
PHYSICAL REVIEW D VOLUME 24, NUMBER 4 1$ AUGUST 1981

Monte Carlo simulations of systems with fermions
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We present results of a Monte Carlo evaluation of the path integral for two-dimensional theories with fermions.
These include fermions coupled to scalar fields and fermions coupled to Abelian gauge bosons. On a 10 by 10 lattice
we have computed expectation values of local operators and correlation functions, from which we have estimated
mass gaps. In the case of the coupled gauge-fermion system we find dynamical mass generation for both fermions
and gauge bosons, We discuss the phase diagram and the continuum limit of the theory.

I. INTRODUCTION

Recent results have established the usefulness
of numerical simulations for the understanding of
critical properties in field theories. Until re-
cently this technique had only been applied to
systems of bosons. Since fermions are repre-
sented in a.path integral by anticommuting var-
iables, they are not directly accessible for nu-
merical simulation, but have to be replaced by
some appropriate boson functional in the action.
Proposals have been made suggesting how to im-
plement this idea' ' in practice, arid simulations
have been performed for small systems with
encouraging results. Here we will present re-
sults for two models with fermions defined on lat-
tices of 10 sites, obtained using an improved
version of the boson field method for performing
the integrals over the anticommuting fields.

%e shall consider theories in which a boson
field A,. interacts with a scalar spinless Fermi
field on a lattice of N sites. The action is chosen
to be of the form

S[g, p, AJ = SO[A]+g g,M, &(A)g&,

where S, [AJ is the pure boson action and M;&(A)
contains both kinetic and mass terms for the Fer-
mi field, and couplings to the boson field. If the
action is not quadratic in the Fermi fields, it can
often be reduced to this form by introducing aux-
iliary boson fields (this is, for example, the case
for bilinear interactions). The integration over
the Fermi fields is easily performed,

[dg][dg]e '" '"'=det[M(A)]e (1.2)

which leads to an effective action for the A field

S.„[A]= S, [A] —Tr ln[M(A)]

assuming that det[M(A)] has a definite sign. From
this action one can in principle evaluate any cor-
relation function for the A. s.

The fermion correlation functions are evaluated
by adding sources to the path integral

~Xi ~t fIPlfdtll&&=l«ul'-SV, t &1+ 2 (~ 6+ en; I

dA exp -S,ff A + q,- )VI A,.&q,.
(

{1.4)

and subsequently taking derivatives

5
(g;g~) = — ln Z[q, q] „- „o

i

dA g eff~~ jg ~ A

where Z is the normalization integral

z= z[q=q=0].
Many quantities of interest can therefore by eval-
uated by referring only to S„,[AJ. Unfortunately,
an exact evaluation of det[M(A)] and M (A) for a

I

given configuration (Aj is much too slow to be
useful in a Monte Carlo simulation, and one has
to resort to an alternative way of evaluating ap-
proximately the fermion determinant (or better,
the ratio of two determinants) and the inverse
matrix M (A).

II. OUTLINE OF THE METHOD

I et us briefly recall the principles of Monte
Carlo simulations. In applying the method one
constructs by an iterative procedure a sequence
of configurations of the fields which eventually
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will reach a regime of statistical equilibrium.
Starting from a given action 8[A] for the field A
one is interested in computing averages of the
type

()(A))= f (dd)f(d)e (2.1)

Given an initial configuration (A} one generates
a new configuration (A}by adding to one of the
A's at a given site (or link) a random variable
with symmetric distribution. In the Metropolis
variant of the Monte Carlo method the new con-
figuration is kept if it lowers the action

S[A] &S[A], (2.2)

or if the exponential of the difference in actions is
less than a random number x with uniform distri-
bution in the interval [O, 1],

(S t:A) S iA]) (2.3)

Otherwise, the new configuration is rejected and
the old one is kept. This procedure guarantees
that eventually the probability of encountering any
given configuration lA} will be proportional to the
Boltzmann factor exp(-8[A]) and that averages
over configurations converge towards the true
averages:

( f(d)) =(im —Qf(d'") . (2.4)

S[A, ~]=&0[A]+Z ~, [M '(A)1„e, .

If the matrix M(A) is Hermitian one can define
x, (A) = [M (A)];P~ and write

(2.6)

S[A, (t)] = S,[A]+g x,(A)x;(A) . (2.7)

'tItr'e have chosen to compute x by the method of
Gaussian iteration. In the process the ith equa-
tion in the linear system
i

(2.8)M;~(A)x) = (f&g

is solved for the variable x& and its value is de-

In order to apply this algorithm to the fermion
case we will make use of the identity

( =(:(d~i(M(»)) 'J (d() d*ii(- Qd;(i & '(»h, d, &l.

(2.5)

Here (II) is a real (one-component) scalar field
and C is a numerical constant. After inserting
the RHS of this expression in the functional in-
tegral and performing the integration over the
fermion variables one gets an effective action for
the A and P fields,

termined using the latest set lx&', j0i}of com-
puted solutions. Then the same process is re-
peated for the (i + l)th equation, etc. , until awhole
sweep through the index array has been made.
This then constitutes one Gaussian iteration.
Since M;&(A) is a rather sparse matrix, this pro-
cedure is well suited for numerical computation.

If the matrix M is positive definite the process
will converge independently of the choice of the
initial vector x. On the other hand, a good guess
for the initial vector x can significantly speed up
the iterative computation of M P. A natural
choice is to take for x the vector x that resulted
from the application of the GRusslan lterRtion
method before the site (or link) variable was
changed. Similar considerations apply when com-
puting the fermion propagator by solving iter-
atively the system of equations

M ~U~
——5] .

Here again, constantly upgrading U, instead of
recomputing it by starting from a trivial config-
uration (like U= 0) for every site (or link) var-
iable upgrading, makes a considerable difference
in the rate of convergence of the Monte Carlo sim-
ulation. From the vector U we immediately ob-
tain the fermion propagator 4,

U, = ~([i- i, [,O), (2.9)

where [i —i0 [
is the physical distance on the lat-

tice between the point i and the point i0.
To further speed up the convergence of the

Gaussian iteration, we have found it useful to use
relaxation methods, in particular when one ap-
proaches a critical point of the fermion theory.
In this case the matrix M;& develops a zero eigen-
value (for periodic boundary conditions) due to the
presence of a massless fermion.

Almost all the results we will show below
were obtained with five to ten Gaussian iterations
per site (or link). Although the process of invert-
ing a matrix iteratively for every variable upgrad-
ing may appear rather slow in a Monte Carlo sim-
ulation, we should point out that with our methods
the convergence in quantities like (gg) and the
fermion propagator turns out to be rather satis-
factory, because of the fact that for every upgrad-
ing (i.e. , for each field configuration) the matrix
M is evaluated to relatively good accuracy. The
error in computing the fermion action with our
method is typically of the order of one part in 10 .

HI. A SIMPLE MODEL

Before applying the methods of the preceding
section to more complex theories, we have tested
them in the context of a simple field theory for
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which exact answers can easily be derived. We
will consider the model defined by the action

S=S~+ Sg

with

2
SA

i

S„=,.M]) ~,

Mq)
———ng)+(m +gA;2)5)) .

(2.2)

Here 4,.z is the lattice version of the I aplacian

and A, and g, are a scalar &ose field and a spin-
less scalar Fermi field, ' respectively. m and

g are the two bare parameters of the theory.
The fermion propagator in this theory is given
by

&f

t (i —j)= (lkggg) = (- r! + m +
2

(2.4)

Table I shows the results obtained from the Monte
Carlo simulation on a 10x10 lattice with periodic
boundary conditions at g = m = 1. The last column
with the Monte Carlo data corresponds to 300
sweeps through the lattice, of which the first 100
were discarded. For each upgrading five Gaus-
sian iterations were used.

In this theory the fermion propagator falls off
at large distances like

words, the correlation function computed by
Monte Carlo simulation on an NxN lattice of spac-
ing g is fitted (at large distances) to a form

Z[-b+ p» t ',.
&

(NxN),

where Z is a renormalization constant. p,» is
then the renormalized mass. This method is
bound to give. the exact answer for a free field
theory and can be shown to be effective also for
less trivial theories.

It is useful to compute the quantity (gg = n.(Q)

since it has the property of diverging at the crit-
ical point p, =0. To see this we compute in the
continuum limit

8
(pg)= —

2 lnZ
Pl

D In(k +m ),s d~K

p &m 2w

and in two dimensions we get

flnp, f.
1

In Fig. I we have shown the results for [n(i)]

-u I g -y I

l4-yl ~&

where p, is the renormalized fermion mass,

p. = (m'+g/2)'".

It is of interest to be able to extract the mass gap
from the knowledge of some values for the corre-
lation function. This can be done by taking the
Fourier transform of this function on a lattice
with finite spatial extension. In this way finite-
size effects can be significantly reduced. In other

6

CI

TABLE I. Monte Carlo results for the. fermion cor-
relation function compared to the exact answer for m
=g=1 fwhich corresponds to a mass p = (q)~2 =1.2247].

3 iter. 30 iter. 300 iter. Exact

&(0)
&(a)
&(2)
&(3)
&(4)
&(5)

ln&(3)/&(4)

0.203
0.0472
0.0111
0.002 7
0.000 74
0.000 37
1.29

0.218
0,050 5
0.012 5
0.003 2
0.000 95
0.000 49
1.21

0.217
0.049 4
0.0120
0.003 1
0.000 88
0.000 45
1.26

0.217 54
0.049 14
0.01196
0.003 11
0.000 899
0.000 464
1.24

0 I I

0.7 0.6 0.5 0.4 0.5 0.2 O. l 0.0
P.

FIG. 1. From above, 4 ~(2), E ~{1), and 8 ~(0) as
functions of p = (m +g/2), the renormalized mass.
The two curves at the bottom are in[6(2)/b, (1)J and p
as determined from the Monte Carlo simulation. The
average g2) is represented by A. The points without
error bars are exact results.
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(i —0, 1, 2) and ln[n, (1)/E(2)] as a function of the
bare parameter p, =(m +g/2) . »om the graPh
we estimate p,,= 0.0 +0.05 in good agreement
with the exact answer p,,=0. In this case for each
value of m and g (m =g here) we used 30 Monte
Carlo iterations with five Gaussian iterations per
upgrading.

IV. COMPACT QED IN TWO DIMENSIONS

~(k) = 1

1 —2k+„cosk„'

G (k)=
4Z~ sin (gk )

and the three- and four-point vertices

1'„3)(x)= 2 sink„,
I"' '(k) =2cosk

(4.3)

(4.9)

We are now ready to turn to a less trivial ex-
ample, an Abelian U(1) gauge boson coupled to a
spinless scalar fermion. The action is

in the momentum-space representation. If we go
one step further and take the lattice spacing g to
zero after making the replacement

S=SO+ S~

. with

(4.1) 4)j)j 4J)) + IkjlJ)

A~ gA~, (4.10)

S~ = 2P g (1 —cos8„„)
squar eS

(4.2)

we find the continuum action

Sl ——-E „e " „,~ + S,= d g —,'E„„+8~+ieA~ &„-jeA„

(4.3)

Here 8„, is a variable that ranges from 0 to 2m

and is defined on the oriented links of a square
lattice of spacing g, and 6),„is the usual lattice
curl,

(4 4)

The parameter k is a function of the bare fermion
mass rn:

(4.11)

with P and e related through P = 1/(4e ~ ). The
generating function for this theory is identical to
the one for the massive Schwinger model (i.e. ,
with Dirac fermions), with two fermion flavors,
if we neglect spin forces. This can be readily seen
by doing the functional integrations over g and JI)

and using the identity

k ——
4+m (4.5)

so that m =0 corresponds to k= 4'. It is instruc-
tive to derive the weak-coupling limit of this
theory. We set P =-,'g, O„„=gA„„and expand

1+ggAnw —zg Ang + (4.6)

Substituting this in the action (4.1) and expanding
out we get

S= l +(+..)'-k Z (4.4...+ 4.-.t.)

n &gAny, 2g Any. n+f

+ JI)n+, ( i&n, —2g &-n
J )4n]+ Q 4n4n ~

(4.7)
The field A„ is now allowed to vary from - to
+~. A weak coupling perturbative expansion could

now be developed using the fermion and boson per
propagator s

det[ (9„+i-eA„) + ,'O„„E„„+~ ]-'
= [det($ ie+g+ rpg)]'. (4.12)

When the determinant on the right-hand side is
replaced by its integral representation

JjjejM„s)'=f JdV JJd )e)~*jJ— jd hajj
'jI

Sj)q I,

(4.13)

two components (@=2) are required, which gives
the stated result.

In two limits the lattice theory can be exactly
solved. One is when m 0 and g-0 (massless
fermions in the continuum theory). The other
case is when m -~, which corresponds to the pure
gauge theory.

In the massless limit we start from. the con-
tinuum theory and use the boson representation'
to derive the spectrum. In the massless two-
component Schwinger model
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I =itT(8 —i')y+ ,'(F—,„)', (4.14)

with g a two-component Dirac spinor, we make
the replacement W(F) = [Ig(ap)/Io(ap)]"

and the string tension is therefore

(4.22)

In this always-confining theory a square Wilson
loop of area A is given by

gl
xexp -i w

~

dz m x, z +Bq x, z
J oo

T = in[I, (aP)/I, (aP)]

= lnP + O(P ) (P «1)
= —+o —

2 I
(P»1)

4P PI (4,22)

(4.15)

with A a cutoff parameter, y Euler s constant, and
$(x) a boson field with canonical momentum v(x).
The boson action density then becomes

L, = —,'[(s„y.)'+ (e.y,)']

[cosv vQ, + cos~mP, ] ——(p, + p, )
2 .mA e

In this model the dimensionless gauge boson mass
M is equal to the dimensionless string tension.

When the fermions are coupled to the photon the
theory is no longer soluble. The fermions give
rise to screening and the Wilson loop contains a
perimeter contribution. For small P and k we
have

(4.16) W(r) P" + k'+ ~

g-+ p

a

(4.24)

After the change of variable

t) i = (4.+ 4&)/~2,

g2
——(p, —p, )/v 2,

we get

(4.is)

F= lnIO(2p) —2p (4.19)

and the average plaquette, proportional to the en-
ergy density, is given by

1 8(1-c os8)= ,'E=- ——F . - (4.20)

From these equations one can derive weak- and
strong-coupling expansions which are useful in
comparing with the Monte Carlo data:

(1 —cos8„„)=1—P+ —,'P ——,'P5+PSP'+ ~ (P «1)

1 1 112 1 1 3
=—+——

~

+—— + ~ ~ ~ (P&&1)4p 22 pi 64 p

(4.21)

LB = l[(s.ti)'+ (8.A)']

1(2e '
cosa 2wgq cos~amp2 —2~—

(4.iS)

This shows that for m =0 there is a massive part-
icle of mass (M/a) =ac /v. (We use the symbol
M for dimensionless mass. )

When k -0 (m- ~) the fermions become infinitely
massive and the model reduces to a pure U(1)
gauge theory, which can be solved by transfer
matrix techniques. The free energy can be shown
to be

G(L)= .„, e' &+H. c. ~ ce "~ .
square L~oo

(4.25)

The fermion propagator, too, is not a gauge-in-
variant quantity, but the .average

i)= 0;»@1~ AD
—~ ~ le,)'"i'' (4.a6)

is gauge invariant and can be used to define a re-
normalized fermion mass m& ——m+5m such that

I'~+ ~~
h(L) ~ c' exp —

~

—L
L,~ oo a

(4.av)

The operator in (4.26) represents two fermions
connected by a gauge-field flux tube. In the limit
P -~ the gauge field is frozen (its dynamics is
limited to small oscillations around 8„=0) and in
this limit 5m =0. At P =0 the gauge field is en-
tirely random, and we expect in this case that
mass renormalization effects will be most sig-
nificant.

Another gauge-invariant quantity is the expec-
tation value

Depending on whether P/k~~1 the area (or the per-
imeter) behavior will be more pronounced for
small loops (with sides of the order of a few lat-
tice spacings).

Another quantity of interest is the photon propa-
gator defined as a loop of side L and height one.
With this definition it is a gauge-invariant quantity
and reduces to.the usual propagator for weak coup-
ling when the gauge 8, =0 is chosen for the links
in the direction of L. The photon mass determines
the exponential falloff of the propagator at large
separations
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(4.28)

which has the property of vanishing as k-0 and
diverging (in two dimensions) when the renormal-
ized mass of the fermions approaches zero. If
we call k, the value of k at which m~ is zero, then
for k close to k, we expect a behavior

gg) —p(a, - ~) '
k~kc

(4.29)

with 8 a critical exponent. (gg) represents a ferm-
ion bound state (or condenstate) wave function.

The tluantities m„and (gg) will turn out to
be useful in constructing the phase diagram of
the theory. They play here a role similar to the
inverse correlation length and the order para-
meter in spin systems.

We now turn to a discussion of our Monte Carlo
results. The numbers shomn in the figures and
in Tables II-IV were obtained by doing 100 passes
on a 10x10 lattice with periodic boundary con-
ditions. During the first 50 passes the system
was allowed to reach thermal equilibrium. Then
data were collected at every pass. For most of
the points more than one run was made in order
to put bounds on the statistical and systematic
errors. Both ordered and random starts were
used for P )1. Extensive runs on a 4 x4 lattice
were also made so that the results could be com-
pared and the extent of finite-size effects deter-
mined. These were found sufficiently small for
the 10x 10 lattice. Thermal cycles with rather
different random number generators gave the same
answers to within the accuracy of our method

TABLE III. Monte Carlo results for ~ = 0.5. Inverse
gauge coupling in column 1, average olaquette in col-
umn 2, fermion propagator at the origin (or (gg}) in
column 3, dynamically generated fermion mass 6m in
column 4, and gauge-boson mass ~ in column 5.

(1-cose„g &(0)

0.00
0.25
0.50
0.75

, 1.00
1.25
1.50
1.75
2.00
2.25
2.50
5.00

1.00
0.75
0.58
0.36
0.28
0.22
0.17
0.15
0.13
0.11
0.10
0.05
0.00

0.327
0.333
0.340
0.348
0.354
0.357
0.362
0.363
0.364
0.365
0.367
0,372
0.379

0.70
0.68
0.56
0.50
0.40
0.39
0.25
0.25
0.25
0.28
0.26
0.12
0.00

1.70
0.90
0.57
0.36
0.35
0.30
0.28
0.26
0.25
0.22
0.13
0.00

(limited by the time of the runs). Typically in a
thermal cycle we started from a completely or-
dered (P = ~) or disordered (P =0) configuration
and changed P by 0.25 after 100 iterations. For
selected points 300 iterations and runs on a 20
x20 lattice were done. No gauge fixing was used
for the gauge field.

Figure 2 shows the behavior of the average plaq-
uette (which is twice the energy density per link
for the pure gauge theory) as a function of P for
different values of the bare fermion mass. We
have noticed that this quantity is barely affected
by the presence of the fermions, even at m =0
(k=-,'). The continuous line represents the exact
answer in the limit of infinite fermion mass (k
=0).

TABLE II. Monte Carlo results for m =0. Inverse
gauge coupling in column 1, average plaquette in col-
umn 2, fermion propagator at the origin (or (gg)) in
column 3, dynamically generated fermion mass &m in
column 4, and gauge-boson mass M in column 5.

'TABLE IV. Monte Carlo results for m=1.0. Inverse
gauge coupling in column 1, average plaquette in column
2, fermion propagator at the origin (or (gg)) in column
3, dynamically generated fermion mass 6m' in column
4, and gauge-boson mass M in column 5.

(1 —cose~g &(0) (1 —cos8„„)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

1.00
0.75
0.59
0.41
0.31
0.22
0.18
0.17
0.14
0.12
0.10
0.00

0.374
0.389
0.401
0.420
0.435
0.456
0.467
0.472
0.481
0.487
0.499

1.10
1.05
0.96
0.86
0.75
0.68
0.58
0.57
0.56
0,52
0.48

0

1.45
0.85
0.72
0.51
0.33
0.30
0.28
0.25
0.23
0.23

0

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

1.00
0.75-

0.54
0.38
0.27
0.20
0.19
0.16
0.13
0.11
0.10
0.00

0.246
0.247
0.249
0.250
0.251
0.252
0.252
0.252
0.253
0.253
0.253
0.254

0.47
0.43
0.37
0.33
0.28
0.26
0.25
0.22
0.23
0.18
0.22
0.00

0.83
0.81
0.78
0.38
0.34
0.32

. 0.27
0.24
0.21
0.18
0.00
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I.OO

0.75

(I-COS8 „&

0.50

0.25

I0.00
0.00 0.50 I.OO I.50 2.00 2.50 5.00

P

FIG. 2. The average plaquette (1 -cos9») as a func-
tion«p for m=~ (Q), m=0. 5 (6), andm=0 (0).

In the next figure (Fig. 3) we have plotted the
inverse of (gt)j) versus the bare fermion mass
squared (m ). There is a marked tendency for

2this quantity to go to zero earlier (greater m )
for larger P. Also the renormalized mass
squared,

FIG. 4. The phase diagram of the theory in the P-m2
plane. Along the curved line the renormalized mass
vanishes.

2='clearly appears to go to zero closer to rn =0 for
increasing values of P. We have estimated the

2—critical mass squared to be m, = -2.0, -1.5,
-1.1, and -0.5 for P =0.0, 0.25, 0.5, and 1.0.
From the location of the critical points at which

O

'CI

m„=0 at several values of P we have drawn the
phase diagram shown in Fig. 4.

We mentioned that the Wilson loop has both area
and perimeter behavior, one being more pro-
nounced than the other depending (roughly) on the
ratio P/k, at least for small P and k. As an il-
lustration we show in Fig. 5 the P dependence of
square loops W(I) with sides of length I, where I
varies from one to four, the largest meaningful
size on a 10x10 lattice. The fermion mass m in
this case was fixed at 0.5. One can see that the
errors rapidly increase with the size of the loop.
In Fig. 6 we have plotted the log of the square
loop versus the length of its side. As P is de-
creased and k is increased (corresponding to a
decrease in m) there is an indication of a change-

I.oo

2.0

I.O

0.75

N(T. )

0.50

I=2

I.O 0.5 0.0 -0.5 —I.O

0.25
T. = 4

fA

FIG. 3. The inverse of (gQ) (above) and the renorm-
alized fermion mass squared (below) as a function of
the bare mass squared. The points are for P=0.25 (+),
P=0.5 {0), P=1 (6), and P=1.5 {x). The lines are drawn
only as a guide to the eye.

0.00
I.OO I.50 2.00 2.50

P

FIG. 5. Square Wilson loops S'(I) of sides I with
I=1, 2, 3, and 4 as a function of P for m =0.5. The lines
represent only a guide to the eye.
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3.00— 1.50

2.50—

2.00—
—10W(I)

1.50—

1.00

MASS

1.00— 0.50

0.50—

0.00
0.00 1.00 2.00 3.00 4.00 5.00

0.00
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

g

FIG. 6. Dependence of the logarithm of the square
loop on the length of its side at fixed coupling. Data are
for m =0, P =1.25 (o), m = 0.5, P =2.0 (o), and nz = 0.5,
P =2.5 (z). The perimeter behavior is clearly shown in
the first case.

FIG. 8. Dynamic fermion mass 6m (o) and boson massI (+) as a function of g=(1/4P) for m =0.5.

have shown before that

over from an area law to a perimeter law. A. fit
of the form —InW(I) =AI gives 6 =2.0 in the case
rpg =0.5, in agreement with an area dependence.

From the fermion and gauge-boson correlation
functions we can extract their masses. The Monte
Carlo runs were sufficiently long to determine the
masses to an accuracy of the order of five per-
cent. In the weak-coupling limit the renormalized
fermion mass m& approaches the bare mass m,
whereas the boson mass and 5m go to zero. For
finite bare fermion mass one can easily convince
oneself that for weak coupling

a 5m =egg + 0(g ),
gM =c2g +O(g),

where cq and c2 are numerical constants, depen-
dent on m, which can in principle be computed by
evaluating numerically Feynman integrals with
the appropriate lattice propagators and momenta
limited to the first Brillouin zone. For m =0 we

We have compared this prediction with our Monte
Carlo data. For m =0 (see Fig. 7) M tends to
follow the curve (2/w)' ~ g, consistent with the ex-
act result for the Schwinger model. From our
numerical data we would have estimated M = (0.72
+0.5)g[(2/vP '=0.789]. Of course, longer runs
and larger lattices would allow a more precise
determination of 5' and M. For finite pn both
5m and M (see Fig. 8) approach zero. In Fig. 9
we have shown our results for the average (gg).

In conclusion, we should mention that we have
measured the connected meson-meson correlation
function and found it to be consistent with zero
to one part i.n 10' for most P and rn.

V. CONCLUSIONS

We have shown how Monte Carlo simulations of
systems with fermonic degrees of freedom can be
used to compute correlations and mass gaps.
With rather short runs on small lattices we have
computed masses with an accuracy of the order
of a few percent. We expect the results for the

1.50
1.00

1.00

MASS

0.50
0.50—

I
I ~

M = 0.0

0.00
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

g

FIG. 7. Dynamic fermion mass 6m (o) and boson
mass M (+) as a function of g=(1/4P) for m=0. The
dashed line is (2/m') ~ g.
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FIG. 9. The average (r/iP) as a function of g = (1/4P)~/2
for m=0 and m=0. 5. The point at g=0 is exact.
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phase diagram not to be qualitatively different
for a confining theory in higher dimensions. The
introduction of spin is also straightforward in this
formulation. Although the method we have used
is considerably slower (by a factor of - 5x N~} than
the usual Monte Carlo method, the convergence
properties of the process are rather satisfactory.
One might, therefore, expect quantitatively good
answers by doing long runs at a few selected val-
ues of the parameters.
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