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Symmetrically anharmonic oscillators
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%'e propose a new nonrelativistic Pauli-type equation where some specific small relativistic terms are retained.
%'ith the confining potentials V„(x) approximated by the polynomials V (x) =gox'+" +g x' +', g„, &0, the
nonzero kinematical corrections T —To, where T = hop'+ - + h~' +' T„=(p'c'+p'c')'" —pc', are
added to the anharmonic-oscillator Schrodinger equation, so that the p-x symmetry typical for a harmonic-oscillator
Hamiltonian is restored. As a consequence of this semirelativistic regularization, the analytic diagonalization of an
entirely anharmonic Hamiltonian H = T + V in terms of the m )&m-matrix continued fractions is obtained.
Both the auxiliary fractions and the eigenstates converge very quickly. In the cases of the bounded spectrum ofH„„„
(m = 2q), it is proved exactly for q = 1, 2, and 3 and conjectured for q & 4.

I. INTRODUCTION

Let us recall an introduction of the simplest
anharmonic-oscillator potential V, = A~'+ Pg, x'.
The first term corresponds to the universal shape
of any force V near its minimum while the second
component represents the phenomenological cor-
rection of the simplest mathematical form. In
the same spirit, we are permitted to complement
the kinetic-energy operator T, g,p', g, =l/2p
by the first relativistic correction g1p
=-I/Sp, 'c'. We get the simplified Pauli equation

H»4=EP ~

+11 1 ~l & 1 ~0~ 1~

for the "symmetrically anharmonic" oscillator
which is covariant under the Fourier transforma-
tion p —x.

It is r'ather surprising that an introduction of the
physical semirelativistic correction g, p in Eq.
(1.1) may be dictated also by purely formal (nu-
merical) reasons. ' Moreover, the use of the
symmetrically anharmonic unperturbed system
may simplify significantly the perturbative dia-
gonalization of the anharmonic Hamiltonian H01

Tp + p1 This follow s from the paper by Hal liday
and Suranyi' who have used the squared harmonic-
oscillator Hamiltonian (H«) in lieu of H» in Eq.
(1.1) to guarantee its exact solvability. In light
of the results of Bender and Wu or Simon' con-
cerning the divergence and asymptotic nature of
the Rayleigh-Schrodinger perturbation series
for the anharmonic oscillator, the symmetriza-
tion of the anharmonic Hamiltonians circumvents
probably the influence of the essential singulari-
ties in the complex coupling-constant plane, so
that the generalization of this technique to higher
anharmonicities seems to be promising.

The solvable operators (Hoo) contain the mixed
terms x'p' so that the semirelativistic interpreta-

tion of the unperturbed symmetrically anharmonic
system is hindered for higher m's. At the same
time, the Pauli-type analog of Eq. (1.1),

H /=ED, H =T +V

T = h *'"' V = ~x'"'
rn jE ~ m ~j 7

(1.2)

(-1)'p, 1 2j '
i (2 )2i & j Oy 1p ~ ~ ~

(1.3)

in (1.2), p,. are positive integers. For the odd val-
ues of rn, the p-dominant term A p' "has a ne-

seems to be difficult to solve. In fact, it is not
true. The aim of the present paper is to show
that Eq. (1.2) may be solved exactly by means of
the Hill-determinant methods. '

The algebraic (nonperturbative) character of
the formal solution of Eq. (1.2) is achieved by
means of introducing the auxiliary matrix contin-.
ued fractions (MCF)."We shall show in Sec. II
that (1) the effective Hamiltonian X is defined by
MCF in the finite m x m. -dimensional model space,
(2) the exact energies are equal to the roots of the
relatively simple transcendental equation, and
(3) in the full Hilbert space the exact eigenstates
are represented by the closed form of the Taylor-
type infinite series.

The results (1)-(3) are independent of the speci-
fic interpretation of the entirely anharmonic oper-
ator H . To provide their strict mathematical
foundation, we are obliged to prove (A) the con-
vergence of the auxiliary MCF and (B) the con-
vergence of the infinite Taylor-type series. Of
course, it must be done for each specific choice
of degree m and the type of the coupling sets A, ,
g, , j =0, 1, . . . , rn separately.

We shall consider the operator T as an approxi-
mation of the relativistic prescription T„
= (p'c'+p'c')"' —p,c'. Then we have
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gative sign and the continuous spectrum of the
operator H is probably not bounded from be-
low. The nonapplicability of the unmodified for-
malism is illustrated in Sec. IQ by the simplest
m =1 case (quartic-quartic oscillator}. Although
the MCF's degenerate into the classical continued
fractions, ' they are shown to diverge by oscilla-
tion. The possibility of modifying and extending
the formalism is briefly discussed. The complex
poles of the Green's function and the correspond-
ing resonant states may be recovered when using
the stationary-point initialization of the MCF se-
quence in the spirit of Ref. 8.

In Secs. IV, V, and VI, the applicability of the
MCF formalism is analyzed rigorously for the
semibounded operators II with m =2q and g &0.
The easy proof of the convergence properties
(A) and (B) for the sextic-sextic oscillator (q =1)
is shown to be of nonmatrix, one-dimensional
character (Sec. IV A}. It is complemented by a
thorough investigation and illustration of the nu-
merical properties of the solution (Sec. IV B).
For general q (Sec. V), the sufficient conditions
(A') and (B') are formulated for the two conver-
gences (A) and {B), respectively. In the single-
precision computer-arithmetic, their universal
numerical verification is shcwn to work and to
give an affirmative answer for q=1, 2, and 3. In
Sec. VI, the performance of the less straight-
forward but fully non-numerical exact proof is
exemplified by the q = 2 decadic-decadic solution.

II. THE SOLUTION

The linear equations of the type (1.2) may always
be solved by the numerical diagonalization tech-
niques' provided that the-matrix elements of the
operator H are known in some basis. The dis-
tinctive features of this class of methods are the
following:

(Nl) The necessity to work simultaneously with

the &xÃ-dimensional arrays of the interrelated
elements, pf»1.

(N2) The approximate character of the solution
because the limit N- ~ cannot be properly defined.

On the opposite side of the methodical scale, we
may find the closed solutions of some specific
equations, usually in terms of the special func-
tions. Their characteristic features are the fol-
lowing:

(Cl) The possibility of reducing the original
equation to the two-term recurrences.

(C2) Exact proofs of convergence.
(C3) The existence of different equivalent forms

(power series, integral representations, etc. ) of
the solution displaying its different properties.

In between these two extremes lies a broad vari-
ety of further (perturbation, variational, etc. )
methods. Whenever we succeed 'in suppressing
the drawbacks (Nl) and (N2) and satisfy the re
quirement (C2), the characteristics such as (C3)
become less relevant and the obtained solution is
virtually exact. In what follows, we shall present
a solution of this kind.

A. Matrix representation

In the standard harmonic-oscillator basis

y„(x)=c„e "" ~'H„(xv 1 ), n=O, I, . . .

the matrix elements of & are known. The ex-
plicit formulas may be easily obtained from the
identity (g =+1)

a9 n n-2+n-2 ++n Pn ~n9 n+»

1 d'
0+=Ax, 0

A. dx

a„=n+ —,', b„= -', In(n —I }]'~'.

(2.2)

In general, the matrix form of H will thus be
a band matrix with 2nz+3 diagonals since

0 m+1 ~ ~ 0 m+1 (2.3)

f =0, 1, i=1, 2, ~ ~ ~,M, k=1, 2, . .. (2.4)

the even and odd indices p become uncoupled and
we arrive at the recurrent relation

~..IX,'&= g (IX, ,&C;'+IX!»,"+IX'„,&B ),

i =1,2, . . . ,M, M=m, C„",~=B~" =(B~r)'~, C, =O

valid for the operator H with the mx~ -dimen-
sional matrices A. , jp, and g. For the sake of
brevity we shall consider the even states ]=0
only.

B. The model-space formulation

The band structure of the matrix representation
of H is very similar to that of Ho obtained by

(cf. the simplest example with m=0).
The proper choice of the "spring constant'* g in

the basis (2.1) enables us to achieve p' = p in (2.3).
Owing to the opposite signs in (2.3) [p' = —{zl'/
2g)Q ], the two outermost diagonals become iden-
tically zero. Hence, the number of diagonals
changes to 2m+1. When the basis is divided into
subgroups of M =re. states

( x
~
X„'& = y „(x), v = 2M (0 —1)+ 2 (i —1)+ t,
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det(EI-X) = 0, X=A, +B,F,(E)C, , (2.9)

provided that the MC F expansion of F,(E) con-
verges [assumption (A) of Sec. I] and the operator
H „is not exceptional, det 1/F»(EO) 40, k& 1.

Of course, the effective Hamiltonian K entering
Eq. (2.9) may also be used to define the model-
space projections gC',

~

g)=JV of the exact eigen-
states

~
P) of H . According to Ref. 6, we shall

write the corresponding model-space Schrodinger
equation in the form

N

Q X'(E6;~ -K~)= 0, j= 1,2, . . . , M (2.10)

and have

Graffi and Grecchi in Ref. 5. The same formal
representation of the Green's function matrix

1P P =F (E), P = Q )X')(X,'~ (2.6)
tSIPL j=l

may be used. It is a matter of simple algebra' to
show that the mxm matrix F,(E) is defined by the
recurrent relations

F»(E)= [EI A» -B» F-„,~(E)C», ~], k=N, N 1, . -. . , 1

(2 7)
in the limit N- ~. The trivial initialization g~„
=0 corresponds to the truncation of the basis (2.1)
at the cutoff N»1, in the spirit of the numerical
methods. Then, by analogy with the ~=1 case, '
we may call the quantities F»(E) the generalized
(matrix) continued fractions (MCF).

The existence of the MCF sequence F,(E) in the
vicinity of the Green's function pole E = E, (eigen-
value of H„„)is a nontrivial assumption. Con
sidering the projected operators

(1-Pr)H (1 —Pr) Pr= Z Q IX~»)(X~»l
a= 1 g= 1

(2.8)

we cannot a priori exclude, for some "exceptional"
operators &, the random coincidence of the
poles E, of the two Green's functions detp;(E) and
detFr„(E}. This would mean that Fr„(E},Fr(E),

are not defined by relations (2.7) for E=E,.
Graffi and Grecchi restrict the class of H's to
exclude the excepti. onal operators. In the present
context, we prefer to treat the exceptional H 's
by the inessentially modified MC F method des-
cribed in Ref. 10. It will not be introduced here
because of its rather formal character. We may
summarize this discussion in the form of the fol-
lowing:

I.emma 1. The discrete spectrum fEO' of H„ is
defined by the roots of the model-space secular
determinant det 1/F, (E), i.e. ,

Lemma 2. The eigenstates
~

P) of H„corres-
ponding to the eigenvalue E, are defined by the in-
finite Taylor-type series

N

P) +3f gg ~xs)Di&
5 =1 4=1

I,,= H, ,F,(E,)

(2.11)

provided that it is well defined (cf. lemma 1) and
convergent [assumption (B) of Sec. I]. This as-
sertion may be verified in a straightforward way,
employing only Eq. (1.2) and the recurrences (2.5)
and (2.7).

III. THE QUARTIC-QUARTIC OSCILLATORS

The simplest special case of the symmetrically
anharmonic operator H reads (ae 0)

N' d' h' d' 1, , 2
H

8p 3p 2 dg 4 2 p dg 2 + —P~x +—pQx

(3.1)

and of the matrix elements of H, rn = 1=M,

(X» iH„ ix») = (y+ p)(2k ——,') =A„,

(X,[H„iX„,)= qc...)H„iX,)=H, =C...
= [2k(2k -1)]'~'[(4k —1)q+ (y -P)/2].

(3.3)

Since m = 1, the corresponding auxiliary MCF's
F„(E)degenerate into the classical continued frac-
tions and their well-established theory' may be
applied. As already mentioned in Sec. I, we must
stop at this point, the method of Ref. 6 is not ap-
plicable to the odd-m operators H~., ~., Really,
performing the Fourier transform x-p, we get
"potential" V(P) decreasing quickly for large p
so that the spectrum of the operator (3.1) is not
bounded from below.

From the physical point of view, the possible
discrete resonant states of H» are still of interest.
In fact, the "spurious" negative-energy eigenstates
of H» originate from the "wrong" truncation of
the expansion T„and may be ignored. At the same
time, the small imaginary part of the energy ED
is irrelevant. It is part of the overall uncertainty
caused by those relativistic corrections which are
neglected.

We devote this separate section to H» to outline

Formally, we may illustrate by it the detailed
structure of Eq. (2.3):

H„= —qO' —pO+yO. + qO, ',
(3.2)

8 cE S(d 2+0p=ka, y=
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briefly the interesting and quite natural extension
of the MC F method, which couM enable us to cover
the full class of the symmetrically anharmonic
oscillators in the future. Here, we shall not go
into details because the strict foundation of this
extension represents a subtle problem of mathe-
matical rather than physical character.

First, we realize that the very formulation of
the problem must be modified. Owing to the pres-
ence of the perturbation II» -Ho, - —d'/dx', any
discrete state may decay and must therefore cor-
respond to t;he complex energy E,. The simple-
minded finite truncation N of the basis and a for
tioxi any real initialization E„„ofthe sequence
E~ may lead to oscillations and it need not even
define uniquely the Green's function detF, (E}.

Being inspired by the papers employing the
many-term recurrences" we contemplate weaken-
ing the assumption (A) of Sec. I. In the asymptotic
region, we transform the MCF E,(E), k» 1 into
the convergent series expansion, e.g. in the pow-
ers of 1/k. This expansion is employed to initial-
ize the recurrence (2.7).

In accordance with Ref. 8, the first-order ap-
proximation to E„„(E)will be represented by the
stationary ("fixed") point E~&„&(E) of the mapping
E~„-E~at k=N+ 1. For the convergent MCF,
a stable root of the corresponding quadratic equa-
tion E~„=E~=E~(„)is to be chosen. ' In the pres-
ent application, none of the two roots E,&„&,(E)
= -+i,/B, , is stable. As expected, this implies
the oscillatory divergence of MCF E,(E).

'The next term of the asymptotic expansion of
E~(E) may be obtained in the same way. Consider-
ing the asymptotically k-independent quantities
L„=B~,F~(E), we have the first-order terms spec-
ified exactly by the formula

(g
~
f)= const+

~
D~

~

'
0=x

(3.6)

is a finite number. 'The proof of the convergence
of the infinite series (3.6} follows from the esti-
mate

(3.7)

which satisfies Raabe's criterion for E/(P+ y))

IV. THE SEXTIC-SEXTIC OSCILLATORS

A. Convergence of the solution

The solution of the symmetrically anharmonic
oscillator Eq. (1.2) of the order 4q+ 2 with an in-
teger q=m/2= 1,2, . . . is formally represented by
Eqs. (2.9) and (2.11), in accord with lemmas 1

and 2 of Sec. II.- It becomes exact when we prove
the assumptions (A} and (B) concerning the con-
vergence of MCF and P, respectively. In the re-
maining parts of t:he paper, we shall present the
separate proofs for the first few q's. Let us start
with q= 1. From the form (bk 0)

I' d 4pb
j.6p'c'dx' " c'

= -pO ' -&i0 ' -PO + yO, + vO, '+ pO, ',

L„, n& k, and leads presumably to the two complex
energies E, and Eo~. 'They may of course lie on
different (physical or unphysical) sheets in the
energy plane. It is important to note that the in-
terpretation of the corresponding states

~

P) as
resonances is not contradictory because their
norm

(Q Ag E
L»&„&,=L,&„»= 2B (ai sinhr&, —1),

(3.4)

I'b' 2&I' 5'b'
2 p, 'c4 P

' 2pc' '

I2 52a4 2 p. b
4b'

(4.1)

It is easy to demonstrate that the subtraction of
this dominant term does not define the stationary
MCF L~ =LI, -Lq(, t)~ since(2) (x) ~

2k' (3.5)

This means that the O(1/k) component of 1~&2& does
not decrease and the verification of the assumption
(A) remains open. Hence, the same subtraction
procedure must be iterated. Of course, the high-
er-order stationary roots Ly( t) Ly( gg ~ are
determined uniquely by the requirement of their
smallness.

'The expansion L~, = L~(,'t), + L~(,',&, + ~ ~ ~ defines
the two possible initializations of MCF sequence

J=2u+i-3, a=1, 2 (4.2)

A,"=A,"=-,' [(4k —3)(4k —2)]'~'[(v+ &))(8k —5)+ y P], —

B"=2[4k(4k —1)]' [(v+ &I)(8k-1)+y —,p] B"=0.

of the sextic-sextic operator we obtain the two-
dimensional model space and the MCF representa-
tion of the effective Hamiltonian X with the param-
eters

A,"= 10p(4P+ 3J'+ 2J + && )

+ 3(v -&))(2J'+J+ -,')+ (P+ )y( 2J~+),

B',& = 4 [(2J'+ l)(2J+ .2)(2J'+ 3)(2J'+ 4)]'~ '

&&[3p(4J+ 5)+ v -&I],
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In the k» 1 asymptotic region we get

A''= 5p(4k)'5,.~+ O(k'),

B','= ,'p-(4k)'5„+O(k'), i,j =1,2.
(4.3)

TABLE I. Sample of the sextic-sextic ground-state
energies.

Owing to the presence of the Kronecker delta
6;&, the mapping L~~, -L',~ may be decomposed into
the pair of the two independent and identical sca-
lar mappings numbered by the upper indices i
=j= 1,2. 'The classical continued fraction meth-
ods7 may be used. In the leading order in1/k,
the stationary point has a simple geometric in-
terpretation as an intersection of the two curves
L~(L~„) and L, =L„, Alge. braically, the stable
one is therefore obtained as the plus-sign root'

0

8
12
16
20
24
28
32
36

1.000 000 0
92.698 380 15

373.395369 5
843.087 188 2

1501.773 892
2349.455 494
3386.131996
4611.803 402
6026.469 712.
7630.130926

5+ 25 9b&~2

A(st)

of the pair of the identical and uncoupled quadratic
equations L~~„=L„'~~ L~~&„,. In this way, the as-
sumptions (A) and (B) are proved since L,",'=0
(1/k) and ~Ll,"~ &1, respectively.

The formal discussion of the q = 1 case is fin-
ished. Nevertheless, since H» is the simplest
representative of the entirely anharmonic oscil-
lators, we feel that it is necessary to complement
the formal proof by a numerical example. Actual-
ly, this is somewhat related to the requirement
(C3) of Sec. II since the properties of the compu-
tational algorithms specify the real range of ap-
plicability of the abstract solution.

B. The numerical example

The MCF-based algorithms are extremely com-
pact and may be impl. emented even on the pro-
grammable pocket calculators. In this respect
they are able to compete even with the special
function solutions. Owing to the extremely favor-
able convergence rates of both the MCF repre-
sentation of the exact effective Hamiltonian 3'.

and the Taylor-type expansions (2.11) of g, the
precise calculations are also very quick. Hence,
the only important problem is the choice of the

root-searching procedure solving the transcenden-
tal Eq. (2.9). Inwhat follows, we use P=y=l,
v=0 and change q and test the cutoff vV=50 at the
value N= 650.

The almost linear shape of the function detl/
E,(E) for E lying below the ground-state energy
Epp makes it easy to determine the q dependence
E»(g), e.g. , by the Newton method (Table I).
Moreover, this dependence is very well repro-
duced by the empirical extrapol. ation formula

E = g„+b„g+c„g

go 0 996544 50 0 69886V 5

5 9060' 075

(4.5)

At @=4, E I. (4.5) overestimates the correct value
at the sixth digit. Only for g&4 and especially
for q&0.6, the significant deviations from (4.5)
may be detected and reach 1—2/o for q =0.15—
0.10. The same holds for the excited states n
=1,2, . . . (Table II). The minima of E,„(q) (Table
III) occurring at q „=0.0593, 0.0321, 0.019,

, 0.014, . . . , deepen and shrink with the increasing
level number n = 0, 1, 2, 3, . . . , respectively, and
represent the boundary of the approximate validity
of Eq. (4.5).

From the physical interpretation of the operator

TABLE II. The parabolic shape of the spectrum Eo„(g).

Fitting points~ g
0.100 0.120 0.125 0.140 0.145

Level
an

Parameters
&n

In (4.5)

x
x

x
x

0.998 77
0.998 08

-0.694 5
-0.683 3

5.828 97
5.783 2

x 5.015 55 -10.744 76 163.799 7

x
x

x
x

8.875 2
8.843 4

12.782 27
12.897 95

-27.194
-26.720

-62.642 7
-64.247 6

826.865
825.110

2445.742
2452.588 9

In the remaining points, the deviations E-Efgt are of the order of 10
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TABLE III. Low-lying spectrum of the sextic-sextic
oscillator for small g's, v=0 and P=y=l.

in lieu of q. In conclusion, we note that the pre-
cision of det1/F, (E) given in Table IV is fully re-
produced by the cutoff ¹4.

Epo-1 Epg-5 Eoz-9 Ep3-13

0.000~
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055
0.060
0.065

-0.000 005'
-0.003 59
-0.006 88
-0.009 84
-0.012 48
-0.014 80
-0.01680
-0.018 48
—0.01983
-0.020 87
-0.021 60
-0.022 01
-0.022 13
-0.021 94

-0.000 05~
-0.045 01
-0.082 52
-0.11248
-0.13485
-0.149 60
-0.15671
-0.15614
-0.147 85
-0.13177
-0.10783
-0.075 93
-0.036 01

0.012 03

0.120 -0.000 64
0.125 0.003 02

1.084 90
1.231 87

a Parabolic extrapolation.

-0.001 70~
-0.134 68
-0.230 88
-0.286 90
-0.300 37
-0.269 23
-0.19246
-0.070 01

0.097 59
0.309 58
0.565 17
0.863 67
1.204 50
1.587 23

0.029 94
-0.254 26~
-0.41324
-0.447 00~
-0.355 54
-0.13886

0.203 04
0.670 16
1.261 80
1.977 51
2.817 04
3.780 24
4.867 00
6.077 19

8.518 68 27.505 52
9.395 73 30.18915

V. THE OSCILLATORS OF THE ORDER 4q+ 2
AND THE CONVERGENCE PROOFS

Although the analytic theory of the MCF's is not
yet worked out, their properties may be derived
very easily from analogy with the scalar case."
The convergence of R and g should be proved in
the two respective steps, showing the following:

(A') In the asymptotic region, N» n»1, the
values of the MCF sequence L„„(=0),L„,
L„».. . , L„, . . . accumulate near some stationary
"fixed" point L„"&,',

&

of the mapping L„„-L„.In
other words, the deviations L„"'= L„—L„'&,', „of
the true sequence L„ from the stationary-point
approximation become negligible with the increas-
ing cutoff, (fL„"'[i« iiL„"&,', &[[.

(B') The infinite series

Q(L) =1+LQ(L)Lr = 1+LLr+LLLrL r+ ~ ~ ~ (5 1)
H it follows that the most interesting part of
the spectrum is the region of the small g's (H „=H, for c-~, cf. Sec. I). Unfortunately, in
this domain the tangentlike structure of the func-
tion det1/F, (E) changes in such a way that the
Newton method becomes less effective. The peaks
of det1/F, (E) shrink and move closer to its zeros.
The grid of the test points E must be refined to
detect any deviation of det1/F, (E) from the almost
constant function. Although the second derivatives
are of considerable help and the increasing slope
of the peak improves the final precision, the ap-
proximate location of E becomes quite time con-
suming and represents the limitation of applicabil-
ity of the method for q-0.

In practice, the fairly good results may still be
obtained for q =0 and the low-lying states (cf. the
harmonic-oscillator limit in Table I-III). As an
independent illustration we evaluate in Table IV
Green's functions for two E's and three g's. The
exact value of the v =0.1 quartic-oscillator ground-
state energy Eo given by Biswas et al.' is quite
well reproduced by the parabolic extrapolation of
the type (4.5). It is even improved when vq is used

(Ills. f K'(Z DP I 5V
t, g=l 4=1

=const+ Ot' "L &',
i~ j=l

st'=Q Ot'D„'I 1+O —
) I,

N

i=&

Dg„-DNLN, j, L~j -L~, 1V~ =2@ .

(5.2)

%'e intend now to describe the sufficient condi-
tions for (A') and (B') and the general method of
their verification. Hence, let us consider the dom-
inant terms of the matrix elements of H, ~, (2.3)
with p'=p:

218+2
v, , +0(1"),A»" = 2p(kM)"" .~+I- ~f-ji.

B~' =2p(kM) ' r,.)+ O(k ) .21I/I + 2 (5.3)

1+i-j
Owing to the parity decoupling (v, , =0 for

~

i- j
~

converges. This is practically equivalent to the old
formulation of (B) in Sec. I since

TABLE IV. Numerical deviation of the nonrelativistic limit Epp(p) p 0 from the exact
(Bef. 4) anharmonic-oscillator energy Eo-—1.065285 5 (v = 0.1).

0.05 0.0005 0.000 005

det 1/5'& (Eo)
det 1/F g(EO+ 0.002)
Epp(g) —Eo
Eoo(0) —Eo, parabolic extrapolation in g
Epp(0) Ep parabolic extrapolation in ~g

-0.13807 -0.00230 -0.00013
-0.147 15 -0.01182 -0.009 67
-0.030 41 -0.000 48 —.0.000 027

-0.000 022
-0.000 005 2
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=odd, »,, =1 otherwise), the resulting b-indepen-
dent mapping I y y Ly may be decomposed into the
two identical mappings I -l', where l =bf,

(5.4)

the criterion

p (LnLrn)ijp
max "=' — -- = f(1

gp„'
(5.7)

and, with arbitrary y o0 (e.g. , y =1), the quantities
I

1 2M+2 ], 1 2j/t+2

M+1 —2~
'- j (, 1+2' —2f

s"'=o
f' =2py(bM)""F&'"+G(k ') (5.5)

px=2i 2j or 2i-1, 2j —1, 1 &t ~i) 1 ~i)j &q

Q(L) = Q(L")+Lq(L")L'+ ~ +L-'q(L"~ )L'"

(5.8)

it is sufficient to prove the smallness of the pro-
duct L" x L~" for some fixed n. More exactly, the
comparison with the geometric series provides

are the half-dimensional matrices q x q (cf. the
q=1 case in Sec. IV). We point out that (A') and
(8') concern practically the Eq. (5.4) only, which
is independent of any dynamical details in H, ~,
except for the value of the dimension q. Thus,
each proof of (A') will be entirely universal and we
may examine directly the numerical iteration of
(5.4). In the convergent case we get the value
E =l' =E„„ofthe stable stationary point. The
first few results obtainable in the sing)e-precision
computer-arithmetic are presented in Table V.
For higher q's, due care must be paid to the suf-
ficiency of the computer precision because of the
quick growth of g and b.

As a by-product of the above procedure, the X-
and E-independent initialization L &"„»I=I &„& 63 l &„&,
cf. (5.5)] for the MCF recurrence (2.7) is at our
disposal. Its use may not only significantly shorten
the energy determination, but also render possible
the convergence proof of the Taylor-type series
(5.1). Namely, using the identity

for the convergence of Q(L). We observe that Eq.
(5.7) defines the squared norm f = [)L~))' of the
matrix L„ the value of which coincides with the
maximal eigenvalue of LP.P or, equivalently,
L~~L~. Using the stationary-point approximation
L~-L&„, the relevant numerical results are pre-
sented in Table VI and demonstrate the validity
of the sufficient condition ()L"[('(1for (&i&~ g) &~.

The purely numerical treatment of Eq. (5.4) was
chosen just because of its simplicity. Alternative-
ly, the more rigorous approach to the matrix form
of the quadratic stationary-point equation L„=L,~,
i.e. , to Eq. (5.4), I = l' = I &„&, may be based on its
purely algebraical. solution. In the form

I+a- ~g l +—a =a —a —g, g =b+b
A

(5.8)

8"= 5,,s,.'o, , 8"= 5,,x,.'p, ,

o',. = +1 = p) ) z)j = 1)2). . . , q

(5.9)

we get the general solution of Eq. (5.8) in the form

1 1
E =-g —+ TV/Z —U

0 s (5.10)

with the diagonal matrices x"= 5,,z,. and s ' = 5,,s,.
and with the arbitrary pseudo-orthogonal matrix
Z 0

Zo'Z =p 0"=5 g p"=5 p (5.11)

The q(q+1)/2 continuous parameters in the pseudo-
orthogonal matrix Z are to be fixed by the q(q+1)/
2 restrictions guaranteeing the symmetry of the

this equation is solvable and may be treated in
close analogy with the scalar q =1 case. Introduc-
ing the q x q orthogonal matrices 0 and 5' such
that

1
g=U SU g —g —g=WAW) g )

TABLE V. Fixed points of the mapping f&, &-f&,
&»l. TABLE VI. Eigenva&ues of the matrices L"L

fbi
fi2
ff3
f"
f23

3

-0.055'56 -0.055 73
0.035 30

-0.078 09

-0.007 683
0.007 069

-0.005 022
-0.014 186

0.011689
-0.017469

1 1
2 1
2 2
3 2
3 3
3 4

O.ill ill ill
0.524 955 634
0.043 582 891
216635
1.125 637
0.584150

0.000 018 372
0.000 000 002
0.000 000 2
0.000 000 0
0.000 000 0

0.000 000 02
0.000 000 00
0.000 000 00
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q && q matrix f=b 'I. The first few metrics o and

p are given in Table VII. Its reliability was
checked by the precision test trS =4q(2@+1).

In conclusion, we conjecture that for each q,
the sign freedom which remains present in the
resulting stationary solutions l&„) will be com-
pletely removed by the stability (i.e, convergence)
requirement (A') and that this unique solution de-
fines also the convergent eigenstate g in accord-
ance with the assumption (B'). A detailed proof
of this conjecture for the first nontrivial q =2 case
is presented in the next section. The validity for
q =3 is strongly supported by the preceding nu-
merical proof. The necessity to increase the corn-
puter precision for q

~ 4 cases is compatible with
the rough estimate (I+a/g), , =0(~,/s, .) [cf. Eq.
(5.10) and Table VII].

VI. THE DECADIC-DECADIC OSCILLATORS

Besides the sextic-sextic oscillator, also the
decadic-decadic solution may be defined by wholly
non-numerical means since the algebraic diagon-
alization of the 4 x 4-dimensional effective Hamil-
tonian R can be performed in radicals. In prin-
ciple, it is not difficult to derive al,so the asymp-
totic expansion of the type L „=LI

& t) +I „"&'„)+
which initializes efficiently the Green's function
MCF. Finally, the algebraic proof of convergences
(A') and (B') is still rather straightforward. This
will be present in detail to illustrate and support
the numerical conclusions and conjectures of the
preceding section.

According to the general formalism, we may

put y =2M+2 in (5.5) and get

U = U~ = W = 8'~ = 1 1 1

&1 1&

(6.1)

so that

sy 14& sp 10& 'vj sy sinh'y, .z,' = s,' sinh'5

coshy = ~ (3 + ~|' ) & cosh' = -,'f (1+—,',),
O~p~10'~p1 1 ~ 2 2

(6.2)

From (5.10) and with the a sign freedom in s„s„
y, and 5 we get

' sinhy cosh' —coshy
l=U s~ sinh6 sinhu

IIE S

s~ sinhy sinhe
2 U.

sinh5 cosh0. + cosh/

The symmetry of f=b 'I implies that

2s s, . y-5cosh++ -' ' sinha —tanh-s'+s'1 2

(6.3)

(6.4)

This is the quadratic equation for e with the pair
of solutions o.(&), &=+I,

y- 5 &s~s I(,y- 5 1
cosho. =36 tanh — '--') tanh'

1 12 k 2 36
" s,s~ y- 5 (,y —& 1 t'~'

sinhu = 36 — ' ' tanh + el tanh'
12 2 i, 2 36j

. (6.5)

Of course, not all of the free * signs in s„s„y,
5, 4, and a are independent. Firstly, sy sg and

TABLE VII. Structure of the auxiliary matrices S and R.

0)maxs g
2 Ogmln sg p&maxy&

2
p&ming&

140 -100

64
3

14848
175

-74.24

2 xl03

-3 x104

-96.61

1050

-5 xl05 -6 xl02

--10'

~-2 X10

-5 x108

-3 x103

r 1Q4

-105

-8 x106 8 x103 -10~0 106

~108 4 xlQ3 ~-3 X1Q 0(107)

~2 X10 ~5 X10

10

~3 X10

5 x10~0

~2 X10

--3 xlQ
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n enter Eq. (6.3) in the form of product, and we
may put s, &0, s, &0. Secondly, cosh+) 1 in (6.5)
implies that y&5, i.e., y)0. Thirdly, the solution
of (6.4) has the property o.(c,s,s,) =-n(-e, —s,s,)
and & =signa. Finally, the two eigenvalues of l"l"~
or, equivalently,

l"~l" =2

are %iraq &~~~

tg~ ~g +gl + [(Q —lU) + 45 ]

=u+so -[(u —au)'+4v*)"' &0 (6.6)

[cf. (6.3)]. It is rather tedious but straightforward
to show that E,„ is greater than one and increases
with the increasing power n except when 5(0 and
t. &0. Hence, the sign freedom is eliminated com-
pletely and I„« is uniquely defined by (6.3). The
numerical value (6.6) of e„(6(0, c &0)
= 0.524 955 634 strictly confirms the convergence
(B') of g and the corresponding numerical results
of Tables V and VI.

An elegant non-numerical proof of (A') is cJ.osely
related to the preceding discussion. %hen we put

f, =l ...&+6,,/br, the insertion into (2.V) gives the
exact MCF recurrent definition of the subtracted
quantities n~=bf~"'b", which implies a~=
=l&„&n,.fr~, &+O(a')+O((l/k)a). Hence, jjn, jj( jjLjj jjA~, jj jjLrjj [1+O(1/b)] and the smallness
(5.V) of the eigenvalues [i.e. , (B )] is sufficient
to guarantee also the MCF convergence (A').

VII. SUMMARY

%e have presented a new phenomenological mod-
el designed to describe the particle confinement
in a way closely related to the standard Schro-
dinger equation with the potentials of the poly-
nomial type. It differs from the original anahar-
monic-oscillator equation in the additional p-an-

harmonic corrections. This specific restoration
of the P- and x-representation symmetry incor-
porates the exclusive linear harmonic oscillator
into the broader class of the solvable Hamilto-
nians.

For definiteness, the new p-dependent terms are
interpreted as the appropriately chosen subclass
of the usually neglected relativistic kinematical
corrections. Their inQuence may, among other
things, represent the efficient validity test of the non-
relativistic methods in the domains which lie on the .

boundary between the nonrelativistic and relativistic
kinematical regions (cf. quarkonium). The practical
aspects of our symmetrically anharmonic oscilla-
tors may of course be complemented in the future,
for example, by incorporating the mixed terms
such as x'p' and/or the different physical inter-
pretations (p-dependent or nonlocal forces, dis-
persive influence of the medium, etc.).

The main contribution of the paper lies in the
description of the nonperturbative solution method
adequate to symmetrically anharmonic oscillator
of the arbitrary order 4q+2. The model-space
MCF techniques of Qraffi and Qrecchi comple-
mented by our recently suggested construction of
the complete wave functions are strictly proved
to be convergent for q =1, 2, and 3. %'e have
shown that the matrix continued fractions work
extremely well in the practical determination of
energies, at least for the sextic-sextic oscillators.

The quick convergence and a close relation to
the standard harmonic-oscil. lator functions are
among the practical merits of introducing the
small anharmonic terms -p, p', . . . into the
Schrodinger equation. In this respect, our ap-
proach may be favorably compared with the other
analytic Hill-determinant solutions such as that
found recently by Singh et al."for the sextic an-
harmonic oscillators in terms of the classical
continued fractions.
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