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Some spontaneously broken gauge theories can give rise to stringlike vacuum structures (vortices). It has been
pointed out by Vilenkin that in grand unified theories these can be sufficiently massive to have cosmological
implications, e.g., in explaining the formation of galaxies. The circumstances in which such structures occur are
examined. They do not occur in the simplest grand unified theories, but can occur in some more elaborate models
which have been proposed. The cross section for the scattering of elementary particles by strings is estimated. This is
used to evaluate the effect of collisions on the dynamics of a collapsing circular string, with particular attention to
the question of whether energy dissipation by collision can reduce the rate of formation of black holes by collapsed
strings, which may be unacceptably large in models where strings occur. It is found that the effect of collisions is not
important in the case of grand unified strings, although it can be important for lighter strings.

Spontaneously broken gauge theories are pre-
sently of great interest, both in the context of uni-
fied theories of the electromagnetic and weak in-
teractions, and, more speculatively, in connec-
tion with so-called grand unified theories (GUT’s)
incorporating color SU(3), which is presumed to
be the underlying symmetry of the strong inter-
actions. Spontaneously broken symmetries can be
restored at temperatures T greater than some
-critical temperature T, (Ref. 1), where, in a stan-
dard “big bang” cosmology, T, will be exceeded in
the very earliest stages of the universe. A phase
transition will then occur, as the universe cools
below T,, in which a multiplet of scalar Higgs
fields develops a vacuum expectation value (VEV)
(@>=n. Such phase transitions can result in the
development of various kinds of vacuum struc-
tures, having the forms of regions of normal
vacuum where {(¢)=0. These structures result
from the fact that, immediately following the phase
transition, the direction of 1 in the abstract space
in which the gauge group operates is expected to
be different at different points in ordinary space;
such differences will arise from considerations of
causality if for no other reason. In order to min-
imize its energy, the vacuum will evolve toward
a situation in which it is not spatially dependent.
However, the structure of the gauge group may be
such that all spatial dependence cannot be elimin-
ated without leaving regions of normal vacuum.
These regions may take one of three possible
forms, depending on the topology of the gauge
group.? One may have a “domain wall,” separating
regions in which 7 has different directions. Sec-
ondly, there may be stringlike regions of normal
vacuum, sometimes called vortices but hence-
forth referred to as strings.® Finally, there may
be localized regions corresponding to ’t Hooft-
Polyakov monopoles.* Domain walls appear likely
to produce an unobserved anisotropy in the 3°

blackbody radiation?®:>'%; hence theories leading to
their formation are probably unacceptable. Mon-
opoles have, of course, been extensively dis-
cussed, recently, in connection with the fact that
at least the most straightforward forms of GUT’s
may predict a production of heavy monopoles in
the early universe too large to be compatible with
observation.

In this paper we shall be concerned with vacuum
strings, which have been less extensively studied,
but which also appear to have potentially signifi-
cant cosmological implications. Strings will occur
if the manifold M of degenerate vacuum states
that exist following spontaneous symmetry breaking
is not simply connected, i.e., if the first homotopy
group 7,(M) of the homotopy classes of maps of the
circle into M is nontrivial.? The possible cos-
mological significance of strings has been studied
by Vilenkin,” He shows that in models having
grand unified strings the collapse of closed strings
may well lead to a significant density of black
holes; the corresponding density in the case of
electroweak strings is found to be negligible. [The
linear mass density of strings is approximately
proportional to the temperature at which they are
formed.? Consequently, strings associated with
the breaking of grand unification, which presuma-
bly occurs at a mass scale ~10'® GeV (Ref. 8), are
much more massive than those which might be as-
sociated with the breaking of, say, the Weinberg-
Salam® electroweak symmetry at a mass scale
~100 GeV. Throughout the paper, unless other-
wise specified, the units used have Z=c=k=1,
where % is Boltzman’s constant.] In the case of
GUT’s, the simplest estimates of black-hole form-
ation, as given in Ref. 7, lead to a nonthermal
spectrum for the cosmic background radiation as
a result of radiation emitted in the evaporation of
mini black holes; thus if these estimates are cor-
rect, GUT’s leading to string formation would be
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excluded. In Ref. 7 the dissipation of the energy

of the closed loops as a result of the viscosity of
the surrounding medium, i.e., as a result of parti-
cle scattering from the collapsing string, is ne-
glected. (The effect of oscillations of the collap-
sing string, which ' may also be important, is also
neglected there.) If a sufficiently high percentage
of the strings’ mass is dissipated by friction during
the collapse, black-hole formation could be avoid-
ed. In this work this question is investigated by
examining the dynamics of the collapse of a cir-
cular relativistic vacuum loop, ignoring gravity
but taking into account friction with the surrounding
medium. In order to do this, the cross section for
the scattering of particles from the collapsing
string is estimated; this is also relevant to a dis-
cussion of the importance of oscillations. If ex-
cessive black-hole formation can be avoided, then
theories with strings may in fact be preferred,
since heavy closed strings could serve as seeds
for the production of the density fluctuations which
are required for galaxy formation,°'!

The outline of this work is as follows: Section I
is devoted to a discussion of the conditions under
which vacuum strings arise in a gauge theory. We
shall see that strings do not occur in the simplest
physically interesting theories, but may occur in
more elaborate models. In the following section
the cross section for scattering of particles by a
vacuum string is estimated, and in the final section
the dissipation of energy by friction in the collapse
of a closed circular loop of vacuum strings is con-
sidered, and the question of black-hole formation
is discussed.

I. CONDITIONS FOR VACUUM STRING FORMATION
IN SPONTANEOUSLY BROKEN GAUGE THEORIES

The types of gauge theories in which strings can
occur are strongly limited by the simple observa-
tion that if the symmetry group G is simply con-
nected, and if G acts transitively on the manifold
M of degenerate vacuum states, then M is simply
connected, and strings do not occur when G is
spontaneously broken. This is almost trivially
demonstrated. Since G is a symmetry group, if
occ M, then go and ¢ are degnerate and goc M for
all g € G. The statement that G acts transitively
on M means that if 6 € M, then any ¢,<M can be
written as o,=g,0 for some g, G. Hence, cor-
responding to a closed curve o(6) € M there will be
a closed curve a(f) in the parameter space of G,
where o(6)=g[a(6)]o. Since by hypothesis G is
simply connected, one can find a sequence of
closed curves a(8,t) such that a(6,1)=a(f) and
a(6,0) = a(g,), where g, is the identity element of
G. There will be a corresponding sequence of
closed curves o(6,¢)=g[a(6, )] o through which the

curve o(f) in M can be contracted to the point o,
and thus M is simply connected.

The most commonly discussed GUT’s are based
on the groups SU(5) or Spin(10),'? where we denote
by Spin(10) the simply connected universal cover-
ing group of SO(10). The choice of SU(5) or
Spin(10), rather than the multiply connected groups
Su(5)/5 or SO(10) to which they are, respectively,
locally isomorphic, is dictated by the fact that the
fermions in each model are assigned to repre-
sentations (the fundamental 5 and the spinor 16,
respectively) which are multiple valued in terms
of SU(5)/5 and SO(10), so that the simply con-
nected covering group must be chosen in order
that the representation matrices be single valued
and well defined. In particular, if we have a
spatially dependent field ¥(6) defined along a cir-
cular path in coordinate space by

$(6) =g (8)y(0)g(6) , ®

the continuity of y and hence the finiteness of kin-
etic energy terms involving ¢ in the Hamiltonian
will be guaranteed by the condition g(27)=1 only
if the representation is single valued. The two
most widely discussed GUT’s thus satisfy the cri-
terion that the gauge group G is simply connected;
clearly this will also be true of a wide class of
other gauge theories, e.g., any theory based on
SU(N) or Spin(N) in which any of the basic fields
are assigned to multiple-valued representations
of SU(N) or SO(N).

Before we conclude that such theories do not
lead to string formation, a brief discussion of the
question of transitivity is perhaps in order. In
discussing this it is important to note that the set
of possible vacuum states in a spontaneously brok-
en gauge theory is rather different from the usual
set of energy eigenstates in the presence of a sym-
metry group G'in quantum mechanics in that the
states do not belong to some irreducible repre-
sentation of G. If the set of vacuum states did
provide an irreducible representation of G, then
in fact G would not in general act on them trans-
itively. [This is easy to see, e.g., in the case of
SU(N). The only irreducible representations of
SU(N) on which SU(N) acts transitively are the
fundamental representation N and its conjugate
N*, However, since the Clebsch-Gordan decompo-
sition of N X N* contains only the adjoint repre-
sentation and the singlet, if the Higgs particles
belong to anything other than the adjoint repre-
sentation, the Wigner-Eckart theorem would re-
quire that the vacuum states belong to some rep-
resentation other than N in order for the Higgs
fields to have nonvanishing vacuum expectation val-
ues. ]

The difference in the case of a spontaneously
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broken gauge theory can be thought of as being due
to the fact that G represents a symmetry of the
classical theory, before quantization, rather than
of the quantized theory, and hence does not de-
termine the structure of the Hilbert space of quan-
tum states. This is most easily seen in the uni-
tary gauge.'®* Let there be a multiplet of Higgs
fields ¢,. In an SU(N) or SO(N) theory, e.g., in
order to minimize the potential the VEV’s (¢ )
must satisfy a condition of the form

Ylopr=r @

together with possible additional conditions if there
are other gauge-invariant combinations of (¢ ) of
fourth order or less in the Higgs fields. Let ((pi)
=1, be a field configuration satisfying Eq. (2).

One can now impose the gauge condition of the un-
itarity gauge, namely*?

@Mn=0, alla, (3)

where (_5 and 17 are vectors whose components are
¢;and 1, and the M“ are the matrices of the gen-
erators of G in the representation to which the ¢,
belong. We now define a set of unit vectors #; in
the space of the M*® to be an orthonormalbasis in
the subspace orthogonal to all M%); in particular,
we can choose n, =7/vn. Then the nonzero fields
are the fields g; “Mje One now quantizes the theory,
taking the fields ¢ - n; as the scalar fields in the
theory. The vacuum state of the system is then
characterized at the point T (up to renormalization
effects) by the relations

(@-my(tN=n, (@-ny(r))=0, j#1 (4)

where, if the initial conditions are such as to cor-
respond to the presence of a string (or monopole
or domain wall), the direction of 7 and hence the
n; will vary with position. The set of fields §- #n,,
being a subset of the ¢, do not provide a repre-
sentation of the full gauge group G; if they did,
the representation provided by the ¢, would be re-
ducible. They do, however, provide a representa-
tion for the subgroup H whose generators H* cor-
respond to the M* for which M%7j=0. This is
easily seen. A general element of H can, with ap-
propriate choice of basis, be written as &
=exp(iH*9)= O(H*) for some §. Then, from the
transformation properties of the ¢,

h-l(P‘"jh":O(Ma),-k(nj)k(P,=$’ O(Ma)n;- (5)
However,

M- OM*)n ;=0 MM OM )0 (M) n,

=Zc,,Mb1‘7-n,.=0,

where the ¢, are constants, since the M* transform
among themselves under the operations of the
group G. Hence O(M*)n; is just a linear combina-
tion of the n,, and the @ -n; transform among
themselves under the operations of A. In parti-
cular, since M*7=0, @.yn, is a scalar under the
group H. Thus, as might have been expected, the
Hilbert space is a representation space for the
unbroken symmetry group H rather than the full
gauge group. Moreover, since @ - n, is a scalar
under H, there are no'selection rules that pre-
vent it from having a nonzero VEV,

The manifold of equivalent choices of vacuum
state is determined by_.the manifold of vectors 1_1;
that are equivalent to 1 as choices for the set of
% i). However, strictly speaking, states having
different values of 7,(x) lie in different Hilbert
spaces. Classically, the set n, would be the set
of all vectors whose components satisfy condition
(2); this is the set of all vectors obtained from 7
by operations of the invariance group G, of the po-
tential, where G, may be larger than G. In the
quantized theory, however, with radiative cor-
rections taken into account, the vectors 7 and 1—7;
will describe systems with the same energy only
if they are obtained from one another by a gauge
transformation, i.e., if 7,=M(g)7, where M(g) is
the matrix in the representation of the ¢, of some
element ge G, and hence G does indeed act trans-
itively on the manifold M of possible vacuum
states.

It thus follows that, if one begins with a simply
connected gauge group G, strings will not arise in
a phase transition in which G is spontaneously
broken. In particular, strings will not arise at the
first stage of symmetry breaking in any GUT
based on SU(N) or Spin(N). More generally, let us
suppose that grand unification is based, as the
name implies, on a simple Lie algebra so that
there is only a single coupling constant in the sym-
metry limit. The grand unification group then con-
tains no U(1) factors. Then if the group G is the
universal covering group of the algebra, it will be
simply connected and strings will not occur at the
first stage in the breaking of grand unification. As
noted above, the question of whether the group G
is the universal covering group or a multiply con-
nected group to which it is locally isomorphic de-
pends on the representation content of the theory.
Thus in a theory based on the algebra of SO(N), if
no particles were assigned to multiple-valued rep-
resentations of SO(N), G would be the doubly con-
nected group SO(N). That is to say, solutions are
allowed of the form of Eq. (1) for which g(27) is
equal to the identity element of SO(N) but not of
Spin(N). (For the familiar case of the ordinary
rotation group, these solutions correspond to sit-



4. COSMIC STRINGS IN UNIFIED GAUGE THEORIES 861

uations in which the direction in abstract space of
the vacuum state is rotated by 2n7 with » odd in
going around a circular path in coordinate space.)
For these solutions the curve described in M when
a circular path in coordinate space is traversed
cannot be contracted to a point, and hence a string
is present. In the case of SU(N), if one requires
that only fermions belonging to the representations
1, 3, or 3* of color SU(3) be present, then the
fermions must be assigned to the fundamental rep-
resentation N of SU(N), or to antisymmetrized
Kronecker products of N with itself.'* In this
case, single valuedness forces one to take SU(N)
as the group. In the case of SO(N), the possibility
exists of assigning fermions to the fundamental

representation Ny which is a single-valued repre-

sentation of SO(N).

If strings are not formed at the first stage of
symmetry breaking of the grand unified group G,
they may occur at a later stage in a chain of
spontaneous symmetry breaking of the form

G=G'=G" =, (6)

in which the group G’, say, is not simply con-
nected but has the form

G'=K xU(1). (7

From the point of view of cosmological implica-
tions one is primarily interested in the case that
the phase transition from G’ to G”, in which the
strings are produced, also occurs at something
like the mass scale associated with the breaking
of grand unification, so that the strings are very
massive. There are two different situations which
can occur in the phase transition from G’ to G”
that must be distinguished in their implications for
string formation. Let us suppose that the original
breaking of the symmetry group G at temperature
T, occurs when a multiplet of Higgs fields ¢, de-
velop vacuum expectation values 7, which mini-
mize the effective potential at T',. The phase
transition form G’ to G” may occur because, at
the temperature T/ at which it happens, a second
multiplet of Higgs fields o, develop vacuum ex-
pectation values 6,, with 7, remaining largely
unchanged. Let M’ be the manifold of equivalent
vacuum states after the symmetry has been broken
to G”. Then, given one state in M’, other states
in M’ are obtained from it only by operators that
leave the 7, invariant; these are just the operators
of the group G’. Thus, in this situation it is the
properties of G’ that determine whether string
formation is possible in the second stage of sym-
metry breaking. In particular, if G’ is not simply
connected, then string formation is not necessarily
forbidden; its occurrence will depend on the de-
tails of G’ and G”. In this case G” will be a sub-

group of G’, consisting of those transformations
that leave both ;and 6, unchanged.

The second situation that can occur is that the
phase transition at T, from G’ to G” arises be-
cause, owing to the temperature dependence of the
potential, the vacuum expectation values of the
¢, required to minimize the potential change from
1, to n;, with G” the group of transformations
which leave 7} unchanged. For example, it has
been pointed out'® that in an SU(5) model where
the breaking of SU(5) to SU(3) x SU(2) x U(1) is as-
sociated with a Higgs multiplet transforming by
the 24-dimensional adjoint representation, there
may well be an intermediate phase (corresponding
to G’) in which the form of the vacuum expectation
values of the Higgs fields result in an SU(4) x U(1)’
symmetry. In this situation, given any state in
M'’, other states in M’ may be generated from it
by acting with any operator in G; there is no re-
quirement that the 7, be left unchanged, and G” is
not a subgroup of G’. Hence in this case the top-
ology of M’ is determined by G, not G’, and if the
grand unification group G is simply connected,
string formation will not occur at the second stage
of symmetry breaking, regardless of the proper-
ties of G’. Thus in the example cited there will be
no strings formed in the phase transition from
SU(4) x U(1)’ to SU(3) x SU(2) x U(1), even though
U(1) and U(1)’ are different and symmetry under
the multiply connected group U(1)’ is broken in the
transition.

In the subsequent discussion we suppose that the
first of these two situations obtains, with G” being
a subgroup of G’. We suppose G’ has the form
KxU(1). There are then two situations of inter-
est. In the first the symmetry breaking from G’
to G” has the form

KxUQ)-K', ' (8)

where K’ is a (possibly improper)‘subgroup of K,
Here string formation obviously occurs, since,
e.g., the closed curve in M’ given by o(68)=(1, eY)
x 0(0), 0= 6=2m, clearly cannot be contracted
to a point; here 1 is the identity of K and Y is the
generator of U(1), normalized to e2"#¥=1,

The type of symmetry breaking in Eq. (8) may be
illustrated by two models which have appeared in
the literature. One of these is a GUT based on the
group SU(7) and embodying some flavor unifica-
tion.'® One possible sequence of symmetry break-
ings which can occur in this model is SU(7) - SU(4)
X SU(3) x U(1)’ - SU(4) x SU(3) - SU(3) x SU(2) x U(1).
String formation will occur in this model at the
second stage of symmetry breaking, which may
occur close to the grand-unification mass scale.
This model avoids the production of heavy mon-
opoles,!” but can lead to the production of massive
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strings. Symmetry breaking as in Eq. (8) also
can occur in an SU(5) model in which electromag-
netic gauge invariance is broken at intermediate
energies and restored at low temperature.!® This
model also avoids overproduction of heavy mon-
opoles, and was indeed proposed for that reason.
The chain of symmetry breaking is SU(5) -~ [SU(3)
X SU(2) x U(1)] =~ SU(3) = SU(8) x U(1). The brackets
around the second stage indicate that the SU(3)
%X SU(2) x U(1) phase is not necessarily required
in the model but could well be present. If it is,
then again string formation will occur at the sec-
ond stage of symmetry breaking, which may oc-
cur at a very heavy mass scale, leading to the
production of massive strings. In this case, be-
cause of the fact that the U(1) symmetry is re-
stored at low temperature, the linear mass den-
sity of the strings is approximately proportional
to the temperature,’ which must be borne in mind
in analyzing the potential cosmological signifi-
cance of strings in this model.

An alternative to Eq. (8) is for the breaking of
G’ to have the form

KxU(1)-u@d), (9)

where the generator of U(1)’ is a linear combina-
tion of the generator of U(1) and generators of K,
[Some proper subgroup K’ of K could appear on the
right side of (9) as a factor in a direct product
without affecting the discussion.] The conditions
for string formation in this case have been dis-
cussed by Schwarz and Tyupkin.!®* Let @ and ¥
be the generators of U(1)’ and U(1), respectively,
normalized so that the smallest nonzero eigen-
values of @ and Y have absolute values equal to
1. @ will be given by an expression of the form

Q=a¥+)_ b,T,, (10)

where the 7, are the generators of K. In order for
the manifold of vacuum states to be simply con-
nected, it must be possible to deform the curve
ei¥® 0 =g <27 continuously onto the curve ¢ 0
=6<2m, with » an integer. Hence, strings will
occur for the type of symmetry breaking of Eq. (9)
provided a#1/» in Eq. (10).2° Strings do not occur
in the case of the spontaneous breaking of the
Weinberg-Salam SU(2) x U(1) electroweak sym-
metry, where @=3¢,+ Y/2. Strings would occur,
as shown in Ref. 19, in the SU(3) x U(1) electro-
weak model of Lee and Weinberg.?*

II. SCATTERING OF A PARTICLE BY A STRING

In this section the order of magnitude of the
cross section for the scattering of particles by a
string will be obtained. The string thickness is of

order e =m,™, the inverse Higgs mass, where my
=g(¢), with g the coupling constant for the Higgs
self-coupling, and () the magnitude of the VEV
of the scalar field which minimizes the potential?;
€ may also be written as ¢ = (gmv/e)'l, where m,
is the mass acquired by the gauge bosons coupled
to the generators of the symmetries broken by the
spontaneous symmetry breaking, and e is the
gauge coupling constant. '

Considering for the moment only the gauge and
Higgs fields, the Lagrangian is given by

L=—F,yF3*/4=D 0, D%¢,/2 - g(¢,0,~7")/4,
(11)

where
Faaﬂ=aaAaB“aﬁAua*’efabcAbaAcB’ (12)

where the f,,. are the structure constants of the
gauge group. Repeated Greek Lorentz indices are
summed from Oto 3, and Latin indices over the gauge
degrees of freedom. Acting onanobject ¢ ,belonging
to an irreducible representation of the gauge
group, the covariant derivative D, is given by

Da(pa=8a(pa—ie‘rt{b‘4jd(’9b, (13)

where 77 is the matrix of the jth generator of the
gauge group in the representation to which the ¢,
belong. Equations (11)-(13) yield the field equa-
tions ‘

D*D,¢,=g(¢, 9, =)@, , (14)
Da‘Fgazefabc¢bDB(pc’ (15)

Let the VEV {¢,)=7,. To find 7, in the case of a
string, we seek a static stringlike solution of

these equations which minimizes the potential, i.e.,
for which 7,1,=7° outside the string. Take the
string to lie along the z axis and introduce cylin-
drical coordinates », 6 and z. We will choose to
define the basis in the space of the ¢, in such a
way that 7,(f) varies in the 1-2 plane as T follows

a circular path around the z axis; this is, take

n,=ncosf, M,=7msing, 1,=0, a#l,2 (16)

in the region » > ¢, outside the string. Note that
for all the states described by Eq. (16) to be pos-
sible vacuum states they must be connected by
transformations of the gauge group. That is, the
gauge group must contain the U(1) subgroup of
rotations of @ in the 1-2 plane, where ¢ is the
vector whose components are the ¢,. We will
label the generators of the gauge group in such a
way that the generator of this U(1) group is re-
ferred to as 73,

Take the vacuum expectation value of Eq. (14).
A sufficient condition for a solution is that
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b,m,,=0, @=0,1,2,3. 17
The only nontrivial equation which results when
Eq. (18) is substituted in (17) is

-~ {14 -
Dgn= (~E—1677A,9)n(9)=0, . (18)

where 17 is a column vector whose components are
M., and the subscript 6 indicates the component
in the direction of increasing 6. Since 1(6) makes
an angle 6 with the 1 axis in abstract space, 73,
which is the generator of infinitesimal rotations
in the 1-2 plane, has the effect of generating in-
finitesimal increases in 6; hence, acting on 7, 73
has the same effect as the operator —id/d6, the
generator of infinitesimal rotations about the z
axis. Thus Eq. (18) can be satisfied by making
the coefficients of —i d/d6 and T2 equal, and
choosing A;=0, j#3. Hence Eq. (17) is satisfied
if

(Ag)=1/(er) (19)

with all other (4, )=0. Equations (16) and (19)
also provide a solutlon of Eq. (15) for the gauge
field when the VEV is taken. The right side of
(15) vanishes by Eq. (17). On the left side, we
assume that (A4, ) can be treated like a classical
field, as will be justified further below, so that
(A, A)=(A, ){As). Then the nonlinear terms in
F, s all vanish, since f,;;=0 by the antisymmetry
of the structure constants. Hence F,,; =0 and
Fa,,-=€,.,k(Vx(Ka))k. Since Eq. (19) can be written
as

(R)=vé/e, (20)

F,;,=0 since it is the curl of a gradient, so
that the left side of Eq. (15) also vanishes. Thus
outside the string we can take the VEV’s of ¢, and
A,, to be given by Eqs. (16) and (19). Within the
strmg, of course, (¢,)75%0, since Eq. (16) can-
not be extended continuously to the origin.

Let us now introduce additional particles into
the theory and study their scattering by the string.
(A similar problem for the case of domain walls
has been studied previously.??) For simplicity,
take them to be a set of scalar particles described
by the real scalar fields o; the conclusions will
not depend on the spin structure. Let T° be the
matrix of the ath generator of the gauge group in
the representation of the o;, and & a column vector
with o; as components. The ¢ particles have an
intrinsic real mass m and also develop a mass as
a result of a gauge-invariant coupling to ¢, with
coupling constant %, of the form 4§- T°G ¢,, where,
for specificity, the Higgs fields ¢, are now taken
to transform under the adjoint representation of
the group to which the generators also belong.

Consider, to begin with, a representation of the
T+ in which 7' is diagonal, so that we are consid-
ering scattering of particles with definite 7%, The
Klein-Gordon equation satisfied by a component of
o with energy E will be, for »>e¢,

[-DD,+M?(6) -~ E2]G=0, (21)
where the mass-squared matrix M? is given by
M2=m?+hmn(Tcosfd+T2sinb). (22)

Consider an incident particle of energy E traveling
in the negative x direction and described by the
incident wave function

0o (%)= ey, (23)

where u, is the wave function in the space of the
gauge group whose jth component is («,);=90,, and

k=[E? =M 2(0)}? = (B = m? - kT ). (24)

Scattering will clearly take place out of the state
0,;, because of the angular dependence of M?;, be-
cause of the coupling to other o,;, j#i, due to the
off-diagonal elements of 72 which enter M2 for 6

# 0, and because of the additional » dependence in
D, due to (A, ); e.g., if T%,<0, there willbe a
range of energies for which M? (n)>E?>M?3 (0),

in which case the particle is energetically for-
bidden from penetrating undeviated into the region
of negative x while remaining in the state «, How-
ever, it is easy to see that the scattering is of
trivial character, and is, in fact, an artifact of
the choice of gauge. Namely, define

021(6) = XD T26) 0, () = R (8) 0 ) (25)

One easily finds that o (x) is a solution of Eq. (21).
Namely, R™(6)M2(6)R(9)=M?>(0), so that M2(6) is a
diagonal operator acting on o;;. Moreover, D ORri

=80y This is trivial except for D,. In the case
of D,, the additional term (i7°/7)o,, which comes
from (1/r)d/d0 acting on R(6) is just canceled by
the term —ie(A,,) T %05, by Eq. (19). Hence, Eq.
21 for op, reduces to the statement that ¢, satis-
fies the free-particle Klein-Gordon equation with
M?=M?(0), which, of course, it does. Thus, apart
from the deviation from Eq. (21) for »<e, within
the string, the only effect of the string is to re-
place o,; by 0p;, that is, to cause the particle’s
direction in abstract space to rotate adiabatically
to follow the direction of 7.

This result can be understood by noticing that,
under the local gauge transformation consisting
of a rotation about the 3 axis in abstract space by
the angle «(6)=-6, the solutions found in Egs.
(16) and (19) behave as

1,(8) =n, ,(6)-0, a#1, (262)
(Agg)=(Ase) +[Va(8)],/e=0, (26b)
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where the last equality in Eq. (26b) will hold ex-
cept on the half plane where «(6) is discontinuous.
Hence, by a suitable choice of gauge, one can ar-
range things so that 7 has a constant direction and
(A,,)=0 for »>¢ except on a singular surface,
which is the analog of the Dirac string singularity
in the case of a magnetic monopole. By choosing
the definition of a, one can take the position of the
singular surface, which is the only indication for
7>¢ of the existence of the string in this gauge, to
be anywhere desired; e.g., if o is defined to run
from -7 to m, the singular surface will be 6=,
the xz plane with x<0, Thus the singular surface
can always be taken to be behind the string with
respect to the incident particle, so that the only
evidence of the string seen by the incident particle
will be the stringlike region itself at » <¢.?* The
fact that (4,,)is a pure gauge field, obtainable by
gauge transformation from a field which is identi-
cally zero (almost everywhere), is of course con-
sistent with the result that the F, , to which it
gives rise are zero, since the statement that all
F,,;=0 is invariant under local as well as global
gauge transformations. Also, since the effect of
a local gauge transformation is to add a ¢c-number
field to the vector potential, this justifies our
treatment of A, as a classical field as far as its
VEV is concerned.

One can now treat the scattering from the string
using the familiar techniques of partial-wave an-
alysis, following, e.g., the discussion in Schiff’s
text,?* with the appropriate changes to go from
spherical to cylindrical geometry. We write the
wave function for an incident wave og; for »>¢ as

Oy = ( EAn[cosb,,J,,(kr) +sind, N, (k7) ]cosne) R(0)u,

(27a)
~og;+[f(0)et* Ny ]R(O)u,, (2Tb)

where N, is the solution (Neumann function) to
Bessel’s equation of order » which is singular at
the origin. The differential cross section per unit
length of string is given, as expected, by do/d6

= |f(6)]%. (We have neglected possible inelastic
scattering to states o;, j#¢. This does not affect
the general conclusions,) Using the standard ex-
pansion for ei* as a series in J,(k7) cosnd, as
well as the asymptotic form of the Bessel and Neu-
mann functions, and equating the expressions for
o,, on the right sides of Eqgs. (27a) and (27b) in the
asymptotic region, yields an expression for f(6)
in terms of the phase shifts

£(6) = @/kn)2e™ Y ¢ et sint, cosnd (28)

whence, on integrating over angles, one obtains
for the total cross section

0 =(2/1%) Y ¢,2 sin?s,, (29)

where ¢,=2, c,=1, n>0. The phase shifts are ob-
tained by equating the logarithmic derivatives of
the coefficient of cosnf in the exterior solution for
0,;in Eq. (27a), evaluated at »=¢, to the corre-
sponding quantity for the interior solution valid in-
side the string. Denoting the logarithmic deriva-
tives of the interior partial waves evaluated at »
=€ by v,, one finds

tand, = [kJ)(ke) - v,J (k) |/[EN}(ke) - ¥, N, (ke)],
' (30)

where the prime denotes the derivative of the func-
tion with respect to its argument. Our primary
concern is with the case of a thin string, ke < 1.

In this limit J, and N,, for >0, go as (k¢)" and
(ke)™, respectively, so that the J and N}, terms
dominate and one gets tan6~ (k¢)?” for » >0, leading
to a contribution of order €(k¢)** to the total
cross section from the partial waves with n> 0;
thus, as expected, one gets negligible contribu-
tions equal to the string thickness multiplied by
powers of the thickness divided by the wavelength,
However, for n=0, the situation is somewhat
different, reflecting the difference between cylin-
drical and spherical geometry. For ke -0, J,
~constant, and N, ~Inke. Now the J, and N, terms
dominate in Eq. (30), and one obtains tang,
~1/Inke, so that the n=0 phase shift only vanishes
logarithmically as ke —0. One thus finds, for ke

<« 1, that the total cross section is given by

o, =(7%/k)/(In%e) . (31)

Thus the magnitude of the total cross section in the
case of a thin string is controlled not by the thick-
ness of the string, but by the wavelength of the in-
cident particle, albeit divided by a logarithmic
factor that can become numerically important if

ke is sufficiently small,

We have derived this result for the case of a
scalar field. However, from the derivation, it
will hold for any field whose components obey the
Klein-Gordon equation. Equation (31) will fail
only in the event that 7, becomes very close to
J4(ke)/JT4(ke). It may be worth observing that
there is one case where this happens, namely, in
the scattering of electromagnetic radiation in the
special case that it is polarized with the electric
field perpendicular to the string axis. Since the
boundary condition requires the continuity of the
tangential component of ft, which equals E cosé,
the scattered wave which must be added to the in-
cident wave to fulfill the boundary condition has
no »=0 piece, and the lowest nonzero phase shift
is n=1, However, if the electric field is polarized

along the string direction, E, =FE, and §,#0.
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III. DYNAMICS OF A COLLAPSING
CIRCULAR STRING

Let us now consider the problem of the collapse
of a closed loop of string, using Eq. (31) in es-
timating the effect of energy dissipation as a re-
sult of collisions. We will consider the case of a
circular loop, thus neglecting the possible effect
of oscillations in the case of noncircular loops;
energy dissipation by gravitational radiation will
also be neglected. Vilenkin’s work”!° indicates
that both oscillations and gravitational radiation
are potentially important, and must also be con-
sidered in a complete treatment of the problem,
but that will not be attempted here.

Closed loops of string may form in the initial
phase transition which gives rise to the strings, or
they may be formed later when, as the strings
move, two of them cross and a “change of part-
ners” occurs. The strings will have a mass per
unit length given by?

pE7. (32)

Consider a closed loop which, when formed, is a
circle of radius R, and in'particular, a small
portion of the loop subtending an angle & which re-
mains constant as the string collapses; 6 will be
used as a symbol for the small element of string
as well as for the value of the angle. The overall
rest frame of the loop and the instantaneous rest
frame of 6 will be designated by S and S’, re-
spectively; S is assumed to be also the rest frame
of matter, i.e., the frame in which the average
particle velocity is zero.

To begin with, consider the free collapse of
the loop, neglecting the frictional force due to col-
lisions with the surrounding particles. Let » des-
ignate the inward radial speed of 6 when the loop
has collapsed to a radius # (all three-vector com-
ponents will refer to the inward radial direction).
Since energy is conserved in S, E=uRo, while
E’=uyd and p’=0; hence uR6=yurd, or

y=(1~v3)"=R/r. ’ (33)

Since p= ubRv= uoR(1 — »2/R%)¥2, differentiating
yields for the four-vector force T, =dp u/dT due
to the tension

T,=ydp/dt=us, (34a)
while
To,=vdE/dt=0, (34b)

It is interesting to look at the result of transform-
ing these equations to S’. One finds T.=dp’/dt’
=yub, Initially, when y=1, so that S’ and S co-
incide and the string appears circular in S’, this
is just what is expected for a string whose tension
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is given by the mass per unit length u. The ad-
ditional factor of v arises from the fact that T,
=27T"'sin6’/2, where T’ is the string tension in S’.
The arc of string appears Lorentz contracted in
the radial direction in S; i.e., the arc is less
bowed in S than in S’. Thus

5=8'/y (35)

and hence the result for T corresponds to a string
tension equal to u for arbitrary values of y. This
value for the tension is also consistent with the
result Ty=dE'/dt'= —yvuub= ud(r8)/dt’; since the
transverse arc length is Lorentz invariant and
thus given by 76 in either frame, dE’/dt' is just
the rate in S’ at which work is done by the tension
1 as the arc length decreases. ‘
To include the effect of collisions, write

dp,/dt="T,/v+(dp,/ab)  =t,+f,. (36)

The quantities £, and f, are, of course, not four-
vectors; their spatial components ¢,=7T,/y and f,
represent the forces acting on 6 in S due to the
string tension and to collisions, respectively. The
collision force f, is given by

fw=nvordxpu ) (37)

where o is the total string cross section/unit
length, % is the number of particles/unit volume,
and Ap, represents the average transfer of b, to
the string per collision. Take the string to be in-
finitely massive and the surrounding gas of par-
ticles relativistic. Then, working in the frame S’,
one has AE’=0 and Ap’ = -2, where p’ is the
average momentum in S’. Since p=0, p’'=yE=9T
at temperature 7. By Lorentz transformation,

AE = -2yvp’, (38a)
=29 (38b)

The foregoing discussion is based on the assump-
tion that (in the absence of gravitational radiation
which we are neglecting) the total energy of the
string is conserved except for energy losses due
to collisions. Thus we are neglecting the possibil-
ity of particle production during the collapse of

the string. This is presumably valid as long as

the radius of curvature of the string is large
enough that different parts of the string do not in-
teract with one another; in this case the string

can be validly approximated as locally straight

on the length scale appropriate to elementary-par-
ticle interactions, and a straight string will not de-
cay into elementary particles. Since the vacuum

is invariant under the unbroken symmetries of the
gauge group, the string is therefore neutral with
respect to the charges which generate the unbroken
symmetries, these are the charges which couple
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to the gauge fields which remain massless and
give rise to long-range interactions after the spon-
taneous symmetry breaking. Hence, the forces

by which the parts of the string can interact with
one another have a range of order mv’l. Thus if
the angle 6’ corresponding to a segment of loop of
length m‘,'l in its rest frame differs appreciably
from 0, such a segment will not be locally straight
and one expects elementary-particle radiation to
become important. From Egs. (33) and (35), &’

2 1 for »6=m ™ when

r= (Rmv)l/zmv T=7,. (39)

If 7, is greater than the Schwarzchild radius, the
present discussion certainly becomes invalid, and
one may expect the string energy to be converted
into elementary-particle radiation before black-
hole formation occurs. Hence the present argu-
ment is valid only for the case GM=G27R U >7,,
or

RZm,"/G*yu? (40)

If energy loss due to friction is significant in the
collapse, then Eq. (40) must be modified by re-
placing M, the total mass of the loop, by the frac-
tion of the initial energy which is not dissipated

in collisions. As long as Eq. (40) is satisfied,
then the collapsing string will form a black hole
before elementary-particle radiation becomes im-
portant.

The conditions expressed by Eqgs. (39) and (40)
may also be thought of in terms of the proper ac-
celeration of an element of the loop. The mag-
nitude of the proper accelatation a’ of the element
6 is given by a’=T!/urd=y/r=R/r? from Eq. (33).
Hence 7=y, corresponds to a’=m, so that » <z,
corresponds to values of a’ which are appreciable
on the mass scale m .*®

The strings are first produced at temperature
T.,~n~m,/e. Inthe standard cosmology, with
the early universe treated as an expanding rela-
tivistic gas, time and temperature are related by

t=C/T?, (41)

where the constant C=(45/3273GN)*2 in our units,?®
and N is approximately the total number of differ-
ent particle species present in the gas. Taking N
~ 100, which is a typical order of magnitude in
GUT’s, gives C=10% in our units. The largest
possible value of R is R=¢f, namely a radius equal
to the horizon length. Taking m,, ~10'® GeV~10%,
one finds t~10282107% gec as the time of first
formation of grand unified strings. From Eq. (40)
one has R/t=RT?/C>(T/T)*(Cm,G*1?)™; numer-
ically this gives R/t>10'°T'2/T 2, Thus loops
formed in the initial phase transition at T=T,

fail to satisfy the condition (40). Hence in the

grand unified case we shall only be concerned with
loops formed at temperatures T < Ty=(T,/10*)¥2,
i.e., at t>10"2% sec, at whichtime the largest pos-
sible loops, with R=¢, may produce black holes
before losing their energy by elementary-particle
radiation. At later times loops with R>(T/T,)*t
will collaspe to black holes if friction may be
neglected. The formation of closed loops at T<T,
may come about, as already mentioned, as a re-
sult of collisions between strings in which a
“change of partners” occurs. It may also come
about as the result of the formation of closed loops
in the initial phase transition with radii greater
than the horizon length at that time. Vilenkin has
shown’ that such loops undergo conformal expan-
sion, with the expansion of the universe, up to the
time £~ R at which the entire loop is included with-
in the horizon, at which point they begin to col-
lapse. Hence, for the present discussion, such
loops may be thought of as produced at t=R, the
time at which collapse starts. Since all loops
produced at T T, are expected’ to have R=¢,
once black-hole formation has become possible at
all, one expects, assuming frictional effects are
not important, that almost all loops which are pro-
duced will be large enough to collapse to black
holes.

A similar calculation for the case of electroweak
strings, with m,,~100 GeV, gives 1~107'3 sec as
the time of the initial phase transition. However,
the condition (40) requires (7,/T)? 3105, which,
from Eq. (41), implies ¢ 10* sec, far greater
than the age of the universe. Hence electroweak
strings will always decay by elementary-particle
radiation before black-hole formation occurs.

From the foregoing, it is clear that the discus-
sion will be concerned with temperatures 7< 1/¢,
and thus, in evaluating Eq. (37), we shall be con-
cerned with the case of long wavelength scatter-
ing. Hence, apart from logarithmic factors, o
will be of order (»’)*. Combining Eqgs. (31), (37),
and (38), one obtains

f .= =2nvryd[1%/In?(yTe)] (42)
and
fO = vfr ° (43)

Suppose the loop undergoes a collapse to a final
radius » between times ¢, and ¢;. The energy dis-
sipated during this collapse as a result of col-
lisions is W(»)= - ftiffodt. As a result of Eq. (43),
this can be written in the usual way as the line
integral of the force, so

W)= fR ' f.dr'. (44).

It is perhaps worth noting that in the case of the
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tension the result, analogous to (44), that would
normally hold in special relativity, namely that
fto dt= ft, dv, is not correct. This is because

the mass of 6 changes during the motion, and
hence there are additional terms in 4E/d¢
=d(ym)/dt and in dp/dt, involving dm/dt, which
spoil the usual relation between force and the rate
of change of energy.] The equation of motion, Eq.
(36), is quite complicated, primarily because of
the highly nonlinear form of the velocity-dependent
frictional force in Eq. (42), even when we omit, as
shall, the final parenthetical factor, which is
slowly varying because of the logarithmic de-
pendence and numerically sufficiently close to 1 so
as not to affect estimates in an important way.

The frictional force can be written in the usual
form f,=-av, but here o depends on » and v. In
addition, a has an explicit dependence on the in-
dependent variable 7 through the density »n. Ina
relativistic gas the energy density ny,~NT7T* (Ref.
27); combining this with Eq. (41) gives for the
number density

n=NC2/pl2 (45)

Fortunately, it turns out that an exact solution is
not needed; it is possible to find an upper bound
to W(») which shows that, in cases of interest, the
effect of collisions is not important. To do this,
note that, since the effect of f, is to slow down
the collapse of the ring, an upper bound for y is
obtained by using the result of Eq. (33) for the col-
lapse of the loop in the absence of collisions.
Since v<1 and n S NC*2/1,%2, where f, is the time
at which the loop began to collapse, we have from
Eq. (42), with the factor in brackets neglected,
and (44), that W(0), the total energy dissipated by
collision, satisfies

W(0) <2NC**R25/1,%2 . (46)

The condition that the fractional loss of energy due
to collisions be small is that W(0) << uR6, which is
just the condition £,%2>> 2NC¥2R/u.. This restriction
clearly becomes more stringent as R is increased.
Since the maximum value of R is ¢,, the fraction

of energy lost due to collisions will be small for
all loops formed at time ¢, if

ty>4N2C3/p2, (47

In the grand unified case, this becomes f,>5

x 107%% sec. Since only those closed loops formed
at £>102* sec satisfy inequality (40), the energy
lost due to collisions during the collapse of a cir-
cular loop is negligible for all cases of interest,
that is, for all cases in which (40) is satisfied.
Thus collisional energy loss will not prevent the
loop collapsing to a black hole before elementary-
particle production can become important.

For electroweak strings we have already seen
that the inequality (40) is never satisfied, so that
elementary-particle radiation can always be ex-
pected to prevent black-hole formation. We may
also note that frictional effects, as well, are im-
portant in the electroweak case. From Eq. (47)
one obtains #,>10'° sec in the case of electroweak
strings. That is, only in the case of loops formed
at £>10'° sec, which exceeds the present age of
the universe by at least an order of magnitude,
could one be sure that the fraction of energy dis-
sipated by collision during collapse is small.

Finally we can examine models of the type in
Ref. 16, where the U(1) symmetry whose spontan-
eous breakdown is responsible for string forma-
tion is restored at low temperature. As mentioned
earlier, in this case p is temperature dependent,
vanishing at the temperature T/ at which the sym-
metry is restored; if T.< T, then the VEV’s of
the Higgs fields are just proportional to the temp-
erature,’® and thus u=T2=C/t. To study the im-
portance of collisions in such a model one simply
has to replace u by C/t0 in Eq. (45). The sense
of the inequality is then reversed, and one finds
t, <1/4N?C=10™ sec<t, Hence, in such a model
one expects that the effect of collisions will al-
ways be important, and collapse to black holes
will not occur. Black-hole production is, in any
event, not a problem in such models; because of
the decrease of u with ¢ the observational con-
sequences of black-hole production in such models
would be characteristic of models with a mass
scale much less than the grand unification scale,
and hence not important cosmologically. On the
other hand, for the same reason closed loops in
such models formed near the recombination time
will be too light to serve as seeds in the production
of galaxies.

Let us sum up the conclusions briefly. Fric-
tional effects on the collapse of closed loops in
standard GUT’s are negligible and will not serve
to suppress the possible overproduction of black
holes discussed in Ref, 7. It is quite possible
that black-hole production is suppressed for other
reasons, in particular oscillations and gravitation-
al radiation. It also could be that the estimates
of the rate of formation of closed loops in Ref. 7
are too large; as pointed out there, this especially
might be true if the likelihood of a change of part-
ners occurring in a collision between two strings
is very small, and this question requires further
study. If black-hole production cannot be sup-
pressed by mechanisms other than friction, then
GUT’s in which string formation occurs are ex-
perimentally excluded. On the other hand, if such
suppression is possible, then GUT’s with strings
may offer an attractive explanation of galaxy
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formation. Frictional effects are important in
the collapse of closed strings with values u small-
er than that corresponding to the grand unfication
mass scale. This applies both to electroweak
strings and to grand unified strings in models in
which a U(1) symmetry is restored at low temper-
atures, leading to a value of u which decreases
with time. There do not appear to be potential
arguments against GUT’s of this type based on the
fact that they lead to string formation. On the
other hand, strings in these models are not capa-

ble of serving as seeds for the production of gal-
axies. ,
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