damping effect and the Pauli effects. Their
inclusion was shown to break the (gq + $2) sym-
metry as one approaches the limiting form and
change the continuous set of solutions into a dis-
crete set that included both symmetric and asym-
metric parts.

The structure of these solutions was investiga-
ted, and a method for estimating mass splitting
was given. It was shown that this estimate is
extremely sensitive to numerical errors. While
these errors unfortunately stem in large measure
from non-QED physics and are indeed much too
large to permit a quantitatively convincing esti-
mate, this difficulty should not obscure the qual-
itative fact that this model does have the possibil-
ity of asymmetric solutions compatible with the
observed p-e ratio. In mitigation it is perhaps
worthwhile to note that there are well-known phy-
sical systems which also exhibit extreme sen-
sitivity to certain parameters, e.g. , those in-
volving critical phenomena or phase transitions.
It should also be remarked that while this model
is extremely sensitive to intrinsic computation
errors, it cannot be said that the correct p, -e
mass ratio can result only by an exquisite cancel-
lation of two opposing effects; p=1+(3/4)o. gives
(a good approximation to) the observed m /m„and
n, while small, is not vanishingly small.

Ultimately, of course, one hopes for an improved
experimental knowledge of the fermion spectrum
and theoretical understanding of the interactions
to enable calculations of adequate accuracy.
Until such time, it appears that the best test of
this model is a search for the yet heavier lepton
predicted by an extrapolation of the model at -380
GeV/c . This prediction is less subject to the dif-
ficulties mentioned above because it derives from
an already observed mass ratio, which should
afford a significant compensation for the intrinsic
errors. Such a search would at the same time
test the lepton mass predictions of several other
models (see Table II) which fall within the cap-
abilities of coming generations of accelerators.

Finally, it is interesting to note that, should
this model be relevant to describe the LL(,-e mass
splitting, the fact that the observed p, -e mass
ratio is on the order of n appears to be fortuitous,
rather than the consequence of a simple, direct
relationship to the magnitude of n. In this model,
one would not expect n to play a direct role in
the mass ratio (i.e. , m, -nm„) since both leptons
acquire their masses self-consistently and "at
the same time. "

ACKNOWLEDGMENTS

I am grateful to U. Bar-Gadda, J. D. Bjorken,
S. J. Brodsky, K. Johnson, and G. Rosen for
useful comments. I am particularly grateful to
J. D. Bjorken for reading a draft of the manu-
script and to R. Blankenbecler for extensive dis-
cussions of my analysis as well. This work was
supported by the Department of Energy, under
Contract No. DE-&C03-768F00515.

APPENDIX A: A GENERALIZATION OF THE ONE-
PHOTON ESTIMATE OF THE SELF-MASS

In Appendix A of I, a one-photon estimate of the
leptonic self-mass imam

"~' was derived. The usual
Feynman rules of QED and the notation of Bjorken
and Drell" were used to write down the integrals
associated with the graphs shown in Fig. 2(a). It
was assumed that, participating in the polariza-
tion of the vacuum, there are (an effective num-
ber) R other pointlike particles in addition to the
two leptons. A Wick rotation" was employed to
convert these integrals from expressions in Min-
kowski space (k„, p, = 0, 1, 2, 3) to ones in Eu-
clidean space. The substitutions to effect this
rotation are

k, =iX4, k~ =K), and O'= -K', (A1)

where j = 1, 2, 3 and i = 4-l. As discussed in I, the
infrared problems were ignored, and only the
leading terms in the ultraviolet cutoff were kept.
The resulting expressions were then summed.

Since the interest in I was in the symmetric
solutions, all (R+ 2) masses were set equal to
m, yielding the one-photon estimate

em&'» = 9m
ln

4(R+ 2), 1 —(R+2)(o, /3n)ln(A'/m')

(A13I)

(The I appended to an equation number indicates
that that equation is taken from 1.) A in this equa-
tion is a hard cutoff just below the Landau singu-
larity. From Eq. (A13I) the dimensionless quan-
tity
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ln
9 1

4(R+2) 1 —(R+.2)(o./Sw)ln(A /m )
u

~ 1 ~
s -zK

(A4)

(A14I)

was defined.
One can easily generalize this result to apply

to the case of differing fermion masses. Using
the definition

the argument of the logarithm is always greater
than unity (when we work in our symmetric Eu-
clidean four-space), and hence the logarithm in
Eq. (A4) is always positive. But, for small g',
Int ]-ln1= 0. This fact can be (approximately)
taken into account by dropping the contributions
of the loops of the ith fermion when

n A'].—=—ln
3r m. 2 ' (A2) K'&m ' (A8)

where i = 1 or 2 stands for the (two) leptons and
i = S subscripts an effective "threshold" mass (for
the contribution of the R "hadronic" pointlike par-
ticles as a set), Eq. (A1SI) becomes

which is in accord with intuition. In the text this
effect is called the fermion-mass-damping effect.

When employing Eq. (A5), there are four regions
of interest in the mirror plot (see Fig. 4) defined
as follows:

(, ) 9m, 1+(R+1)F„—$, -R$,
4(R+2) 1 —$, —t', -R), (AS)

Region I: f, & P„& P„rom, & m, &m, ,

Region II: $, & $, & $, or m, &m, & m, , (A8)

Equation (AS) uses the convention that i =1 repre-
sents the lepton acquiring the self-mass and i = 2
the lepton whose mass is specified as a param-
eter in the expression for 5m, .

An improvement upon this approximation can be
made by noting that in the expression for the vac-
uum polarization due to one fermion l.oop,"

Region III: $, & $, & $, or m.,& m, &m, ,

Region IV; g, & $, & $, or m, &ms&m, .

The results of the self~mass integrations are re-
corded below. The quantity G, which is to account
for the first effect of the Pauli exclusion principle
(discussed in Sec. VIC), equals (1-c,); cf. Eq.
(12). G is unity when this effect is ignored.

Region I:

9m, 1+ (R+ 1)g, —$, -R $,
4(R+G+I}, I -G~, - ~, -R4 (Av)

essentially the same as Eq. (AS).

Region II:

9m, I 1+ P„-$, 9m, 1 —G], —],+ (G+1)],
4(G+ 1) .1 —G(, —F„+ (G+1)$3 4(R+ G+].) ], —G), —t', -R),ln + ln

Region III:

1-Gt, + Gh, 9m, , 1-G(, —(,+(G+1)t,
4G 1-Gt', + Gg, 4(G+1) .1-Gt, —$ +(G+1)] 4(R+G+1) I-G(, —(, -Rt,

Region IV:

9m» 1 1 9m, I 1-G),+Gg, 9m, 1 —G$ +(R G+)$, -Rg,
4G 1 -G), + G t', 4(R + G) 1 - G (, w (R + G) t', -R t'3 4(R + G+ 1) 1 —G g, —$, -R g,

(A8)

(A9)

(A10)

Analogous to Eq. (A14I) one may now define a more
general form for A as the respective expressions
obtained from Eqs. (AV), (A8), (A9), or (A10)
divided by m, . These expressions for 4 are the
appropriate dimensionless quantities to use when
the fermion masses are not assumed to be the
same.

I
APPENDIX B: SOME SLOPE CALCULATIONS

The hard cutoff integral for the dimensionless
parameter A (defined in Appendix A} which would
be associated with Eq. (AS) can be expressed in
the form

9 S'max dyA= 4(R+2), 1 -y
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where, analogous to Eq. (31I),

K ~ K' R~ K
y= —ln, +—ln, + ln3' my 3' m 317 - m

d$, E —1

d$2 E+R+1 '

where

(B9)

y = -(R+I}$,+ $, +R4,

y „=$~+ $2+R $3,

(B3)

(B4)

d
f(y, c)dy = f (y, c)dy—

~C ~ ~ ~C

db Qg
+f (b, c) —f (a, c)——.

dc ' dc
'

Since the integrand of Eq. (Bl) has no functional
dependence upon ], or („Eq. (B5) applied to Eq.
(Bl) yields

(B5)

and the P„. are defined by Eq. (5). Since i = 1 is the
lepton acquiring the (self-consistent) self-mass
and i = 2 represents the "parametric" lepton, we
are studying $, =F($,); in particular d$, /d$,
= dF/dg

We now recall that Eq. (1) for the n&
= 1 approxi-

mation yields the self-consistency condition
.P -1=0. It was shown in I that in like fashion
higher-order approximations lead to the condition
P(A) = 0, where n& is the highest power of A in the
polynomial expression P(A}. Thus, in general,
the self-consistency condition leads to the specifi-
cation that A. = constant, where the constant is de-
termined according -to the order g of the approxi-

y
mation. (In I it was shown that for g = 2,
A, =1.3136.) Therefore, the total differential of
A. , dA. =O, independent of gz.

Now the quantity dA can be calculated without
actually integrating. Consider the formula"

g= (B10}
ymax

If we introduce a phenomenologial form L(y)
for a Lorentz-invariant cutoff at the Landau singu-
larity, and select A such that

yl, 2=,2=y, =l.
Equation (Bl) becomes

(Bll)

where the prime denotes that Eq. (Bl) is extended
by the use of I. in this formulation. As discussed
in I, the principal-value prescription has been
used with the infinitesimal q going to zero (sym-
metrically) at the Landau singularity. [As with

Eq. (Bl), the self-consistency condition requires
that A' = constant. ]

Equation (B12) can further be refined by also
including the fermion-mass-damping effect [active
when K'& m, '; see Eq. (A4) and related discus-
sion]. With this refinement Eq. (B12) becomes

~p g d
1 —v

&min

+ Iim + ~, (BI3)
9 '~ "L,dy

" I.dy )
o4 +2 „ 1 -y, ,„1 -y]

where

( "y-'—
4(R+2) I I -y,„ 1

Using Eq. (B3}and (B4) to write

dy;„= -(R+1)dP„+dg,

and

dy...=d4+d4

(B6)

(B7)

(B8)

K~ e K2
y =—ln + —Jn' 3r m. ' 3r m.' '

yo =
& ~+ $2

—2&3

and

yollll k2 51 '

(B14)

(B15)

(B16)

obtains Proceeding as before, we obtain

~~ p yo ymln9 d d . 9
8 1-yo I -y;„o o 4(R+2)

L(y -n)d(y -n)
n yo

L(yi+ n)d(yi+ q)"
(Bl7)

Using Eqs. (B2) and (Bll), dy;„= -dg, +d$, (B19)

d(y~ —q) =d(y~+q) =d4+d(, , (B18)

where the quantity g contributes no functional de-
pendence. From Eq. (B16),

to replace Eq. (BV), and from Eq. (B15)
dyo=dg, +dg, . (B20)

Using Eqs. (B18)-(B20) in Eq. (B17},and setting
44' = 0 yields
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dg +d$, d$ —df
2(1 -y, ) 2(1 -y,„;„)

2L d$, +d)2 dP„+d$ 2

R+2 (1 -y,)(a+2) '

which reduces to

2J. R 8+2
d 4 I n 2(1 -yo) 2(1 -y.„.)
d)2 o o 2L R R+2

q 2(l -yJ 2(1-y,„)
as the formula for the slope dF/d$.

In the limit, Eq. (822) may be written

dg, 1
R+2

(822)

(823)

q =f[(R+2)X]- ', (827)

where the (unknown) factor f is expected to be on
the order of unity; f is to account for the uncer-
tainty in the coefficient associated with the onset
of the second Pauli effect.", In this case, Eq.
(823) becomes

~'= -1+
d(, 2L(1)1' '

Thus at the symmetry point 1/[2L(1)+f] is the
one-photon estimate for &,.

(826)

finite. From the discussion in Sec. VIC 3, for
the one-photon approximation it is appropriate to
set

where
2 ()(l-y,.;.)

T)~0 n
(824)

d],
d)2

(825)

in the physical region of the mirror plot.
It is clear that Eq. (825) obtains independently

of the values 4' and R, and furthermore that it
does not depend upon the details of L as long as
L is a continuous function at the Landau singulari-
ty. , which one would expect from physical consid-
erations. Consequently, even when one includes
the (nonlinear) fermion-mass-damping effect,
$, = F(g, ) still is a straight line, degenerate with

(2 = F(],} everywhere; the divergence of the photon
propagator at the Landau singularity dominates
the calculation.

It is useful to note that at the symmetry point

g, = $2 which, using Eq. (816), gives y;„=0. Thus,
at the symmetry point Eq. (824) becomes

2L(1}
$~0 g

If, as discussed in Sec. VIC3, one takes the
Pauli exclusion principle into account, then the
limiting value for g can be related to the number
of (available) states N in the phase space associ-
ated with normalization volume P used for the cal-
culation. As long as t/" is finite, then g is also

One can see that for E'» 1 Eq. (823) is essentially
equivalent to Eq. (89).

Equation (824) shows that E' will be a divergent
quantity going as lim„o g"' provided y;„&1. From
the definition of y,.„[Eq. (816)], Eq. (5), and the
self-consistent value of $ found in I, one antici-
pates that y,.„&1 will be satisfied in the physical
region of the mirror plot ($„$2&0). Therefore,
while in this approximation g' is a divergent
quantity, the slope is convergent to

APPENDIX C: N DEPENDENCE OF THE SELF-
MASS SOLUTIONS

1 -1
~1 ~p(~l 4)t ~2 v2( 51 ~2)' (C2)

In terms of these new variables, it is useful

It is the purpose of this appendix to show that
the locations of the self-mass solutions are inde-
pendent of the effective number of phase-space
states &, where N is introduced in Sec. V. 7he
analysis to show this starts with the approximation
that includes the phenomenological Lorentz-invar-
iant cutoff at the Landau singularity and the (non-
linear) fermion-mass-damping effect. In this ap-
proximation, as shown in Appendix 8, d],/d)2=-1
everywhere; g, = F((2) is a straight line perpendi-
cular to the symmetry axis on the mirror plot,
$2 =F($,) being degenerate with $, =F($2).

It was remarked in Sec. V that if the (g, + $2)
symmetry of F is broken, the lines $, =F($2) and

$2 =F(g, ) will separate slightly. The intersection
points of these curves then specify the location
of the self-consistent solutions to the coupled
self-mass equations, both symmetric and asym-
metric, as depicted in Fig. 4.

An indicator of the separation of these two
curves is the quantity

D(5 ) -=F(5 ) -F(F(5.)).
Line segments representing the quantity D are
shown in Fig. 4. It is evident that the zeros of
the function D($2) give the locations of the self-
consistent solutions to the problem. We note here
that by the criterion of Eq. (9), those solutions
with dD/d$2& 0 are stable, while those with dD/d$,
& 0 are unstable.

Because of the symmetry between g, and („
a more convenient coordinate system in which
to analyze this problem is one rotated by 45' from
($„$2). That is, let
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to define the function

~(c.) = D((.), (CS)

(C4)

By symmetry a, = 0, and has already been omitted
from Eq. (C4). Now &(g,) is known to be small
and goes to zero when 1/N goes to zero. There-
fore, we assume that we can expand the coeffi-
cients a„ in the small parameter N '«1. That
is, we may set

where the b,.„are independent of ¹ This step
yieMs

(C6)

where to be unambiguous, we define the argument

t, of &(f~) as that specified by the argument g,
on the line g, =E($,) as indicated by the dots in
Fig. 4. That is, g, = [$, -F($,)]/W2.

For the initial (degenerate) approximation
mentioned above, we see that h(t, ) =0 for all f,
Inclusion of the ($, + $,)-symmetry-breaking effects
leads to d (f,) CO in general, but as required by
permutation symmetry, leaves b, (0) = 0, the sym-
Inetric solution.

We now make the power-series expansion

When N=~, a(g, ) =0, and Eq. (C6) reduces to

0= gf g, =0.
n=1

(C7)

Since Eq. (C7) is true for all f„ it follows that

bo„= 0

for all ny0. Thus we can drop the i=0 terms
from Eq. (C6). For large N, we need only the
leading, or i = 1, terms in Eq. (C6) and write

(C6)

(CS)

Q bi. &a"=0 (C10)

an equation in P2, independent of N.
One may now let the normalization volume for

the problem become as large as one wants. As
a consequence, N gets larger, and the curves
g, =E(g, ) and g, =E($,) lie closer together causing
&(f,) to approa, ch zero Howev.er, because Eq.
(C10) is independent of N, the solution points of
the coupled equation given by the roots of 4,
remain invariant as this limit is taken. Thus,
in the limit of N- ~ we have d$, /dg, - —1, but

still have discrete solutions with the possibility
of asymmetric solutions.

as the appropriate equation for large N. When
one solves Eq. (C9) for the roots of 4, one obtains
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