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Electron in the classical external field of a plane electromagnetic wave: High-energy limits
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It is shown that Volkov's exact solution of the Dirac equation for an electron in the classical external field of an

arbitrary plane electromagnetic wave can be cast, by means of an exact Mendlowitz-type unitary transformation, in

a form in which positive- and negative-helicity states are separately described by two-component spinors. High-

energy limits are then obtained by a mere expansion.

I. INTRODUCTION

It has been known for a long time that the
problem of an electron in the external field of
a plane electromagnetic wave can be solved
exactly, both classically and quantum mechan-
ically. The problem of finding the exact solu-
tion of the Lorentz-force equation was solved
by Frenkel' in 1925, and the exact solution of
Dirac's equation was first obtained by Volkov'
in 1935. The advent of powerful laser sources
has renewed interest in this old problem. As
an unfocussed laser beam can be represented
as the classical field of a plane electromagnet-
ic wave to a good approximation, many authors
have investigated the scattering of an intense
laser radiation by free electrons within the
framework of classical electrodynamics.

For the same reason, those quantum effects
that occur in the interaction of free or weakly
bound electrons with the beam emanating from a
laser are generally calculated within the frame-
work of the first-quantized theory. Interesting
new results have been obtained in this context.
A generalization of the Klein-Nishina cross sec-
tion of the Compton effect and the cross section

, of the stimulated and inverse bremsstrahlung
multiphoton processes have been derived within
the semiclassical approach using the Volkov-
state technique. '

Both processes, which are of interest for laser-
fusion schemes, exhibit an explicit dependence
on the external-field intensity. However, it
should be borne in mind that they have been cal-
culated assuming the light as a monochromatic
wave (or a square pulse) which is, in principle,
incompatible with scattering boundary conditions
since such a wave is of infinite extent in space
and time. In fact, it is not certain that these
results would not be drastically altered by taking
explicitly into account the switching on and
switching off of the light, that is, by assuming
a plane-wave packet rather than a monochromatic
wave in order to satisfy asymptotic boundary

conditions.
Actually, even with plane-wave packets, the

semiclassical external-field theory is not free
of difficulties owing to the time dependence of
the fields. This is clearly apparent when one
wishes to get the second-order nonrelativistic
approximation of the Volkov solution. ' Owing to
time dependence, the Foldy-Wouthuysen trans-
formation is no longer unitary, and the more the
fields vary quickly, the more the results differ
from the correct results. Hence, when dealing
with relativistic corrections, the semiclassical
external-field theory seems free of ambiguities
only for slowly varying fields.

In this paper, we are interested in the opposite
limit of Volkov states, that is, the high-energy
approximation where the rest energy of the par-
ticle is small with respect to its kinetic energy.
This problem is relevant not only to the interac-
tion between a high-energy electron and the field
of an arbitrary plane electromagnetic wave, but
also to an arbitrary constant and uniform field
since for an ultrarelativistic particle any constant
and uniform electromagnetic field is equivalent
to a crossed field' (a field where the electric and
magnetic fields E and ll are constant and such
that E'-lI'=0, E H &0). Now, a crossed field
is a special case of a plane wave. If A(n. x) and
n denote the potential and wave vector (n' =0),
respectively, of an arbitrary plane electromagnet-
ic wave, ' the four-vector A" j~ n ~ x=(where j" is
such that j n =0) can represent the potential of a
crossed field. Thus, the high-energy limit of the
Volkov solution will also represent the state of
an ultrarelativistic electron interacting with an
arbitrary constant and uniform electromagnetic
field by means of a particular choice of the poten-
tial. Furthermore, as the intensity of light is
relative to a Lorentz frame, this problem is also
relevant to that of an electron with a moderate
initial velocity interacting with an ultrastrong
light beam.

To derive the high-energy approximation, we
encounter a situation somewhat similar to the
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nonrelativistic case. In the last case, we had to
find a change of representation by means of which
a Volkov state is exactly transformed into a two-
component spin state. The nonrelativistic limits
were then obtained by a mere expansion to the
desired order in 1/m. Now, as an ultrarelativis-
tic particle is essentially in a helicity state, our
present task is thus to derive a unitary trans-
formation which will transform exactly a given
Volkov state $~ describing the state of an electron
of given initial four-momentum p" in the field of
a plane wave, into two two-component states des-
cribing separately positive- and negative-helicity
states of the interacting particle. The relativis-
tic limits of g~ will then be obtained by a mere
expansion to the desired order inm/ip i. In order
to derive the sought-after transformation, we find
it necessary to summarize some results previous-
ly obtained in this context.

II. BEHAVIOR OF AN ELECTRON IN THE EXTERNAL
FIELD OF A PLANE ELECTROMAGNETIC WAVE

In this problem an essential part is played by
the operators, 9

one obtains a Lorentz-type matrixM "z(p, A. ) which
remains an operator of symmetry for the free
field. In addition, it describes now the motion of
an electron with initial four-momentum p in the
plane-wave field. The vector

p'" =M"„(p, A)p

-pP +ed@ + nv
eg p eQ
n'P 2n'P (2.7)

is the exact solution of the Lorentz force equation

= —(e/m)l' p', (2.8)

dt
—= —(e/2m)[g -2+2(m/p")]o x A

—(e/2m)[(g- 2)p "(p"+m) '] (v' ~ H)v'xp

where & denotes the proper time.
Furthermore, if p, denotes the initial electron

spin vector and p the spin vector of the interacting
electron, it can be shown' ' that the matrix
M (p, A} gives also the motion of the electron spin
(g =2) as described by the Thomas-Bargmann-
Michel- Telegdi equation":

M~ =6~ +v(n~~ ~ -~ ~n~) +-,' v'n~n, ,p P
(2.1)

p 0 (2.3)

In particular, this is a Lorentz transformation
suhich gives no Doppler shift since, if h" =en" is
the wave vector of a monochromatic wave of fre-
quency &, we have

(2.4)M~ up =k~ .
P

If we replace in Eq. (2.1} the constant parameter
v by the space-time-dependent function

v = —(e/n. p}(-A')' ' (2.5}

where n" is the null vector of the plane wave and
j" a four-vector such thatn j=0 and j2= —1. v

is an arbitrary parameter.
The operator Iexhibits remarkable properties.

Let us summarize some of them. Since

(2.2)

where g"" is the metric tensor (g' = -g" = -g '
= -g" =1), M is the matrix of a Lorentz trans-
formation. In fact, this Lorentz transformation
leaves the tensor of the plane-wave field

pp p dA
p

d(n ~ x) d(n .x)

unaltered, ' since

—(e/2m) [g —2 p "(p" ~ m )-']p x (Ex v i )
(2.9)

where v' is the velocity of the interacting elec-
tron. To this end, the Lorentz-type operator M
is decomposed into a pure Lorentz boost I. which
is such that

I P p~ -pIP (2.10)

and a pure rotation R in the three-dimensional
space. The three-vector p R po is the exact solu-
tion" ' of Eq. (2.9) wheng=2.

The matrix Mean also be generalized' to the
quantum case by taking

v =- (e/in 8)(-A')'i' . (2.11)

(iy 8 -m)y=0 (2.12)

into the Dirac equation with field of a plane elec-
tromagnetic wave

[y„(i&" +eA") —m]y =0

giving the general solution g in the form

(2.18)

As n 9 commutes withn ~ x and, therefore, also
withe", all properties of the symmetry mentioned
above are valid even in the quantum case. A re-
markable fact is that the quantum Lorentz-type
operator M can now be used to transform the
field-free Dirac equation

and the four-vector j" by g= Uy, (2.14)

q" = (-A')-"2A& (2.6) where U is a metric-unitary operator which is
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unequivocally determined by means of the quantum
operator M. When the initial state y is a free-
electron state y~ of given four-momentum p", U

becomes diagonal and the Volkov solution g» is
obtained as

y» =U»&» =T»e " »

where

X» =- (n.p) '

(2.15)

tl ~ X

x [p~A( n~ x)+2, eA (n x)]d(n ~ x) (2.16)

where

T»(n x) =1 —(e/2, n P)y ny A . (2.17)

The spinor T~ is simply the spinor image of the
classical Lorentz-type operator M(p, A), that is,

T 'y "T =M"„(p,A)y
Ozf 0

(2.18)

The classical character of the Volkov solution

g» is best shown in the following fashion. Let us
take qr =y» in Eq. (2.12). Obviously, one obtains

(y p -m)(p» =0 . (2.19)

As M(p, A} is a Lorentz-type operator, Eq.
(2.19) can also be written in the form

(2.20)(y'~p' -m)qr» =0,
where p'" is given by Eq. (2.V) and

y~ =Mp (p, A)y~ . (2.21.)

Then using Eqs. (2.15)-(2.18) we see that the
Volkov solution $» satisfies the following algebraic
equation:

(y p' -m)y» =0 (2.22)

The strong resemblance between Eqs. (2.19) and
(2.22) shows that the Volkov solution describes
an electron which is moving in a plane-wave field
according to the Lorentz force equation, while its
spin precesses according to the Thomas-Barg-
mann-Michel- Telegdi equation. " In other words,
in the frame transformed from the initial frame
by means of the "variable" Lorentz transforma-
tionM '(p, A), the electron is merely described
by the field-free Dirac equation (in the external-
field approximation) while the plane-wave field
is left unaltered by this change of frame.

It is the physical meaning of the Furry-type
change of representation g'=Up introduced in Ref.
8. When all relativistic and spin effects are ne-
glected, that is, when the assumptions about the
frequency and strength of the wave are no more
than the conditions of validity of the Schrodinger
equation, this method is called in the literature

the "space translation method" and was introduced
by Henneberger" as a useful tool to calculate
multiphoton processes that occur in a laser beam.

III. VOLKOV HELICITY STATES

p"0»=(y'y p'+y'm4, .
Equations (3.1) [or (2.22)] and (2.7) involve the

(3.1)

As is well known, the field-free Dirac equation
can be cast into a form well adapted for discus-
sing the nonrelativistic limits, by means of a
unitary transformation called the Foldy-Wouth-
uysen"' " transformation. The physical meaning
of this transformation is that an electron state of
given four-momentum p" is transformed into a
two-component spin state.

There exists also a unitary transformation of
the field-free Dirac equation which leads to a form
appropriate for obtaining the high-energy limits.
This transformation was first discovered by
Mendlowitz" and discussed by Cini and Touschek"
and by Hose, Gamba, and Sudarshan. " In fact,
the Mendlowitz and Foldy-Wouthuysen transforma-
tions can be shown to be special cases of a general
class of unitary transformations. "

As for the Foldy-Wouthuysen transformation,
the Mendlowitz transformation has an interesting
physical meaning in that positive- and negative-
helicity states are separately described by two-
component wave functions. The use of the Foldy-
Wouthuysen and Mendlowitz transformations is
often considered as a transition to the Pauli and
Weyl equations, respectively.

The nonrelativistic limits of the Volkov problem
were considered in a previous paper. ' In particular,
it was shown that the Foldy-Wouthuysen method
yields incorrect results since the transformation
is not unitary within the Volkov-state space with
scattering boundary conditions. The correct non-
relativistic limits were then obtained via a closed-
form unitary (but noncanonical) transformation.
It was shown that the unitarily equivalent non-
relativistic limit at order 1/m' of the Volkov state
g» is a solution of the generalized Pauli equation
(obtained via the traditional Foldy-Wouthuysen
method) modified by the additional anti-Hermitian
term -i(e/8m')v sf/at.

In the same way, it is possible to derive a
closed-form Mendlowitz-type unitary transforma-
tion which will transform the Volkov solution g»
of Eq. (2.13}into two-component spinors describ-
ing separately positive- and negative-helicity
states of an electron in the field of a plane electro-
magnetic wave of arbitrary shape.

Our starting point is the algebraic equation
(2.22) which we rewrite in the form
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relation

pf2 p2 ~2 (3.2)

the Mendlowitz-type unitary transformation

gq- Pq =Cq. gq, (3.3)

which tells us that the four-vectors p" and p'"
are, respectively, the four-momentum of the free
electron and of the particle in the field. Decou-
pling is thus assumed. In other words, Eq. (3.1)
is a direct consequence of the asymptotic boundary
conditions-0 when n-g -+ ~.

The familiar form of Eq. (3.1} suggests to us

where

C& =exp ——,tan-'(m/Ig'I) I.1 r4'
(3.4)

We have thus, taking into account Eqs. (3.1) and
(3.2),

0'=(«sI-*'t« '&»~II 'I&I —»~I-*'«~ '&»&I O'I)I (;Ie,

=
f~u

"&O"+ I&'l&l "*(&"+ li'I — ', )e,

(3.5)

In explicit form, using Eq. (2.15), one has

q,'= (p"/2p'I'0'l)[p'p "(p"+ le'l)(p' ~+)] '"e " "8 '"~'

f(p" + Ip'I-m)((p'+m)[1+i(e/2n p)o nxX]+(e/2n p)o Aa p}'W )
((p"+ It}'I+I)([1+i(e/2n p)o"nxA]o'p+(p +m)(e/2n p)o A)W"f

where W is a constant spinor such that 5 *5 =1.
Let us now consider the matrix

S~= [(p'+m)(p'0+I)] '"((p'+m)[1+i(e/2n'p)a" nxA]+(e/2n p)o'A o'p],
which is unitary since

S~S =S S~ =1.

(3.6)

(3.7)

(3.8)

In Ref. 5, it was shown that the motion of electron spin in the field of a plane electromagnetic wave is
described by the quaternionic equation

0' p =S~g p S~ (3.9)

where po and p denote, respectively, the spin vectors of the field-free electron and of the interacting par-
ticle. As we are looking for helicity electron states, we may expect the S& matrix to play a role in the ex-
plicit form of the state P~.

If we use Eqs. (3.7} and (3.8) and some trivial identities such as

(nxA) po'nx A=A'o'p-A' n, p o" n —A'po'A,

(nxA) pc"(A xp) =A~p'o" n-(A p)'v n+ A p g pa'A- n pA'o'p,

(p" +
I
p'I —m)(p" +m) = ly'l(p" + lp'I+m),

&"+ lp'I+~ =[2(&"+ lp'I»" +m}l'",

and if we choose now the Kramers representation
which is obtained from the standard representation
by means of the unitary matrix

I

where

(1+r'r') 81 r') 0,'—
(1+rY'),1

2

the state g' given by Eq. (3.6) takes the form

(3.10)
g p'l (W)—g&p 0/po)1/2 - jP ~ - iekp 1 + Ig

I ~

(3 I 2)
lp'I& '(, 0

0,'= 0,',.+ 0,', (3.11) and
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y,', = —(1+r r')-.'(I+r')q,'~ = 1

=2(P'/P )"e '~ "e'""&( I-+, S
I ~

(3.13)p' '
(wJ

can be neglected with respect to its kinetic energy.
In this case we have

I p I
=po and, owing to (3.2),

we also have" Ip'I =p". It is then easy to verify
that Eq. (3.21) reduces to

Hence, we have

f

P~+ P~+ ~ (3.14)

(4.1)

where S~ is given by (3.7). This is to be compared
with the relation obtained in Ref. 5:

0'' p =S~o' poS~ (4.2)

(3.15)

The two-component wave functions g&, and g~
describe, respectively, the positive- and negative-
helicity states of the electron in the plane-wave
field. It is thus justified to call them "Volkov
helicity states. "

As expected, when the field is switched off,
these states become identical to those states y~
obtained from the free electron state y~ by using
the diagonal form of the Mendlowitz transforma-
tion'4.

(3.16)

where

C = exp —— tan '(~/ Ip I) I
.2j5)' (3.17)

(3.18}

This allows us to get a description of the electron
helicity motion in a particular simple form.

To this end, we look for an operator U~ which
will be such that

. 1 ( o.px e "'&e '~'" —
I
1+—= w,

2n'p 2n 'p

xe ""~e '~ "—I-1+ Iw.
&F

(4.3)

(4 4)

As expected, g'e and g~e are now exact solutions
of the Weyl-type equations' where minimum
coupling is applied:

which describes the behavior of the electron spin
vector in the plane-wave field. As shown in Ref.
5, Eq. (4.2) is the exact solution of the Thomas-
Bargmann- Michel- Telegdi (TBMT) equation.
Hence, the helicity of an ultrarelativistic electron
evolves in the field of a plane wave according to
the TBMT equation. "

In this limit, the positive- and negative-heli-
city states g~, and tj~ given by Eqs. (3.12) and

(3.13) become

g,', =
I
1+ o"nx A+( ie - - eo'A

2n p 2n'p

Using Eqs. (2.15}, (3.3}, and (3.13) we have

'=Co. (a=Cd. Unyn= Cl, , Urn 'p

hence

U~ = C~. UpC~

(3.19)

(3.20)

i g~~, =o —( i%+'e-A)g~~, ,

or of the second-order equation:

(4.5)

(4.6)

Thus, as y' and g' are, respectively, eigenvec-
tors of the heficity ope»to» o"p/lpl a"d o'p'/
Ip'I, the behavior of the helicity of the electron
in the field of a plane wave is therefore described
by the relation

8
Ii —+o ( iV+eA') -I i —o"(iV+eA~ g'e =0-,( Bt ] Bt

that is,

0'p, o'p
Ip'I 'I~7 ' (3.21)

~ 8 I ~ g r
I i r/i'e= [(—-i v+eA) +ecr'(8+iE)]Q'e, (4.7)

IV. HIGH-ENERGY LIMITS

As the Volkov solution is now transformed into
two two-component helicity states, high-energy
limits can be obtained via a mere expansion in

lp I
'. We confine ourself to the extreme relativ-

istic limit where the rest mass of the free particle

which is, in fact, the Feynman-Qell-Mann equa-
tion" where the mass term has been neglected.

V. CONCLUSION

Assuming asymptotic boundary conditions, Volk-
ov's exact solution of Dirac's equation with field
of an arbitrary plane electromagnetic wave satis-
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fies an algebraic equation formally analogous to
the matrix equation satisfied by the corresponding
field-free solution. We have used this property
to derive an exact Mendlowitz-type unitary trans-
formation which casts the Volkov solution into
two two- component helicity states. High- energy
limits can then be obtained by merely expanding
these helicity states to the desired order in
m/ ~p(. At the extreme relativistic limit, these
states become exact solutions of a Weyl-type
equation. Incidentally, let us remark that diver-
gent terms seem to occur at this limit if n. p= ~p ~

(the electron initial velocity and wave vector are

collinear). However, it can be observed that, in
this configuration, the extreme relativistic limit
cannot be carried out owing to the asymptotic con-
dition. Actually, an interaction between a plane
electromagnetic wave and an electron moving
with the velocity of light in the same direction
cannot occur if the particle was free in the remote
past. The difficulty appears, however, when per-
iodic boundary conditions are substituted for the
asymptotic conditions. This is another example
of those difficulties which occur with monochro-
matic waves, in which case the electron is etern-
ally coupled to the external field.
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