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The possibility that quantum chromodynamics (QCDI is merely a correct effective short-distance field theory for
the strong interactions is investigated. In this context, the addition of super-renormalizable interactions to QCD is of
interest. Conventional polynomial field theory does not include this possibihty. Dimensional arguments suggest that
certain nonpolynomial potentials can produce super-renormalizable interactions in four dimensions. Several classes
of likely candidates are studied, It is shown that they actually produce no interaction at all. There is a universality

principle at work that gives insight into the unique role of polynomial quantum field theories.

I. INTRODUCTION

This paper investigates the possibility that quan-
tum chromodynamics (QCD) is merely a correct
effective short-distance field theory for the strong
interactions. There may exist many model theor-
ies that agree with QCD at short distance but dif-
fer substantially at large distance.

A general framework for the consideration of
this problem is provided. One method for con-
structing such an alternative QCD' is discussed
in detail. Although the method appears promising
at first, the studies presented here suggest that
it is not likely to work. This is additional evidence
for the uniqueness of QCD. More interestingly
though, the investigation produces a general field-
theory result that gives insight into the unique
position of polynomial quantum field theories.

There are two observations that motivate this
work. The first is that it would be useful to have
a reasonable straw man against which to test the
predictions of QCD. Second, the existence of
theories that agree with QCD at short distance
but differ at long distance would have evident bear-
ing upon efforts to prove confinement in QCD.

Strong interactions are the topic in this paper,
and for its duration the other forces will be ne-
glected. In this realm, quantum chromodynamics
is king. QCD is a quark model. It includes colored
and flavored quarks interacting with gluons. For
these general features of the model, there is sub-
stantial phenomenological support. Of course,
QCD is much more than this. It also proposes
a dynamics: a description of the interactions of
the quarks with color gauge-field gluons. For
this, the evidence is not yet compelling. The prob-
lem is a mismatch between theory and experiment.
Current theoretical techniques can extract de-
tailed dynamical predictions from QCD at short
distance only. There are very few experiments
that can be interpreted as clean probes of this
region. Nevertheless, the situation is much better

there than at long distance where there are no
detailed dynamical calculations. In consideration
of this, the (perhaps optimistic) position adopted
here is that QCD gives a correct description of
the strong interactions at short distances.

Before proceeding with the discussion of QCD,
pause for a moment to recall the situation in an
imaginary world of QED only. Here both theory
and experiment are under control at long dis-
tances. The tests of QED are excellent. How-
ever, experiments do not probe arbitrarily short
distances. And more importantly, theory cannot
make predictions at arbitrarily short distances
where the coupling becomes strong and theorists
fail. In this situation, it can be said that QED
is the experimentally correct effective long-dis-
tance field theory. It would be going too far to
say that QED is the correct description of nature
to arbitrarily short distances. Indeed the renorm-
alization-group concept of universality' em pha-
sizes the fact that there are whole classes of
models that differ at short distance but give the
same effective long-distance theory.

Comparison with QED shows that QCD presents
the opposite situation. The theory is under control
and seems to agree with experiment at short dis-
tances. The coupling becomes strong and theorists
fail at long distance. We propose that QCD be
viewed as merely a correct effective short-dis-
tance theory. Consideration will be given to the
possibility that there are field theories with the
short-distance behavior of QCD but with distinct
long-distance behavior. This evidently bears
upon the confinement problem.

To facilitate a more precise discussion, intro-
duce an ultraviolet cutoff A to define the theory,
and let M be a typical hadronic mass. For pro-
cesses involving momenta q much greater than I
and much less than A, QCD is assumed to be a
correct effective theory. That is to say, the pre-
dictions of QCD are assumed to differ from ex-
perimental observations by at most small power-
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law corrections [(M/q)~] that are asymptotically
undetectable. The search is for a model QCD'
that is as good as QCD at short distance. In par-
ticular, it must preserve the asymptotic-freedom
results of QCD. Thus QCD' must have short-
distance results differing from those of QCD by
small power-law corrections. QCD' may differ
substantially from QCD at long distance. This
is not necessarily unacceptable since the long-
distance predictions of QCD have not yet been
extracted and compared with experiment.

If the leading perturbative short-distance re-
sults of QCD are taken as a reference, then there
are effects cuithin QCD that are of order (M/q)&
at short distance. For example, there are con-
tributions from quark masses, dynamical sym-
metry breaking, and instantons. These are not
our interest. Rather the task is to find a model
that reproduces up to power-law corrections the
short-distance results of QCD and differs from
QCD at long distance.

To study the problem, a conservative approach
is adopted. We assume that QCD' has the fields
and interactions of QCD. In addition it has other
interactions and perhaps other fields. Let A. rep-
resent the additional couplings. Let I" be a QCD'
n-point function with external quarks and gluons.
Let I' be the corresponding QCD object. The
functional dependence is

I"(p, g, A. , m, y, ).
The renormalization-group result' is

I"(e'P,g, X, m, p) = e~"'I"(P,g( t), 7( t), 8 'm(t), y, ).

Our scenario requires that at large ]

QCD

FIG. 1. The trajectory of @CD to the UV-stable fixed
point at the origin.

contains this curve? If the dimension is greater
than one, then there are QCD' models of the type
that we seek. A QCD' trajectory would appear as
in Fig. 2. (This counting ignores the obvious con-
tributions from mass parameters and other para-
meters in QCD itself. ) Where might these trajec-
tories go in the infrared? Do they all lead to
confinement?

The first observation is that there are no con-
ventional, polynomial, super-renormabzable
modifications of QCD. More exotic possibilities
must be considered. The introduction of higher-
derivative fields allows the introduction of poly-
nomial super-renormalizable interactions. Un-
fortunately, there are difficult problems associ-
ated with higher-derivative fields. Nonpolynomial
interactions can contain couplings that by dimen-
sional analysis seem to be super-renormalizable.
This is the possibility that we have investigated.

The gauge-invariant nonpolynomial interactions
that can be constructed with the fields of QCD
all involve derivatives of the fields. This is surely
a difficult situation, and we are not yet prepared
to deal with it. A simpler possibility is to add
to the QCD Lagrangian terms

r'(e'p, g, Z, m, p, )- I'(e'p, g, m, g) + al' (1.3) (1.7)

with

b, I'/I'- e&'. (1.4)

This will happen if A, is an effectively super-re-
normalizable interaction. Then

p is a nonpolynomial function appropriately chosen
so as to produce an effectively super-renormh. li-
zable interaction. We have chosen a closely re-
lated but even simpler case to investigate in de-
tail. The model described by the Lagrangian

X(t)- e'7'

and

(1.5)

will be stud'ed in four Euclidean dimensions.

The task is now refined to be that of adding coup-
lings to QCD that are effectively super-renormal-
izable.

Consider this from the point of view of fixed
points in the renormalization group. ' ' In the
space of all possible field-theory couplings, QCD
gives a particular trajectory to the ultraviolet-
stable fixed point at the origin as t- ~ (Fig. 1).
What is the dimension of the critical surface that

QCD

FlG. 2. The trajectory of QCD' must coincide with that
that of @CD as t
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is nonpolynomial. The purpose is to test the idea
that nonpolynomial Lagrangians can lead to effec-
tively super-renormalizable interactions in four
dimensions. There is one trivial possibility,
V- p'+p», that is not of interest and will be ruled
out by imposing Q- —

Q symmetry.
How should P be chosen? What forms can lead

to super -renormalizable couplings? For guidance
contrast P» and P'. In a UV-cutoff-free theory,
the vacuum expectation of Q' is of order A'. The
range of the fluctuations of p is roughly (-A, A),
which diverges as the cutoff is removed. The
field spends most of the "time" at large field val-
ues as A -~. This suggests a connection between
the large-cutoff (short-distance) behavior of a
theory and the large-P behavior of V. This is
borne out by a comparison of p» and p'. The
short-distance effects of (sp)' and p» are compar-
able and Q» is a renormalizable theory that can
be treated perturbatively. At short distance P'
dominates g» and (8$)'. It cannot be considered
a perturbation, and it gives a nonrenormalizable
theory. Also P» grows much faster than P» at
large Q. (At small P, Q' is certainly a perturba-
tion. } We conclude that potentials which grow
less rapidly than P» at large P are potentially
super-renormalizable. The conclusion is con-
sistent with the situation in three dimensions where
g' is renormalizable and P» is super-renormali-
zable.

Following this intuition, -theories with potentials
that approach constants at large p are studied
in Sec. II. With the further condition that the po-
tential is cutoff independent, thoroughly nonper-
turbative techniques can be applied. It is shown
that the large-cutoff limit is free-field theory.
Section III allows cutoff dependence in V and a
much larger class of functions. To eliminate non-
renormalizable interactions, we demand only that
the short-distance behavior of the theory be no
worse than Q». The price of this genera, lity is
that the techniques must be perturbative. (This
is perturbation theory in powers of P. V is never
expanded in powers of P. Indeed, interesting
possibilities such as V-

( p j' have no such expan-
sion. ) The conclusion is that the potentials do

not lead to super-renormalizable interactions.
The potentials produce either no interactions at
all or renoxmalizable interactions equivalent to p».

This is an interesting quantum field theory re-
sult. It shows that even when the form of V is
much more general than polynomial, still no sup-
er-renormalizable interactions can be obtained.
Furthermore, there is a universality principle
at work. Large classes of potentials are seen to
be equivalent to either no potential at all or to p4.
This elucidates the special role of polynomial

theories. They certainly do not arise from any
kind of small-P expansion of more complicated
Lagrangians. Rather they are the simplest rep-
resentatives of large classes of equivalent theor-
ies.

This is an interesti. ng general conclusion. How-
ever, within the context of the search for QCD',
it is not so interesting. Our results suggest that
nonpolynomial modifications of QCD are not likely
to produce a QCD' with the required characteris-
tics.

Remarks are in order concerning the relation-
ship of this paper to earlier work on nonpoly-
nomial potentials. ' In that work, arbitrary fea-
tures of the models were studied and to some
extent controlled. Nevertheless the resulting
models were still very singular at short distance
and thus unacceptable to us. The. earlier motiva-
tion was to control very singular nonpolynomial
theories while ours is to find nonpolynomial theor-
ies that are inherently soft.

More closely related is the paper of Fried. '
Our work goes somewhat beyond that paper in that
more general potentials are considered and our
method of handling the cutoff dependence is a sig-
nificant improvement. Nevertheless, the idea
of an equivalence between polynomial and non-
polynomial potentials is discussed by Fried.

Note added in Proof. There are also papers by
B. Schroer and R. Hoegh-Krohn' that contain
related results.

V(Q) - V„as Q- + ~. (2.1)

Since the addition of a constant to V merely chang-
es the irrelevant vacuum energy, it is no loss
of generality to assume that P„ is zero.

The introductory discussion indicates that po-
tentials of this form are superficially super-re-
normalizable. Recall that it is the large-p behav-
ior of p that is important. Then suppose, for
instance, that at large &f&

V(Q)-g~Q~ " with o, &0. (2.2)

The immediate result for the dimension of g is

[g] = (mass}"". (2.3)
This suggests super-renormalizability. In fact,
it will be shown that the field theory with poten-
tial p is noninteracting.

But first a short digression on normal ordering.
If a potential of the type that is being considered

II. CUTOFF-INDEPENDENT POTENTIALS

Potentials V(P) that are independent of the cutoff
A will be considered in this section. It will be
assumed that V is a locally integrable, even func-
tion of P and th'at
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A. Positive potentials

In this subsection, it is assumed that V is even,
that

y&p (2.4)

and that

has a Taylor expansion about the origin, then it
can be normal ordered. However, this corre-
sponds to the addition of an infinite number of
A-dependent counterterms. We reject this pro-
cedure for three reasons: (1) With an infinite
number of counterterms the original p and the
normal-ordered P are only rather indirectly re-
lated. (2) It is our position that the primary pur-
pose of counterterms is to manipulate results
that are divergent when the cutoff is removed.
An infinite number of divergent results will not
be encountered (.3) Since the discussion con-
cerns potentially super-renormalizable interac-
tions, an infinite number of counterterms does
not seem to be in the correct spirit. Further
discussion of this point appears in Sec. III, where
cutoff dependence in P is allomed.

The result that the field theory with potential P
is free can be established in tmo ways. The first
is nicer but requires that P be positive. The
second seems cruder but does not require that
restriction on P.

is replaced by

D(x, y, a)=,e '"" "'d(k, A)
d4k

(2.13)

with

k2+ m2 0'& A'

$2p A2
(2.14)

This may appear a little strange, but it is just
the statement that a sharp momentum cutoff has
been introduced. After accounting for cancella-
tion between numerator and denominator of (2.11),
the products and integrals in momentum space
extend up to A. For example,

eiA'-u'i
D( A} ()t (2 )I) t I (2 ]6}3 t (2)))4 k2+ m2

Z can be written as a product of three factors

Z ZQZ2Z3

with

(2.17)

' d4u1
dp(k) exp —

4 2
Q(-k)(k'+m2)(I)(k) i.

(2.15)

Equivalently, the free propagator is

0 as/ (2.5)

In four-dimensional Euclidean space, introduce

JDy e-Sp+ -SI

) fDy -Sp+ t( t (2.18)

So= d x2 D

with

D= g2+m2

(2.6)

(2.'l)

JDy e-Sp+1
2 fDy Sp 7

JD(t) e oe I
2 JDy Sp 1

(2.18)

(2.20)

The interaction is It is clear that if Zp(j} is the free-field generating
functional, then

SI = d'& y

so that

and

S =So+SI

S())=S—Z wittl Z = f d wt j.
The Euclidean generating functional is

JDy e-S(/)
&b)- JD- -S(p) ~

y8

(2.8)

(2.9)

(2.10)

(2.11)

Z, -Z(j) asA-
Next it mill be shomn that

Z, -1 as A-~.
A similar analysis of Z, gives

Z, '-1 as A-~.
To analyze Z„observe that

~-so+~ o p

and since

(2.21)

(2.22)

(2.23)

(2.24)

To get control of Z, a cutoff is introduced. Spec-
ifically

0&S

that

(2.25)

D(x y) = e"""")(k2+m')de
(2s)

(2.12)
0~&g I ~&1.

Thus

(2.26}
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Z

Jensen's inequality' gives

I ~~Z~ ~+ 1,

where

(2.27)

(2.28}

S,- 0 as A- ~.
Introduce the Fourier transform of V,

V(y(s)) = —e "'«V(~)
271

(2.34)

JDQ e-SP+ J'S

j JDy -s()+ J

This can be written

S

(2.29}

(2.30)
with

dQ)—V(x) exp -e d'x ts(sx)P(x,))

(2.35)

with

DQ s-sp+ zS
1 JD~ -sp (2.31}

pj =&u5'(s -x).
This gives

(2.36)

Clearly

-S(}+1

JD jtj
sp- (2.32) S, = d's

2 V((d)
d& - JDQ exp( —S,+ J if(d—jtj)
27T e 'p

(2.37)

S, '-z, (j) asA- (2.33)
d'z

2 V~Z, j-i~ (2.38)

All of our effort will now go into showing that and

Z, ( j i(d) -= exp[-, ( j i (d)D( j—- i (d)]

=Z {j)exp(——,'x*P(p, t() —tx fd'xtt(s —x)j(x)(. (2.39)

Inserting (2.39) in (2.38), undoing the Fourier
transform, and doing the (d integration gives

lim Z( j,A) = Z, ( j). (2.43)

(S t) 2/2D

S, =Z,(j)f d sf dt (',t, V(t)

with

(2.40)

tt =tt(o, t{}eed s -=(ytj}-=f d'y tt(s -y) j(y).

(2.41)

From (2.16), it is seen that

D(o, it.)-j1' asA- (2.42)

Furthermore, since we are dealing with an ultra-
violet problem, it is legitimate to handle any pos-
sible infrared divergences in the z integration
by placing the system in a box of volume 'U. There
are no short-distance singularities in z. Then
using (2.5), we see that the t integral in (2.40)
wiQ vanish when A- ~. This is evident since the
integral is the solution to the heat equation for
time D with initial data V(t). Thus, (2.34) is ob-
tained. Combining (2.34}, (2.33), (2.30), (2.28),
and (2.27), the result (2.22) is established.

The conclusion is that

Potentially super -renormalizable potentials of
the class discussed in this subsection actually
give no interaction at all.

In an aside, consider for a moment a potential
U= —V. If (2.43) can be expanded in powers of V,
then all terms beyond the first vanish as A —~.
Since these are the same (up to signs) as the terms
that appear in the expansion of Z for the potential
U, U will give no interaction order by order. Qth-
er methods, to which we now turn, must be used
to establish the stronger nonperturbative result
for Ue

SI = d'xg V x -=gv. (2.44)

V is assumed to be a bounded

B Bounded potentials

This subsection deals with a larger class of cut-
off -independent potentials. It is convenient to
introduce a coupling constant which, without loss
of generality, can be assumed non-negative. The
interaction is
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even function of Q satisfying

V-0 as Q-a~.

(2.45)

(2.46)

The freedom to add a constant to P has been used
again. The assumption that P is positive has been
dropped.

Since the problems of interest are ultraviolet,
we will work in a finite space-time volume Q and
take A ~ before 'U-~.

Begin again from (2.6), (2.7), (2.44), and (2.9)-
(2.20). The result (2.21) is again immediate. The
goal is to establish (2.22) and (2.23) from which
(2.43} follows. Thus consider

fDy e-sp+ cue gv-

fD~, -s,.~

Using the positivity of e 0+, e ~, and the A.-
independent bound

(2.47)

Is I=glvl gv„=-v, (2.48)

it follows that Z, (g) is continuous, that 8 Z, /sg
exists and that it can be computed from

Bz fDQ e sp+ J'e gFV-
sg fDye-Bp+ J' (2.49}

Then

sz, „faye "+'[vl
zp+1

„fD+e p' fd z IV(p(z))l
fDy Sp+ cT (2.50}

Now observe that IVI satisfies the conditions of
the previous subsection and that (aside from the
irrelevant multiplicative factor) (2.50) can be
identified with (2.29). It follows that

' -0 as A-~.
Bg

Thus

Z, (g)- Z, (0}= 1 as A -~.

Similarly

g3 ~ 1 as A~~.
The conclusion again is that

lim Z(g, A) =Zp(j).

(2.51)

(2.52)

(2.53}

(2.54)

This large class of superficially super-renormali-
zable, cutoff-independent potentials actually gives
no interaction at all.

We interpret this result in the following way:
As the cutoff is removed, the vacuum expectation
value of the square of a free field diverges. The
fluctuations of the field became infinitely large.

The potentials considered are not strong enough
to restrict the size of these fluctuations. The
potential is significant in only a finite range. Thus
the fraction of "time" that the field is in the po-
tential approaches zero as A- ~, and the potential
has no effect.

IH. CUTOFF-DEPENDENT POTENTIALS

In Sec. II, the potential was cutoff independent.
Potentials with cutoff dependence that can produce
super-renormalizable or renormalizable, but
not nonrenormalizable, interactions are investi-
gated here. The comments at the close of Sec.
II suggest that it may be possible to obtain non-
trivial results if the strength of the potential is
allowed to diverge appropriately as A- ~. This
turns out to be true. More interestingly though,
when the cutoff dependence of the potential is ad-
justed to obtain finite interaction, the resulting
theory is always effectively renormalizable and
never super-renormalizable. This contradicts
the indications from the superficial dimensional
analysis.

Consider for a moment the polynomial, renorm-
alizable P» theory. The cutoff-independent paten-
tial

(3.1)

gives nontrivial interaction in the first order that
survives as A -~. However, there are also di-
vergent vacuum energy and mass shifts which
require (3.1}to be modified by A-dependent coun-
terterms. Higher-order calculations force more
complicated A dependence.

The superficially super-renormalizable non-
polynomial potentials under consideration do not
force cutoff dependence in this way. Indeed there
is no interaction at all when A- ~. Nevertheless
it is interesting to experiment with the introduc-
tion of cutoff dependence.

Some restrictions must be placed upon the cutoff
dependence. Without restriction, the connection
between the classical and the quantum theories
will be tenuous. Also arbitrary cutoff dependence
will generally give unacceptable nonrenormalizable
interactions. In renormalizable theories, the
introduction of the required A dependence does
not disturb the functional form of the Lagrangian.
The A dependence appears in a few field-inde-
pendent parameters. In the search for super-
renormalizable interactions, the required cutoff
dependence should be no worse than that.

The restrictions upon the cutoff dependence of
the potential prevent the appearance of nonre-
normalizable interactions. In particular, the
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D —=D(O, A)-A'. (3.3)

As A -~, the effect of the potential should be only
a perturbation upon the controlling free-field ac-
tion. The (I)» potential is competitive with the
free-field action at large A and therefore re-
normalizable. A natural condition is suggested:
In the range of field values allomed by the free
action, the A-dependent potential shop. ld have no
more effect than the (I))» potential as A-~. From
(3.2), the range of (j) is roughly

—WD & (I)& WD (3.4)

large-cutoff (short-distance) behavior should be
no worse than that of Q». Two possibilities are
considered. (1) As A- ~ the fluctuations of the
free field diverge,

(3.2)

with

The restriction on the A-dependent potential is
then

1
(1) (fy~V(y, D) —V(O, D)~~D' as A-

-wo

(3.6)

It would seem that 7 must satisfy this in order
to have any hope of being super-renormalizable.

(2) This will be a more precise condition upon
the short-distance behavior of the interaction.
Consider the second-order object

I fDy 8 S()+ S 2

2 fDQ
-so

»0 8 ""I'(A(z, ))I'(4(z,))
-S()

A measure of the strength of Q» over this range
is the average = Zoz d'z, d z,F s» s„D (3.7)

1
dQ Q»-D'. (3.6) with

V(s„s„D) fdt f=dt [(2 ) detsB] ' '*esp[--', (sg 4)D gt(s- ts)]V(t D)V(t„D), (3.8)

(2) F(O, D) & D as D- ~. (3.12)

f D

],D(z, -«,)
, s, = dna z, -xg x.

(3.9)

(s- t) / RD

V(s, D}=f dt )V, V'(t, D). (3.10)

When this is evaluated at s = 0, it gives the sum
of the second-order vacuum-to-vacuum graphs.
For the (j)» potential, it is easy to show that

r(O, D)-D».

Thus the second condition becomes

(3.11)

We require that (3.8) have short-distance behavior
no worse than the corresponding object in (j)»

theory. If p is square integrable against a Gaus-
sian, then (3.8) can be evaluated at z, =z,. Suffi-
cient information about the short-distance behavior
is available by then looking at the A- ~ limit when

j=0. (For potentials that do not satisfy the
square-integrability condition, a slight modifica-
tion of the method yields the same final results. )
At z, =z, =z, (3.8) becomes

This is a condition that p must satisfy in order
to have a chance of being super-renormalizable.

Condition (1) is more intuitive than (2); condi-
tion (2) is more precisely motivated than (1). It
is not difficult to show that (except in certain con-
trived cases) conditions (1) and (2) give the same
results Since (2) r.ests on a firmer foundation,
it mill be favored in the following work. The dis-
cussion of (1) is given as an aid to intuitive under-
standing.

There is another more technical requirement
that must also be imposed. The analysis to follow
makes essential. use of the Fourier transform of
I)'(p). Thus, we require that the Fourier trans-
form of P exist at least in the distribution sense.
This allows p to be any distribution and any of a
very large class of functions. It excludes some
functions such as g~ that grow too fast. These
require other techniques.

It must be emphasized that this section deals
with a much broader class of potentials than did
Sec. II. In particular, the requirement that V
have a finite (])) -~ limit is no longer imposed.

This section will be perturbative. Perturbation
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fDy e-s()+Jg y}s 'fDy e-sp+ J'5~ (}}

fDAe" fDke" (3.13}

for hz =1 at fixed cutoff and for arbitrary source j,
then it holds for all positive ~. This is just the
translation into the functional formalism of the
statements that an operator is defined by its ma-
trix elements and that polynomials are complete.

For each potential considered, an equivalent
infinite-order, normal-ordered polynomial poten-
tial will be found. The coefficients in this poly-
nomial will be strongly cutoff dependent. The
results that have been claimed will follow from
a study of this cutoff dependence.

Begin again with Z which can be written

theory reveals useful information about polynomial
renormalizable and super -renormalizable theor-
ies. Since the search is for nonpolynomial super-
renormalizable interactions, perturbation theory
is appropriate. Also the nonperturbative results
of the last section show that the A-independent
potentials considered had no effect. We can hope
that as P is "turned up" by adjusting the A de-
pendence, the initial effects will be small and
revealed in perturbation theory.

The calculations will be done to first order in V,
and certain equivalences will be established. The
equivalences are valid to all orders. If for two
potentials V, and P, all first-order n-point func-
tions are equal, or equivalently if

D D(=0(s) ssds=(Dy}= f dyD(s —y}((y),

X(s, D) = g —,s"X„(D)
1

n=p
(3.21}

(3.19)

V(p, D) is the cutoff-dependent potential. The
physics is contained in the coefficients of an ex-
pansion of X in powers of s. With the technical
restriction of P, these exist.

Consider for a moment a slightly different prob-
lem. Find the first-order effect of a normal-
ordered, infinite-order polynomial potential.
Normal ordering corresponds to the particular
choice of counterterms that removes contributions
from graphs with loops that close upon them-
selves. Begin with a potential v(dt's, D). The cor-
responding normal-ordered potential is a new
function of (t, namely,

:v(Q, D): = v(Q, D)+ counterterms. (3.20)

The counterterms are arranged so that the first-
order effect of:v(P, D): corresponds to (3.18} is
v(s, D). Thus the potentials V(dty, D) and:X(dtd, D):
are equivalent.

This is a useful result. It shows that even for
potentials that are not smooth enough to admit
a small-(t) expansion, an equivalent normal-or-
dered, infinite-order polynomial can be found.
These are easier to understand.

Consider the expansion for X:

z(j) =
T(0)

(3.14) The potentials V(dty, D) and

with

fDye 'oe'e 'I
&(j) = (3.15)

T.(j) = ~.(j). (3.18)

T has an expansion in powers of p. The first
term is

=" 1
:X((t}yD):= Q —X„(D):(()}":

p gt
(3.22)

produce the same effects. It is natural to think
of the X„(D) as coupling constants. Qf primary
interest will be their behavior in the D- limit
that defines the field theory.

The expressions for the X„ follow:

The second is

(.) fDdtye ()e Sd (3.1't)

X„=D "t' dt },&, He„—)V(t, D). (3.23)
I

-The Hermite polynomials are

T, was discussed above.
Now repeat the steps in the analysis of S, in

Sec. II and find that

T, =-Z d zX,
(3.18)

-(s-t) 2/2n

X(s, D}-=fdy
(S },&, y((D),

Again

He, = 1, He, =x' —1, He4=x'- 6x'+ 3, . . . .
(3.24)

X„ is zero for odd n.
Condition (1) can be applied to (3.23) if it is

assumed that the potential is well-enough behaved
for tRvD to be dominated by the Gaussian. The
behavior at large D can then be estimated. The
Gaussian cuts off the integration for t ~ WD but
is order one inside that range. Also the polynom-
ial is at most of order one there. Since a shift
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of V can only effect X„V(),D) can be replaced
by V(t, D) —V(O, D) for ~& 0. Thus

I'(0, D) = g —,X„2(D)D".1

n n&
(3.27)

This can be seen from the graphs, but it also fol-
lows from (3.10) and (3.23). Since all terms in
this sum are positive, each must satisfy (2):

X '(D)D" cD' as D -~. (3.28)

Equation (3.26) is obtained again. This means
that at most X„X„andX4 do not vanish as A -~.
(X, and X, are easily made zero by the usual
counterterms for the vacuum energy and mass
shifts. }

The conclusion to this point is that the original
potential V(P, D) is equivalent to the potential
:X(Q,D): of (3.22) with X, and X, zero and others
satisfying (3.26). As A-~, X, either vanishes
or remains finite; all higher X s vanish. It is
tempting to conclude from this that P theory is
either trivial (if X~- 0 as A- ~) or that it is equiv-
alent to P~ theory (if X, remains finite as A-~).
This conclusion turns out to be justified, but a
final step in the argument must be made.

The problem is that the A- ~ limit must be
saved until last. At fixed A, calculate the graphs
for a process to a given order in:X:. The result
will have A dependence from the X„and from the
cutoff of the momentum integrations. Now take
A-~. Since the integrations in the graphs with
six- and higher-line vertices are more divergent,
there is the possibility that this could balance
the fall of the X„'s as A-~. A power-counting
argument shows that this can happen only in con-
tributions to the usual three counterterms of $4
theory.

Consider a graph with N external lines, with

any number of P' vertices, with n, P' vertices,
etc. The overall degree of divergence is

(3.29)d = 4 -++2 g6+ 4g8+ ~ ~ .
t

If d& 0, the integrals converge to finite values
as A-~. However, the integrals are multiplied
by

I~.i.~."'J e —Ivl~, a)-v(o, a)l, n&o
WD

(3.25)

is a rough upper bound on X„. Then (3.6) gives

(X„(D}(~D'-"~2 (3.26)

The preferred analysis is to use condition (2).
When Y(O, D) is expressed in terms of X„'s, one
gets

X n6X n8+ ~ ~
6 8 0 (3.30}

IV. CONCLUSION

Field theories in four Euclidean dimensions
of the form

Z = —,'(sy)'+ —,'m'y'+ V(y)

have been studied, If p is independent of A and
has a finite P- ~ limit, then the theory is free.
(Section II gives the precise discussion. ) Pertur-
bation theory is not used. When A dependence
is allowed in P, perturbation theory in P is em-
ployed (Sec. III). Potentials can be divided into

Thu»f any « the (n„n„.. .j are positive, there
will be no contribution as A ~. (The argument
is being run as if there were no divergences from
subintegrations. It will be easy to see at the end
of the argument that these are of the usual three
kinds. Consequently all subintegrations can be
made finite by the standard procedure before the
behavior of the whole graph is considered. ) If
d~ 0 and N&4, the large-A behavior is

X," X,"'' ' A = (X~A')"8(X,A )"8' ' A . (3.31)

Equation (3.26) shows that this vanishes a,s A- ~.
For N= 4, the once-subtracted graphs behave
as if &= 6; the preceding argument applies. But
(3.31) shows that the counterterm can get contri-
butions from graphs with higher vertices. For
pf =2, similar arguments show that twice-sub-
tracted graphs vanish if there are higher vertices
in them. The wave-function counterterm gets
contributions from graphs with higher vertices.
The mass counterterm is quadratically divergent
and the graphs with higher vertices contribute
to the finite coefficient of the divergence. Thus
as A ~, graphs with the higher vertices can
contribute only to the unobservable counterterms.
The theory is equivalent to (g/4!)Q' if X,-g as
A -~. This completes the power-counting argu-
ment.

The conclusion is that the potentials under con-
sideration lead to renormalized theories that are
either free or equivalent to ordinary p~ theory.
Again, super-renormalizable interactions do not
emerge from superficially super-renormalizable
potentials.

This suggests a kind of universality. There is
a very large class of potentials that is equivalent
to the P' potential. It also suggests a reason for
the preeminent role of polynomial field theories.
They do not arise from some sort of small field
expansion (indeed (P') -~). Rather they are the
simplest representatives of large classes of equiv-
alent potentials.
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those whose short-distance behavior is (1) softer
than y», (2) the same as Q», or (3) worse than P».
The first give free-field theory. The second are
equivalent to P». The third are nonrenormalizable.
There is no super-renormabzable class.
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