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Dyson-Schwinger equations approach to the large-N limit: Model systems and string
representation of Yang-Mills theory
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Simple model systems like the O(N) 0 model, the Gross-Neveu model, and the random matrix model are solved at
N~oo using Dyson-Schwinger equations and the fact that the Hartree-Fock approximation is exact at N~00. The
complete string equations of the U(oo) lattice gauge theory are presented. These must include both string
rearrangement and splitting. Comparison is made with the "continuum" equations of Makeenko and Migdal which
are structurally different. The diAerence is ascribed to inequivalent regularization procedures in the treatment of
string splitting or rearrangement at intersections,

I. INTRODUCTION

In quantum chromodynamics (QCD) the gauge-in-
variant Wilson loop operator creates a string of
chromoelectric flux from the vacuum. With hind-
sight from the string model, the proposal of Nam-

bu, Gervais and Neveu, and Polyakov' has been to
study directly the local variations of the Wilson
loop. The precise study of the local-variations
problem is tantamount to establishing the Dyson-
Schwinger (DS) equations for the loop operator
which dictates the definition of the derivative oper»
ator in loop space. ' This definition depends on
the gauge group. The gauge group of interest here
is U(N)

In the case of a general intersecting loop the DS
equation is not closed as an equation for real func-
tions defined on the set of all four-dimensional
loops. The crucial observation in this direction
due to Migdal and Makeenko' is that as N-~ the
Hartree- Fock approximation becomes exact. Us-
ing this fact it becomes possible to have a repre-
sentation of QCD entirely in terms of real functions
on loops: a string theory. The functional integral
representation of these equations in .loop space
would represent a dual model. In fact Migdal has
proposed such a dual model involving fermionic
strings. The problem of finding the correct dual
model and working out its consequences seems to
be central in getting at a working theory of the
strong interactions based on QCD. Such a theme
has motivated this work.

An alternative formulation of the N =~ limit of
the gauge theory is due to Sakita. ' It involves a
change of variables from gauge fields to gauge-in-
variant loop operators at a given time slice in the
Hamiltonian formulation. The basic difference with
the DS equations formulation is that here at a given
tAne slice the space of states of the transfer ma-
trix can involve gauge-noninvariant string opera-
tors. ' Hence the type of physical questions that

can be answered in the two formulations are dif-
ferent.

The topics treated in this paper are the follow-
ing.

(1) The DS equations for far simpler systems
such as the 0(N) o model, the Gross-Neveu model,
and the raridom matrix model are derived and
solved at N=. Well-known results are reproduced
in this approach.

(2) The DS equations in a U(N) gauge theory are
reexamined. They are first discussed in the con-
text of lattice gauge theories which offer a sound
platform to discuss these matters. We briefly re-
view the equation for a simple loop. This mainly
serves to establish the notation of the derivative
operator in loop space corresponding to the gauge
group U(N). The DS equations for simple loops
are insufficient to determine them. This is ex-
plicitly illustrated in the exactly soluble case of
tmo dimensions.

Next me study intersecting loops —where a given
link is traversed more than once in the same or
opposite direction. To have closed equations all
such loops must be included because even starting
from simple loops such configurations can be ob-
tained by successive applications of the derivative
operator. The general structure of the string
equations involves the action of the second-deriva-
tive operator producing string rearrangement or
splitting at intersections depending upon whether
the common link is traversed in the same or op-
posite direction. The string equations on a lattice
presented by Makeenko and Migdal' are only valid
for the class of intersecting loops in which re-
peated traverses of a given link are in the same
direction. For these, only string rearrangement
occurs. Such has been the case where these equa-
tions have correctly reproduced the known re-
sults, e.g. , of the one-plaquette world. ' In gener-
al, this subclass of equations cannot be closed be-
cause the derivative operator can lead to loops
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where string splitting occurs.
After this we briefly discuss the continuum

string equations which are structurally different
from the lattice equations. Roughly speaking the
basic difference lies in smearing the "6 functions"
at string intersections which lead t'o string split-
ting and rearrangement. In the lattice theory the
5 functions always come smeared because strings
interact when links overlap. In the continuum de-
rivation string splitting is allowed to occur at a
point. The singular 6-function interaction is
smeared only after evaluating quantum expecta-
tion values. It is not surprising that the continuum
equations cannot be derived by taking the continu-
um limit of the lattice equations.

The basic steps involved in the DS equations ap-
proach are the following.

(i) To write down the exact DS equations for the
relevant operators. The method used here is a
version previously used in the study of toy non-
Abelian models. '

(ii) Use the fact that at N=~ the Hartree-Fock
approximation is exact"' to get a closed equation
for the operators. We note that this approach
completely bypasses the problem of extracting the
entropy per invariant configuration, so crucial in
formulating the N= l.imit in the path integral.
Further it is easy to formulate the problem of
higher-order corrections.

II. MODEL SYSTEMS

A. The O(N) nonlinear o model

The degrees of freedom are normalized N-di-
mensional spins at each lattice site:

5.=(S.', S'„, . . . , S„"), 5.'=1.
The correlation function of interest is

g„B„&=
&

d p K„B„exp(AjT),1

where

&m, ~&

is the action with nearest-neighbor couplings and

d p = d5„5(5„'—1)

is the O(N)-invariant measure. Z is the partition
function.

L'"' are the generators of O(N):

L:=5„+P~.L&"5.

Working out the details in (4) we arrive at

= g„E„&—5„„. (9)

This done we use the fact that at N=~ the Hartree-
Fock approximation is exact:

(10)

This is the key to the solubility of this model and
one obtains a closed equation for the correlation:

o„=g„5„&=, ,~ o, exp[i' (n —m) ],

1

7N /On-m-n
I /On On-m =On-m 8nm~

or equivalently in Fourier space
m dg 2 cosa„o,—,„g2 cosl„o;o,

which leads to

= o~ —1, (12)

This is the DS equation when num. It has pre-
viously been used to study correlation inequali-
ties." Note that (7) is not valid at n =m and further
(7) is not sufficient to determine (K„.B & at N=~.
This is a simple but important point and we shall
come back to it in the gauge-theory context.

Case Z. When n=m,

(8)

Combining (7) and (8) we get the complete DS equa-
tion

DS equutions

Case 2. When num the equation is given by

TN
(4+H) —p„2 cosi'r„'

(13)

4+H = 7'N( 1+ Jl 2, +2 cosl„o

The constant (4+H) is determined by
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dk NT
(2«)~ (4+H) —Q„a cos}'t

(14)

A is an ultraviolet cutoff. Calling

g "x d2k

N ., (2~)' " (21)

This is the result of Berlin and Kac and of Stan-
ley." Finally we remark that (9) can be used as
a, starting point for a systematic 1/N expansion.

B. The Gross-Neveu model~2

The degress of freedom are N-component fer-
mion fields at each space-time point. The correla-
tion function of interest is

(20) and (21) imply

Jk (2«)' k'+m' g '

with solution

m =A exp(-«/g),

which is the well-known result for the ground
state.

(22)

(23)

o(x -y) =Q (7&,(x)«),(y))

d, xd, x,x, y exp-A
fi

C. Random Hermitian matrix model

The degrees of freedom consist of a N&&N Her-
mitian matrix M,J. The correlation function of
interest is

The action is 1 1
u = — dM —tr(e'"") exp(-A/T)k g (24)

The DS equation is

(i8)
The action is

A = l trM2y L trM~.

k = 0, +1,+2, . . . .

(25)

d d —,x exp -A =0. 175, y

This is the model previously considered by Brezin
et a/. " The DS equation is

(17) implies P jdM [(e' x)xexp( A/T))=D. -

This implies

(28)

A simple calculation gives

8
ND(x —y)=i)'" il.(x)P.(y))ey„

Using the formula

(27)

+N /i). (x)II'.(y)FD, (y)pe(y)) . ((8)
a b

For large N the Hartree-Fock approximation is
exact:

sM
ml

(27) becomes

t. 1

df (t7t}(eiktM) (eik &&-t)N)
fm

0

e" a& ——tr[etk "(M+gM'}]
1 1

a a~ b ~ b~

N5(x y) =i'„cr(—x - y) + —o(x -y)o(0) . (19)

Taking Fourier transforms we have

and (18) becomes a closed equation for the corre-
lation o(x —y):

df(treiktM treik &-&t )kt) (28)
ik

Note that the right-hand side of (28) is the analog
of the 6 function that appears in the DS equation
for vector degrees of freedom. For large N, the
Hartree-Fock approximation is exact, hence

g ~ d'k
N -te, + —e, =( );e,) . (ao)

(tre &ktk& trexk &'-t») = (tre& "t&)(treik &'-t'tt}

and (28} can be written as a closed equation for uk:



DYSON-SCHWINGER EQUATIONS APPROACH TO THE I.ARQE-Pf. . . 973

d d f'
-g 3 up

d~ Q&+0 Jl dtu~p~&, ,&

= 0 .
I 0

(29)

We have put 'TN=1 for convenience. Taking the
Fourier transform

~ dA.
u, = —u(X)e"",

„2m (30)

we get from (29), after some algebra, either u(X)
=0, or

along the loop. A given link can occur more than
once along the contour. The Wilson loop is given
by

tr 1 —. =- = tr (1
W(C) = —U(C) = — dU, U(C) exP —,A

~

.
N ~ 'i'' r N )

(34)
The action is

A =+[trU(p}-&],

"~dX—Q(X) =Q = 1.&=0
2g

(31)
where U(P) is a product of group elements at the
four oriented links of the plaquette P. dU(1) de-
notes the left and right invariant measures at the
link 1.

u(~) = (1+2gu'+g~') (4~' —~')'t', (32)

with n determined by

3ga4+ a2 —1 = 0.

III. YANG-MILLS THEORY ON A LATTICE

Gauge degrees of freedom are N XN unitary ma-
trices defined on the links of a space-time lattice.
The correlation functions of interest are Wilson
loops. Let C be an arbitrary closed .loop and con-
sider the group element

U(C)= „., U(&),
SCI

which is a directed product of group elements

(33)

This is a singular integral equation for the density
of eigenvalues of the matrix M. It was obtained in
Ref. 13 using different methods. The solution pro-
ceeds by the Riemann-Hilbert method. We quote
the result

The DS equations

We first discuss the well-known case of simple
loops and indicate the derivative operator. Then
we present three simple examples to make our
point about intersecting loops. After that the gen-
eral result is evident.

Case 2. We will call a loop simple if each link
occurs only once along the contour. Examples are
given in Fig. 1. Denote the link at which the equa-
tion is required by U. Its coordinates are (n, n+v).
Let us isolate it in the action

I

A =A' +g tr(UVt+ UtV„}. (35)
tt, AV

A ' does not contain U. F„ is the product of the
three links which together with U forms a plaquette
in the p, direction. Denote the part of the loop
without U by U(C') so that

U(c) =U(c )U.
The DS equation is then given by

tr[U(C')t' 'U~] exp —,g tr(U~Vt+U~tV„) —tr(UVt+UtV„) =0.8 (e)
Qf I

trav

A+0
(s6)

t' ' is a U(N) generator:
U, = 1+ a.t& & U,

and ' U,'=U' 1-

Working out the details one gets

(ss)d„(n, n + v) W(C) = W(C),
1

gN

d„(n, n+v) is the derivative operator in the pW v
direction at the link (n, n+v) given by (Fig. 2)

FIG. 1. Simple loops where each link occurs only
once along the contour.

d„(n, n+ v) W(C) = (trU(C)[U(y„) —U~(y~)])

= w(c+y„) —w(c+y„') . (39)
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d p. (n, n+I ) (, =: =: =, } = (,"W —,=~ }

FIG. 2. Lattice derivative operator for the unitary
group.

U(y„) = U F is the group element corresponding
to the little loop y„at n in the p, direction. y„' is
the oppositely traversed little loop. Also note that

[U(y„) —Ut(y„)]&, = —6A/6a„,
&

is the equation of mo-
tion term with 6a„&&—- (U dU),.&.

The equation for the simple loop (37) is the ana-
log of (7) for spin systems. However, the factor-
ization property which essentially solves the vec-
tor model is not valid here (see Fig. 3):

(tr[U(C)U(y ) ])w (trU(C))(trU(y )) . (40)

Hence the equation for W(C) is not closed. It gets
related to nearby loops in a complicated way. The
point of similarity is that like (10) Eq. (37) is in-
sufficient to determine W(C). This is presumabLy

I

and

C =C, (n+v, n)C, (n, n+v) (41)

U(C) = U(C, )UU(C, )U'. (42)

The DS equation at all links W(n, n+ v) is the same
as (38). At (n, n+v) we have another term. The
equation is

because both these equations are homogeneous and
do not contain information about coalescing de-
grees of freedom. In the Appendix we demonstrate
this explicitly in the context of the soluble two-di-
rpensional lattice gauge theory. There we also
establish (40).

Case 2. We provide three examples of inter-
secting loops where links do occur more than once
along the curve.

(i) The link U with coordinates (n, n+v) is tra-
versed twice in opposite directions [Fig. 4(a)]. We
have denoted the two closed contours by C, and C,
so that the whole contour C is given by

8A
tr U Cl t"'UAU C2 UA' exp 2 tr UAVQ'+UAVg —tr UVQ+U'Vg =0

Of Of

A 2 A g2 A=O

The steps are the same as before. Noting that

g[(trU(C, )t' 'f' 'UU(C, )Ut) —(trU(C, )t' 'UU(C, )Utf' ')] =-N(trU(C, )UU(C, )Ut)+(trU(C, ) trU(C, )),

(43)

we arrive at

g d„(n, n+n)IU(C) =IV(C) -(—U(C, )—U(C, )) .
gN

(44)

I

and if m Wn or n+ v as we mentioned,

d(m, m+ v)W(C) =W(C) . (46c)

Now using the factorization property as N- ~,

trUC, trUC, = trUC, trUC, , 45

we have the closed equation

g d (n, n+ v)W(C) = W(C) —W(C, )W(C2) .
gN

(46a)
Also,

g d(n+ v, n) W(C) = W(C) —W(C, )W(C~),g'N, ~v

We note that at the line (n, n+v) the string has split
[Fig. 4(b)].

(ii) The link U with coordinates (n, n+v) is tra-
versed twice in the same direction. See Fig. 5(a).
C, and C, are the two closed curves that comprise
the curve C. Let C,' and C,' be the segments which
when completed by the link (n, n+ v) give the closed

(46b) 2
R

C2

0+V
~~ c

X
(b)

FIG. 3. Small loop does not decouple from big loop. FIG. 4. String splitting.



DYSON-SCH%INGER EQUATIONS APPROACH TO THE LARGE-N. . .

curves C, and C,:

and

C = C,'(n, n + v) C,'(n, n + v) = C,C,

U(C) = U(C, )UU(C;)U.

C~
0

0+Ã
'1l

0+ pii C i)

The DS equation at all links 4(n, n+ v) is the same
as (37). At (n, n+ v) we have another term. The
DS equation is given in the usual notation by

(a}
FIG. 5. String rearrangement.

tr[U(C,')f' 'U U(C,')U„] exp —,g tr(U Vt+ UtV„) —tr(UVt+ Ut V )
~

= 0.8

A Of gxv '& ~=o
(47)

Working out the details and noting that

g[(trU(C()t' 'f' 'UU(C2)U)+(trU(C()t' 'UU(C,')f'~'U)]=-[N(trU(C))+(trU(C, ) trU(C, ))],

we arrive at

P d (s, n + v) W(C) = W(C ) + W(C, )W'(C, ) .
1

g'N „,„' (48a)

(We have used the Hartree-Fock approximation as N-~. ) The same equation is valid on both traverses.
To complete the equations for m Wn or n+v we have

g d„(m, m + v) W(C) = W(C) .1
g'& ~~v

"
We note that at the link (n, n+v) the string has rearranged itself [Fig. 5(b)].

There is a crucial sign difference in the right sides of (46) and (48). These equations can all be com-
pactly written in the notation of Makeenko and Migdal'

d„(n, n+ v) W( C)= g [6(n, n+v~m, m+v) —6(n, n+v ~m, m —v)]W(C„„)W(C „).1

mEC

(48b)

(49)

gd„(m, m+v)W(C) = W(C),
1

p, Pv

Q d„(n, n + v),W(C) = W(C) —W(C, )W(C,C,) —W(C, )W(C,C,),
1
2~

The first 6 function always has at least one contribution when C„=C. It also contributes when a link in C
is traversed more than once and string rearrangement occurs in C at the link (n, n+ v) leading to C„and
C „. The second 5 function contributes when a link in C is traversed more than once and string splitting
occurs at the link (n, n+v) leading to C and C „.

By working our various examples of increasing complexity in which one has several traverses we can
convince ourselves that (49) is applicable in all cases and in fact it is the general string equation that de-
scribes QCD at N=~. The equation of Makeenko and Migdal corresponds only to the possibility of string
rearrangement. As already mentioned, such a subclass of equations cannot be closed because by success-
ive applications of the derivative operator we can indeed reach cases where string splitting occurs (see
Fig. 6).

Finally we illustrate the general equation in a more complicated situation. The loop C is given in Fig.
7. Its three constituent directed loops are C» C» and C,. We suppose that, they all start and end at the
point n We deno. te the three string bits that pass through (n, n )+bvy 1, 2, and 3. The DS equations are
derived in the same manner as before. They turn out to be

d„(n, n+ v),W(C) = W(C) —W(C, )W(C,C,) + W(C, )W(C,C,),
1

+2~

Q d„(n, n+ v),W(C) = W(C) —W(C, )W(C,C,)+W(C,C,)W(C, ) .
1

g2N „„„'
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FIG. 6. Derivative operator connects the two different
classes of strings.

The string splitting and rearrangement terms
carry opposite signs —negative for strong splitting
and positive for string rearrangement. These
equations can once more be written compactly as
Eq. (49).

We believe that Eq. (49) is complete since it con-
tains all gauge-invariant operators which are all
independent as N-~. Operators like detU(C) ean
be considered as dependent because they are linear
combinations of the operator tr[U(C)~] which

create strings of flux which wind k times around

the loop |". Further backtracking paths must be
excluded from the definitions of W(C). The string
equation (49) is a diffusion equation and it is na-
tural to require a boundary condition. One propos-
al is to fix the value of a particular Wilson .loop,
e.g. , an elementary plaquette. This number may
be determined by other methods, e.g. , for small
g'N one can use perturbation theory.

IV. CONTINUUM THEORY

Up until now we have worked with the lattice cut-
off. This lattice procedure was also used to de-
fine the notion of a differential or derivative in

loop space [Eq. (39)]. Further in deriving the DS

equations all expectation values were evaluated
without sending the cutoff to infinity.

Now consider the continuum theory defined by
the Wilson-loop expectation values:

made discrete in segments of size b &. „(n) is the

gauge field at the point n on C and t„(n) is the unit

tangent to C at n. The continuum theory is regu-
lated by a cutoff A= I/a. The DS equation for
W(C) is given by

UC;~ =, UC
~

— S

(52)

The right-hand side of (52) is the string derivative
term: 8„(5/5a'„)W(C).' It can be shown to be the
continuum limit of the lattice derivative:

I
lim —,Q d„(n, n+ p) = 2e„aoa' " 5cr„,

The main emphasis of this discussion is on the
evaluation of the left side of (52). The procedure
of MAkeenko and Migdal is to consider b«a and
take the, limit b 0 within the expectation values.

To illustrate the point consider the loop of the

type given in Fig. S(a). In the lattice theory there
is neither string splitting nor rearrangement for
this loop at the point of intersection. However, if
the limit b-0 is taken zeithin the expectation value
one has

lim, "
exp M n t„n b

= fdrt„(r)et't(r e(r)l(trU(C, „)t-rU(C„)) .

(53)

The 5 function in (53) is a result of taking the limit
b-0. This leads to x and y being coincident
points. trU(C„„) and trU(C ) are then gauge in-

where S= g d'x trE„„' is the Yang-Mills action and
(a)

U(C) =P
"

exp[i/„(n)t, (n)bJ
@AC

is a path-ordered product along C which has been

2 3

FIG. 7. Loop where a given link is traversed 3 times.
(c)

FIG. 8. Continuum string splitting and regularization.
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variant and one has as N- the continuum result
of Ref. 3:

dr t„(r)5"'(x y-(r))W(C„„)W(C„).(
5U(C)„
Ml. x 1J

(54)

Clearly the string has split at x=y [Fig. 8(b)]. But
(54) is very singular and the proposal of Makeenko
and Migdal is to smear out the 5 function over
length scales of the order of a. Now since xWy,
trU(C„„) and trU(C ) are not gauge invariant unless
one introduces by hand small str ing bits from x-y
and y x [Fig. 8(c)]. This is the meaning of (54).
In the lattice theory the 5 function is smeared out
before taking the expectation values (Figs. 4 and
5). In the continuum derivation sketched above
this is done after taking the expectation values.
This is the basic point of difference. This also in-
dicates why taking the lattice spacing a 0 in the
general equation (49) cannot give us (54). In fact
we do not know how to take the continuum limit of
(49). How does the continuum theory remember
the different signs which occur at string splitting
and rearrangement in the lattice theory'P Finally
we wish to be explicit: our analysis of the lattice
and continuum U(~) string theory must not be un-
derstood as passing judgment on the two formula-
tions but only as a comparative study.
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APPENDIX

Here we show in the context of two-dimensional
lattice gauge theories" that the DS equation (39)
for the simple loop is insufficient to determine it.
In (39) p, is either of m or ay. The equation is
depicted in Fig. 9. Since we are in two dimensions
we can choose the generalized axial gauge: all
links in the y direction and all links in the x direc-
tion at a particular y are set equal to the identity.
Then it is easy to show that for a simple Wilson
loop

W(C) = &OA1,

A is the area of the loop and

CONCLUSION

We have seen that in vector models the N =~
DS equations for correlation functions are truly
closed. This is the key to the solubility of these
models. In a gauge theory (and even in chiral
models) the N=~ DS equations relate nearby loops
in a complicated way. The complete string equa-
tion for the U(~) gauge theory has been presented
on the lattice. It contains amplitudes for both
string splitting and string rearrangements with

opposite signs —the basic difference between the
lattice and continuum derivations as ascribed to in-
equivalent regularization procedures in the treat-
ment of string splitting or rearrangement at in-
tersections. The question of the continuum limit
of the lattice string equations remains. It may be
interesting to look for a new field-theoretic rep-
resentation of the string equation very much like
the description of polymers in terms of scalar
field theory. "

Note A.dded. The sign difference that occurs for
doubly traversed links going in the same or oppo-
site direction has also been noted by D. Foerster
[Nucl. Phys. B170, 107 (1980)]; We were unaware
of this at the time of writing this paper.

1 ~ 1 ~ 1
d U —t r Ux exp —,tr(U+ U ~)

z 0 N g'

are the one-plaquette correlations. Further, (39)
can be shown to be

1
g2N

(~A+1+ ~A-1 ~A+1 ~A-1~ ) ~A
1 1 1 2 1

which implies

(1 —(d2) = 1111.
1

g2N 2 j. '

This is a relation between W, and @'2 which cannot
determine W, and hence W(C). We also note that
(40) is true:

(trU(C')UV &U) = +Are, e(trU(C))(trUV ~U) .

I'

g~N

FIG. 9. DS equation in two space-time dimensions.
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