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It has recently been shown that topological excitations of metastable phases. such as non-Abelian monopoles can
dissociate and decay through the radial expansion of the excitation core, In this paper it is indicated that, according
to some grand unified field theories, the monopole dissociation process might occur in the early Universe, In
particular, the case of an SU(5)-symmetric grand unified field theory which breaks spontaneously to SU(4))&U(1)
symmetry and then to SU(3) XSU(2))&U(1) symmetry is studied, and it is demonstrated that monopoles that are
created in the transition from SU(5) symmetry to SU{4)&(U(1) symmetry generally dissociate after the SU(4) &(U(1)
phase becomes metastable with respect to the SU(3))&SU(2))&U(1) phase but before there is any significant
spontaneous production of bubbles associated with barrier penetration from the SU(4)XU(1) phase to the
SU(3))&SU(2) gU(1) phase. Thus, the monopole dissociation process does indeed occur in such models and the
monopoles may act as seeds for the inhomogeneous phase transition from SU(4))&U(1) symmetry to
SU(3) &&SU(2) &(U(1) symmetry. If the transition occurs inhomogeneously, the transition temperature is higher and
less latent heat is released in the transition.

I. INTRODUCTION

If.a system is homogeneous and isotropic, the
decay of a metastable phase to a stable one is
mediated by the spontaneous formation of bubbles
of stable phase in a background of metastable
phase. Once formed, the bubbles grow radially
until they coalesce, completing the transition
from the metastable phase to the stable phase.
The energy released in the collision of the bubble
walls is converted into the latent heat of the first-
order transition. Because the probability of for-
mation of the bubbles is uniform in space, the
transition that occurs in this manner is referred
to as a homogeneous transition in spite of the fact
that different regions of space are converted to
the stable phase at different times.

If a system contains impurities, the transition
process may be significantly modified. If there
is a greater probability of bubble formation near
the impurities (for a given temperature), the
transition may be completed by the bubbles in-
duced by the impurities rather than those pro-
duced spontaneously. The presence of impurities
therefore alters the temperature at which large
numbers of bubbles may be formed and, conse-
quently, alters the amount of supercooling and the
amouig of latent heat released in the process.
Because the probability of bubble formation is not
uniform in space in the case of impurities (it de-
pends on the positions of the impurities), the pro-
cess is referred to as an inhomogeneous transi-
tion.

In a recent paper, ' henceforth referred to as
Ref. 1, it was demonstrated that topological ex-
citations, such as 't Hooft-Polyakov monopoles'
in non-Abelian gauge theories or vortices in two-
dimensional theories, can act as natural impurity

sites in first-order phase transitions. The exci-
tations act as impurity sites when their cores
(for geometrical and topological reasons} are con-
strained to contain the stable phase of the system.
If the phase which contains the excitations is
"supercooled" sufficiently (as a metastable state),
the excitations become unstable and the cores
grow radially thereby converting the metastable
phase to the stable phase contained in the grow-
ing cores. Because the cores of the excitations
already contain stable phase, no activation energy
is required to produce an initial bubble of stable
phase and the monopole dissociation process
usually dominates the bubble nucleation process
in converting the metastable phase to the stable
phase.

In this paper it is examined whether or not, as-
suming that grand unified field theories of ele-
mentary-particle interactions are correct, mono-
pole dissociation phenomena may have occurred
in the early history of the Universe. The par-
ticular case that is studied is that of the SU(5)-
symmetric grand unified field theory of Georgi
and Glashow~ with a cubic interaction term for
the adjoint scalar field. This theory undergoes
a series of phase transitions as a function of tem-
perature so that at high temperatures SU(5) sym-
metry is manifest, at a temperature of 10'
GeV (for a wide range of parameters) a phase
transition takes place in which the symmetry is
spontaneously broken to SU(4) x U(1) and the ad-
joint scalar field obtains a vacuum expectation
value, and at somewhat lower temperatures a
second phase transition takes place in which the
symmetry is reduced to SU(3}xSU(2}xU(1). [At
much lower temperatures, around 10' GeV or so,
an additional phase transition takes place which
reduces the symmetry to SU(3).oi„xU(1), , but
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this last transition will be ignored in this paper. ]
In the transition from SU(5) symmetry to

SU(4) x U(1) symmetry, many monopoles of the
SU(4) x U(1) phase are expected to be created
when bubbles of SU(4)xU(1} phase formed in the
SU(5}-symmetric metastable phase coalesce;
the expectation values of the scalar fieM are un-
correlated from bubble to bubble, and when the
bubbles coalesce, bubble knots form which, after
the completion of the transition, lead to SU(4)
x U(1) (4-1) monopoles.

In Sec. II, the most important ideas and con-
clusions of Ref. I are reviewed. In Sec. III, the
SU(5) model that will be studied is introduced
and a convenient parametrization scheme is pro-
posed. The phases of the theory as a function of
the parameters are examined and the temperature
dependence of the theory is discussed. In order
to determine whether monopole dissociation can
occur, it is necessary to determine whether, as
the temperature decreases, the monopole dis-
sociates before bubbles are spontaneously formed
and complete the transition. In Sec. IV, the
spontaneous decay from the SU(4) xU(1) (4-1}
phase to the SU(3) xSU(2) x U(1) (3-2-1) phase
is studied using the semiclassical techniques
developed by Coleman4 for studying zero-tem-
perature decay and extended for studying finite-
temperature decay'. The value of the temperature
for which the decay occurs is determined as a
function of the parameters of the theory. In Sec.
V, the SU(4}xU(1}monopoles that are formed in
the initial phase transition are studied, and an
ansatz for the most stable monopole in the (4-1)
phase is proposed. According to the ansatz, the
core of the monopole has a value which coinci-
dentally lies near an SU(3) xSU(2) xU(1) minimum.
As the temperature decreases to a point where
the SU(4) xU(1) phase is metastable compared to
the SU(3}x SU(2) x U(1) stable phase, the mono-
poles become unstable and dissociate through
radial expansion of the cores since (as discussed
in Ref. 1) it is energetically favorable for the
core to grow to create a greater region of (3-2-1)
phase. Some general analytic considerations of
the stability of the (4-1}monopole are also dis-
cussed in Sec. V. In Sec. VI, the numerical analy-
sis of the stability of the (4-1) monopole is pre-
sented for a wide range of parameters. The re-
sults show that the monopoles do dissociate at a
temperature which is greater than that necessary
for bubble nucleation. In Sec. VII, the conse-
quences of these results is discussed.

II. PRINCIPLES OF MONOPOLE DISSOCIATION

The circumstances that suggest that topological
excitations, such as non-Abelian monopoles, may

where Q', a =1, 2, 3 is a scalar field in the vector
representation of SO(3}. For the case of a spon-
ta,neous- symmetry-breaking potential, such as

(2.2}

[see Fig. 1(a}], 't Hooft and Polyakov' showed that
there can exist nonsingular, finite-energy con-
figurations which have the property that there is
a net magnetic flux emerging from a surface en-
closing the core but of much larger radius than
the core. The standard ansatz for describing
such an excitation that is spherically symmetric

(a}

0
a ~a)&/2

0

FIG. 1. The cross sections of two SO(3)-symmetric
potentials for a scalar field in the vector representation

(a) the case of a stable spontaneous-symmetry-
breaking potential; (b) the case of a metastable spontane-
ous-symmetry-breaking potential. In either case, the
core of the monopole is forced to approach the value
)g) =0 as r 0.

dissociate and act as seeds for a first-order
phase transition can be best understood by study-
ing the example (considered in Ref. 1 in detail)
of an So(3)-symmetric theory in 3+1 dimensions
defined by the Lagrangian density

(2.1)
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and time independent is'

eQ' =x, h(r)a, (2.3)

breaking phase is metastable rather than stable,
and so V(Q) is not positive semidefinite, as shown
in Fig. 1(b):

(2.'r)

where e is the gauge coupling constant, x, is a
unit vector in space, and h(r) and K(r) are func-
tions of a radial coordinate only. The energy
functional may be reexpressed in terms of the
radial functions

E =, ~ dr (K'}'+—,+ ,'r'(h-'}4w ",, 1 (1 —K2)

0

as r-~. (2.5}

In order for the solution to be nonsingular at
short distances it is necessary that

h(r)-0
(2.6}

Thus, the core is at an SO(3) symmetry point
even though the monopole is an excitation of an
SO(3)-symmetry-breaking potential.

If V(h) is positive semidefinite, as is the case
in Fig. 1(a), all the terms in the expression for
E are positive semidefinite and E is bounded be-
low by zero. The monopole solution always ex-
ists and represents the minimum of the energy
functional for functions obeying the boundary con-
ditions. The limit ~-0 is of interest in this case
because (1) the exact solution for h(r) and K(r)
are known (they were found by Prasad and Som-
merfield~ and hence this solution is referred to
as the Prasad-Sommerfield monopole in this
paper), (2) the monopole in this limit can be
shown to be stable, and (3) the mass of the mono-
pole in this limit is a lower bound on possible
masses for monopoles for»0 when V is positive
definite and, furthermore, the mass in this limit
is a lower bound on T„+T~ for all h(r) and K(r}
that obey the required boundary conditions.

The case of interest is when the symmetry-

+ h'K' + & V(h); (2.4)

the first two terms are associated with the kinetic
energy of the gauge field T&, the second two terms
are associated with the kinetic energy of the
scalar field T~, and the last term is associated
with the potential energy of the scalar field V&.
In order for the solution to be of finite energy, it
is necessary that

where c is chosen so that V for the metastable
minimum is zero. There is no simple argument
for this case that shows that a monopole solution
exists. However, assuming such a solution does
exist, one can employ the same ansatz, Eq.
(2.3), as before and in order for the solution to
be of finite energy and nonsingular, h(r) and K(r)
are forced to obey the same boundary conditions.
As a result, the core of the monopole near
h(r) =0 is forced to lie in the stable phase, while
at large distances from the core the monopole
solution has h(r) =1 in the metastable phase. As
the difference in the energy density between the
metastable phase and the stable phase & is in-
creased, the monopole can gain energy by allow-
ing the core to grow radially leading to a larger
volume of stable phase in the core. As was shown
in Ref. 1, for & smaller than some'finite critical
value &„the monopole remains stable because
the gain in energy from the growth of the core
(- eR'} is compensated by a loss in energy as-
sociated with the core-wall (oR' ); for c ~&„the
core wall energy is not sufficient to stabilize the
solution and if & is varied from e & e, to c &e„
the previously stable monopole becomes unstable
and the core grows radially indefinitely. As it
grows, an increasingly greater volume of stable
phase is created. If there is a sufficient density
of such monopoles, the cores will coalesce and
convert the total system to the stable phase.

Thus, there exists a region of values &,& e &0
for which the system is metastable and the mono-
poles are a stable excitation of this phase. Be-
cause a region of stable phase automatically lies
in the core, there is no activation energy as-
sociated with this kind of "nucleation process, "
and the decay of the monopole being considered
is purely classical. Therefore, if one compares
this process with the process of bubble nucleation
triggered by quantum fluctuations of the vacuum,
one expects monopole dissociation to occur at a
value &=&, that is too small to have any sig-
nificant quantum bubble nucleation; this was in
fact established in Ref. 1. One can also compare
the efficiency of monopole dissociation and nu-
cleation with the thermal production of bubbles
and, even though the absence of an activation
energy in the case of monopole dissociation sug-
gests that the first process should dominate (that
is, as & increases, it occurs and completes the
transition before there is any significant amount
of bubble production), the argument is not as
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compelling and a detailed dynamical calculation
is required. One of the goals of this paper is to
show the results of such calculations for a
physically interesting case of phase transitions
of grand unified field theories in the conditions
expected to be found in early cosmology.

III. THE SU{5)MODEL

To test whether monopole dissociation might
have occurred in the early Universe, a particular
model, the SU(5} model of Georgi and Glashow'
in which the grand unified symmetry is broken
by a scalar field P in the adjoint representation,
will be studied. The phase diagram for the model
has been studied independently by Guth and Wein-
berg, who, in turn, relied on the results of Li,'
and so this section will be appropriately ab-
breviated. However, because the parametrization
to be used in this paper must be somewhat dif-
ferent from that used in the other papers, it is
necessary. to elaborate to some degree.

The model that will be considered is described
by a Lagrangian density

(s.l)

where V(Q) is the most general renormalizable
potential describing the self-interaction of the
adjoint-representation Higgs field (the funda-
mental Higgs field plays no role at the high tem-

l »s& g» (g~/4v)'

10 ~&a, b&10 ~.
(3.3)

In order to most easily compare results for
monopole dissociation with those for bubble nu-
cleation, it is useful to reparametrize the theory
in terms of dimensionless variables:

b p2b

aAa gg y +
b y5

~

(3.4}

The energy for the system can then be expressed
(in the 4;=0 gauge) as

peratures to be considered in this paper and will
be ignored in this analysis)

a 2 b c
V(Q) =- —Trg~+ —(Trg~) + —Tr$4+—Trgs.

2 4 2 3

(3.2)

The interesting range of parameters will corres-
pond to a & b and the calculations will be done us-
ing the tree approximation to the potential. In
order for the approximation to be feasible, it is
necessary that the parameters of the theory be
small compared to unity for perturbation theory
to be valid and yet large compared to (g~/4v }
so that the higher-order loop corrections can be
neglected, i.e.,

C2 2 4 2
E = —, d'r -,'(ED,}'+,'(E;&) + —

—~ .(D,P)~+r'
&2

——Trg'+&(r —~»)(Trgm}'+ —,'Try4+~ Trgs
J

(3.5}

where the primes on the variables have been dropped. Since the radial coordinates still have dimensions,
it is useful to replace x by

(3.5}

so that
t'

hE=,
b

d x & J'0, +—,
' &;,. '+ —,'D, '+x'&- 2

——Tr +& y- » Tr +2Tr +STr
t kg2 i 2

(3.'f)

Finally, if in a given phase Q obtains a vacuum expectation value proportional to 5 (dimensionless), it is
sometimes useful to scale this parameter out of the problem via new variables

(3.8)

in which case (again, the primes have been dropped),

p5 x & 0; +&, +2, + —
2 -2 2 Tr +&y —» Tr +&Tr +——Trg2& 2

(3.9)
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The first step in the analysis is to identify the possible phases of the theory as a function of the zero-
temperature parameters. For this analysis it is necessary to examine the extrema of the potential which,
according to Eq. (3.'7), is proportional to

V(Q)~ ——Trp2+ —,(y —~»)(Trg2)2+-2' Trp4+ —,
' Trp2. (3.10)

The phase transitions occur when P& 0 is positive and, in this case, y must be positive in order for the
energy to be bounded below. The possible global maxima of the potential are given as follows:

(1) P =0: SU(5) symmetry is manifest; this is a local minimum for P&0.

1 3 3 P 5
where 5 = —+ —+ —y+—4 ' (y+~) 40 40 20 6

SU(5) is broken down to SU(4) x U(1) symmetry and the phase is a local minimum for

9
so(y+, )

'P"

(3}0 8-2-1
~I, 15y 120Py (120Py)'+

SU(5) is broken down to SU(3)&&SU(2) XU(l) sym-
metry and this phase is a local minimum for
P& I(y —~»} for y & ~». The three regions of pa-
rameter space overlap one another and in Fig. 2

is shown the phase diagram (originally produced
by Guth and Tye'} of global minima of the theory.

In order for the model to have any chance of
being a description of our universe, it is neces-
sary that for temperatures near zero the pa-
rameters of the theory lie in the SU(3)XSU(2)
XU(1) (3-2-1) sector of the phase diagram. At
temperatures large compared to all masses in
the theory, the finite-temperature effective poten-
tial is obtained from the zero-temperature effec-
tive potential by replacing the parameter P in the
theory by

SU SU& xSU& xUi

system moves to the right horizontally in Fig. 2
until at T near zero one arrives in the 3-2-1
sector at the zero-temperature values of P and y.
The detailed description of the passing from high

where

o' =~22 (130a+945+"l5g2). (3.11)

If T is large, P(T) is negative and the SU(5) phase
is the global maximum. As T decreases, the

0

FIG. 2. The global minima of the SU(5) potential as a
function of the parameters of the theory. Increasing
the temperature T corresponds approximately to de-
creasing P while keeping y constant.
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T to low T is beyond present analytical capabili-
ties; it will be assumed that changes in T corres-
pond to purely horizontal movements on the dia-
gram, as was effectively assumed by Guth and
Weinberg, ~ but a better treatment of the correc-
tions to these effects might prove useful.

Under these assumptions, if the system pro-
ceeds from high T to low T and ~& ~», the system
will undergo a sequence of phase transitions from
SU(5) to SU(4)xU(1) (5-4-1) and from SU(4)
x U(l) to SU(3) xSU(2) xU(1) (4-1-3-2-1). The
nature of these transitions is determined by where
the zero-temperature values of the parameters
(P, y) lie in the 3-2-1 sector.

In Fig. 3 is shown an analysis of the 3-2-1 sec-
tor that will be referred to repeatedly during the
course of the paper. As T decreases from a very
high value, P(T) first crosses a line at P(T„)=0
(T,~

-10'~ GeV) and (if the system is homogeneous)
the system supercools to some temperature
T-0.1 T„,at which point bubbles of 4-1 phase
nucleate; they coalesce to form monopoles and
latent heat which drives the temperature back
up to near T„.The system continues to cool
until P(T) approaches line 1 in Fig. 3. Since
(P, y }at T =0 lie in the 3-2-1 sector where the
SU(5) phase is not even a local minimum, it is
clear that this first phase transition from
SU(5) to SU(4}xU(1}must be complete before
line 1 is crossed and (P(T), y) enter the 3-2-1
sector.

Line 1 in Fig. 3 corresponds to the values of the
parameters for which the 4-1 minimum has the
same energy density as the 3-2-1 minimum. If T
continues to decrease and P(T) continues to move
to the right in the figure, the 4-1 phase becomes
metastable compared to the 3-2-1 phase, but the
barrier between the two phases prevents the
transition from occurring immediately. Instead,
the system supercools in the 4-1 phase and (ig-
noring the monopoles for the moment) P(T) con-
tinues to move to the right in the diagram until
bubbles are nucleated and the second transition
is complete. Line 5 in Fig. 3 represents the
values of the parameters for which the barrier
between the 4-1 phase and the 3-2-1 phase is no
longer present and the 4-1 phase is no longer
even a local minimum. Therefore, the transition
must be complete for values of (P(T), y) to the
right of line 5, and, if the zero-temperature val-
ues of P and y lie to the right of line 5, the two
transitions are completed at finite values of T
on the order of T, =10'~ GeV or so.

More interesting possibilities occur if the zero-
temperature values of the parameters (P, y) lie
in the region between li,nes 1 and 5. If the values
lie too close to line 1 (again, ignoring monopoles)

4—

0-1
I, I

7 p 8

FIG. 3. The early-Universe scenarios as a function of
the zero-temperature SU(5) parameters. See the text
(Sec. IG) for details.

even as T approaches zero, the probability of
bubble nucleation is incredibly small because the
barrier is high and the transition can, at best,
be completed very slowly. When the expansion
rate of the Universe is taken into account, it can
be shown that the transition can never complete
itself. If the zero-temperature values lie close
to line 5, as T approaches zero the barrier can
become small enough that bubble nucleation be-
comes highly probable and the transition can
complete itself. By computing the bubble-
nucleation probability as a function of the pa-
rameters in Sec. IV, one can determine approxi-
mately the boundary between these two possibili-
ties. In Sec. VI, the values of the parameters
for which monopole dissociation takes place will
be determined (classical dissociation ignoring
the thermal fluctuations). In order for monopole
dissociation to be possible, the monopoles must
dissociate for a value of T that is too high for
bubble nucleation to occur prolifically and com-
plete the transition.

IV. BUBBLENUCLEATION

In order to determine the temperature at which
bubble nucleation and the spontaneous transition
from the 4-1 to the 3-2-1 phase occur, it is neces-
sary to know the finite-temperature effective po-
tentia, l as a function of T. Since this is not known
for all values of T, two separate computations,
one for T much greater than all the masses in the
theory and one for T =0, must be performed and
the results for intermediate values can be found

by interpolation, The calculation has been done
independently and somewhat more generally by
Guth and Weinberg~ and so the discussion in this
section will be abbreviated.

For the case of zero temperature, the decay
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rate of the metastable phase is given by the
imaginary part of the energy and the probability
of bubble formation per unit time per unit volume
is of the form

I" -R exp(-A), (4.1)

d'y(r) 3 dy(r) sV
dr' ~ d~ sy '

where

(4.2)

as r-.

where A is the Euclidean action corresponding
to the tunneling solution with least action and R
is expected to be on the order of T,'. Coleman
showed that the solution of least action corres-
ponds to solving the Euler-La, grange equations
of the theory in four-dimensional Euclidean space
with the boundary condition that the fields approach
the false vacuum at r =(x'+t')'~-~. It will be
assumed that the lowest action solutions are those
of highest symmetry [O(4} invariant and of
greatest simplicity]; the solution considered will
have Q a diagonal matrix for all r and a trivial
gauge field. The field equations that define the
solution are therefore reduced to

The high-temperature nucleation rate can be
found by determining the imaginary part of the
free energy and leads to a bubble nucleation rate

I'(T) -R exp [-E(T)/T ], (4.3)

d'y(r) 2 dy(r) sv
dr' r dr (4.4)

where now r is the three-dimensional radial
coordinate. Using the same assumptions and
methods of solution as were used for the zero-
temperature problem, E(T) was computed for
large T. The value of E(T}was found to be in-
finite for P(T)/y to the left of line 1 in Fig. 3 and
to decrease rapidly as P(T)/y moves to the right
of line 1.

If an exact computation of the bubble action as a
function of T were possible, one would expect it
to interpolate between the results of high T and
zero T. The.effects of temperature on the action,
though, should decrease rapidly as T decreases
below T, since the energy density,

where E(T) is the energy (computed from the
finite-T effective potential) of the bubble of criti-
cal size. If T is larger than all the masses in the
theory, the high-T effective potential is obtained
from the zero-T potential by replacing t3 with
P(T) as defined in Eq. (3.11) and by computing
paths periodic in Euclidean time with period 1/T.
For larger T, this amounts to reducing the di-
rnensionality of the problem to three and the Euler-
Lagrange equations become

p =po+aT (4.5)
Two possibilities for P(0) remain:

where po-T, ' is the energy density difference

500—
b 1

92

200

but the numerical computations show that the
former case leads to solutions of lower action
than the latter. Two independent components of Q
remain and the equations of motion can be solved
numerically by varying $(0) until a value is found
for which Q(r)-Q as r-~.'0 The results for a
value of h =g /3 -0.1 are shown in Fig. 4; this
value lies at one end of the allowed range accord-
ing to Eq. (3.3) and (in that range) provides the
lowest values of A for a given choice of pa-
rameters P and y. As expected, for values of P/y
near line 1, the action for bubble nucleation is
infinite and for P/y near line 5 the action is zero.

100

,9
I

1.0

FIG. 4. The zero-temperature action for the O(4)-in-
variant bubble as a function of the SU(5) parameters for
y/g2
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between the 4-1 and 3-2-1 phases and the second
term is the contribution of the massless particles
(which dominate the eriergy density at these tem-
peratures}, has negligible dependence on the tem-
perature for T& T, /4. Therefore, if E(0) is the
bubble energy evaluated at T =0 using the high-T
approximation, A(T) =E(T)/T in the exact solution
should lie in the range

600

500

400z(0},z(0)
(4.6)

dr'
ds dt' —tt (t)(=, +r dte tl, (4.V)

where 4=2, 0, -1, according to whether the
Universe is closed, flat, or open. Substituting
the form for the metric in Einstein's equations
one obtains

8~ a
R&l

= 3M, P-„,, (4.8)

for values T,/4& T& T, . (This argument is de-
rived from Ref. V. ) In Fig. 5 the evaluation of
this range of values as a function of the parame-
ters is shown and it appears that A(T) can be as
much as an order of magnitude less than the value
of A computed using the zero-temperature methods
for a given choice of parameters. An exact solu-
tion would show that as T decreases below 1',
(line 1), A(T) decreases rapidly to a minimum at
TET, /4 and A(T)&0.1A and then increases to A
as thermal effects drop off rapidly beyond this
point. If one believes these approximations, one
can now compute the values of the parameters
for which bubble nucleation is.possible.

First, however, one must take account of the
gravitational effects because the completion of
the phase transition depends on the nucleation
rate being fast compared to the expansion rate
of the Universe. Following the "standard
model, "' a homogeneous isotropic universe will
be assumed that is described by a Robertson-
%alker metric

300

200

100

s8 1.0

FIG. 5. The possible range for the minimum action
A(T) as a function of the SU(5) parameters for b/g = 3.
The minimum value of A(T) should lie somewhere be-
tween the two curves.

f(t) ~exp[- A( T(t))]. (4.ii)
The equation can be reexpressed in terms of
temperature if one assumes the Universe is ex-
panding adiabatically (setting k =0):

Taking account of the expansion of the Uni-
verse, the fraction of space remaining in the old
phase at time t is'

t 4)) t
l (t') expI- dt, f=(t, )tt'(t, ) dt

(4.io)
where f(f) is the rate of bubble nucleation per
unit time per unit physical volume and

where ~P =1.2x10" GeV is the Planck mass; p
is the energy density

T Swp, n T
(4.12)

P =Po+ qT4 (4.9)

where q is the number of effectively massless
degrees of freedom (the number of massless
bosons plus ~8 the number of massless fermions
-10'), and p, is the difference in the energy
density between the metastable phase and the
stable phase. As 1' decreases, the energy
density is dominated by po and~ R(t) grows exponen-
tially with time. Typically, supercooling below
&& 3 1', indicates the onset of exponential growth.

Then,

where

$ = ~ sT 4 T = 10~4 GeV

and

k(T) =l, po for small T
P

I

r~ ~-w(r) ~ rg
e(t')=e pI-( dxx, ,„()

dt,
( )

(4.is}
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Combining the various terms leads one to the con-
clusion that P(T) decreases to zero if A(T) & Ln20.
Since A(T) decreases to its minimum value at
T„&T, /4, the result implies that bubbles are
only produced in numbers sufficient to reduce
P(T) to zero when A(T ) & ln20. Otherwise bubble
nucleation occurs too rarely to compensate for
the expansion rate of the region exterior to the
bubbles and supercooling continues down to
T-0. Using the values obtained in Figs. 4 and 5
as a guide, the values of P(T) and y at which
bubble nucleation takes place can be determined.
For b=0.1, line 4 in Fig. 3 corresponds to the
values for which A, evaluated using the O(4)-
invariant bubble, is equal to ln20 and the region
labeled 3 represents the range [according to Eq.
(4.6}]for which A(T ) co. mputed approximately
using the O(3}-invariant bubble is equal to Ln20.
The parameters and approximations have been
made as optimistically as possible in the sense
that lines 3 and 4 are as far to the left as possible
[within the conceivable accuracy of the approxima-
tions according to Eq. (3.3)].

To reiterate, ignoring the possible effects of
monopoles, one can make the following con-
clusions: If the zero-temperature parameters,
P and y, lie to the left of line 3, bubbles are never
produced in significant enough numbers to com-
plete the transition. %hatever bubbles are pro-
duced never coalesce and the Universe (exterior
to the bubbles} supercools forever. If the pa-
rameters lie to the right of line 3, bubbles can be
produced at T-T, /4 in sufficient numbers to
complete the transition.

V. SU(4) X U(1) MONOPOLES

In the transition from the SU(5) phase to the
SU(4) x U(1) phase, bubbles of 4-1 phase (inside
of which Q obtains a vacuum expectation value)
are formed spontaneously in the SU(5) back-
ground. Different bubbles, however, can have
different expectation values of g& and so, when
the bubble walls coalesce, the disagreement in
values will lead to singularities referred to as
bubble knots (this description is, strictly speak-
ing, not gauge invariant; see Ref. 11). Once the
system thermalizes, the knots become mono-
poles or dyons; they begin to annihilate in pairs
and/or decay to the ground state which is what
will be referred. to as the 4-1 monopole.

The lowest-lying monopole excitation will be
assumed to be that which contains the minimum
magnetic charge, zero (4-1) electric charge, and
maximum residual symmetry. '~ At large dis-
tances from the core of the monopole, the scalar
field Q must approach a 4-1 minimum point in

order for the monopole to be a finite-energy
solution; for example,

0 "4o =5~-i as x

In order for the monopole solution to be spheri-
cally symmetric, it must be invariant under
I +T, a combination of ordinary spatial rotations
I and rotations in an SU(2) embedding in SU(5)
generated by T. For every such embedding, one
can write the most general spherically symmetric
ansatz for Q and A, using the methods of Gold-
haber and Wilkinson, " For any matrix Q which
satisfies

[Q, ~.1=o,

the configuration

(5.1)

C (r) = Po, A(r} = —QA ~ (5.2}

exp(4&i@}=1 . (5.3)

Since Q commutes with $0 which breaks the sym-
metry down to SU(4) &U(1), Q must be a linear
combination of the U(1}charge Q and the SU(4)
color charge C:

Q -MQ+C (5.4)

and it is clear from the dependence of A on Q

that M is proportional to the magnetic charge.
The Dirac-type solution can be transformed

to a string-free spherically symmetric
't Hooft-Polyakov monopole by a gauge transfor-
mation if and only if there is another SU(2) em-
bedding in SU(5) generated by I satisfying

Q=l, T„[I,Q]=0, [-I, y,]=0. (5.5)

The form of the gauge transformation is

A(r") =Q(r")(u '(r),

fl (r) e -i AT3e i3T2eioT3-

~(r) e -i 41 3e4Ii2gi l3-
(5.6)

and the spherically symmetric equivalent form of

is a solution of the field equations corresponding
to a Dirac monopole for

X~ = iI~(1 —cos 8)/r sin 8.
The requirement that the string be unobservable
implies
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the solution is (5.9). The ansatz for the vector field is

[I(r)- T]&
gV

4 (r) =n(r)y, n '(r-),

I(r") =A(x}IA '(r").

[1 —K(r)]
gV

0

0

(5.11)

An immediate consequence is that, since
[I, Q,] =0, I is restricted to act on the upper
4x4 components of P only; therefore, the 5-5
component of Q,

Q.s =- (Ts)55. (5.3)

which gives the U(1) charge part of Q only, is
determined by T alone. " In order to have a
topologically nontrivial solution, T must be in the
-', , 1, ~, or 2 representation of SU(2}. (The
representation need not necessarily be reducible
either. ) Therefore, either the. 5-5 component of
T is nonzero and the minimum magnetic charge
corresponds to

For the solution to be nonsingular, f(x)-0 and
K(r)-I as r-0, but there is no constraint on

g(x). For the solution to be of finite energy, f(r)
and g(r) must approach 54 „andK(r) must ap-
proach 0 as r ~ so 4 (r) approaches a 4-1 mini-
mum.

The ansatz in Eqs. (5.9) and (5.11)was deter-
mined solely by considerations of symmetry with-
out regard for whether the 4-1 phase is stable or
metastable. However, it is coincidentally true
that, as r'-0,

3
2

where T,&2
is a 2x 2 matrix, or T has a zero 5-5

component and is of the form

e(r) =g(r)
3
2

3
2

+~f(x)i 0

0

(5.9)

[where v, =(0 0)] is the simplest ansatz and the
residual symmetry of the theory, defined by

[I', P(r)] =0 for all r, (5.10)

is SU(3}xU(1}xU(1}. In the latter case, the
residual symmetry is reduced. This sort of
(crude) analysis suggests that the lowest-lying
monopole corresponds to the ansatm given by Eq.

where T4 is a 4 &4 matrix. In the first case, for
I =0,

so that, if g(~)-5. . .as r-0, the core of the
monopole lies near the 3-2-1 mini~urn. If the
temperature decreases such that the system
crosses to the right of line 1 in Fig. 3, the 4-1
phase becomes metastable compared to the stable
3-2-1 phase and the cores of the monopoles, the
remnant of the previous transition, are naturally
occupied with stable phase and can undergo the
same sort of dissociation instability discussed
for simpler models in Sec. II.

This result is amusing since, at first sight,
it appears impossible that the phenomena dis-
cussed in Sec. II might occur in the early Uni-
verse since the models of Sec. II always involved
a transition from lower manifest symmetry to
higher symmetry —just the opposite of the case
considered in this section. However, when dealing
with symmetry groups larger than SO(3), there
are many possible topological excitations of a
system since (for three spatial dimensions) the
stability of the excitation only depends on the SU(2}
embeddings in the group and not on the whole
group. In this case, an SU(2) subgroup previously
broken in the 4-1 phase is restored in the 3-2-1
phase (even though the total symmetry is re-
duced) and so the phenomena of Sec. II can occur
in the early Universe.
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To analyze the stability of the 4-1 monopole
as a function of the parameters of the theory,
it is useful to reexpress the energy functional
by substituting the functions of the radial variable

E(x) = 5, G(x) = 5, and K(x)f(x) g(x)

into the expression of Eq. (3.9}. After some
manipulations one obtains

E =
~

~ 5 dx (K')'+ — +
' r'(G'} + ' r'(F')'+12.5F'K'+x' U(G E)

4w (c ", 1 (1 —K ) 'l.5, 12.5 b

g (b 4' 2 2 2 g2

where the prime indicates derivative with respect to x and where

U(G, E) =-— ('l.5G'+12.5F ') +-'(y —~ )('7 5G'+12.5E'}'P 1

4~/

(5.12)

+ 2 (13.1 25 GAL + 78.125F' + 168.'75G'F 2) + — (- 3.'75GS —56.25G~E)
4-1

(5.13)

G(x), E(x), and K(x} must obey the boundary con-
ditions

G(x), F(x) -1
K(x) —

O

as x (5.14)

F(Ã) 0
as x-0

K(x)-1
(5.15)

in order for the solution to be nonsingular. Note
that there is no boundary condition on G(x) as
x-o, so g need not be zero in the core. The
equations which the functions must satisfy are

2, 1 b BU(G E)
7.5 g2 ~G

(5.16a)

in order for the solution to be of finite energy and

y(x}-y(7 x},
Aq(x)- &A'„(&x).

(5.18}

central conclusion of the thin-wall analysis that
there must exist a finite range of values
e, & e' & 0 for which (classically} stable monopole
solutions in the metastable phase can be found.
(If anything, the fact that &' & e appears to make
e, larger„since &' must equal the old value of &,
before the monopole dissociates. )

In order to have some notion on what deter-
mines &, it is useful to analyze the possible
modes of instability of the monopole, extending
an argument that was posed in Ref. 1. The idea
is to analyze the stability of a monopole solution
(P(x), A'„(x))under dilations

2 E, 1 b BU(GF) 2K~E
x 625 g ~& x~

Z K'-1K" = ( } +12 5KF'x'

(5.16b)

(5.16c)

The energy functional consists of three sets of
terms corresponding to the kinetic energy of
the gauge field T„,the kinetic energy of the
scalar field T~, and the potential energy of the
scalar field V@, and under dilations these trans-
form according to

If G(x) were constrained to approach 5. . . as
x-0, the thin-wall analysis that was applied to
the simpler models of Sec. II (in Ref. 1) could be
immediately extended to this ansatz for the 4-1
monopole. The fact that G(x} need not equal
5. . .means that the energy-density difference
between the core and the exterior of the monopole
is not simply the energy-density difference be-
tween the 4-1 and 3-2-1 minima, but is somewhat
less. The value that should be substituted for e
in the thin-wall argument is

~' = —
3 [U(G( ),F(~))—U(G(o), F(0))]

b

(5.1V)

However, this fact only serves to reinforce the

TAy

A.

y~ - A, -~&~.

(5.19}

8'l y-~ = Tg —Ty —3Vy =0 ~

Z'i g-~ =2Ty 12V+y 0.&

(5.21)

(5.22)

For the models considered in Sec. II and Ref. 1,
as ~- 0 one approaches the Prasad-Sommerfield
limit which, as argued in Sec. II, yields a mass

If (Q(x), A'„(x))are solutions of the equation in
motion, the energy

(5.2o}

must be stable under variations, i.e.,
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for the monopole solution that is a lower bound
on the vector and scalar kinetic energy terms in
the theory:

(1 -K')
dr (K')'+ — + ,'r-'(a')'+h'K'

2 r

[The constant of proportionality associated with

Eq. (2.4) is just the Prasad-Sommerfield mass
itself, and the Prasa. d-Sommerfield solution

yields unity for the integral in the expression. ]
Equation (5.23} is a bound for any functions K(x}
and h(x} that obey the boundary conditions, Eqs.
(2.5) and (2.6). The purpose of normalizing the
functions F(x) and K(x) in the way that was done
in Eq. (5.12) is that they obey the very same
boundary conditions. The first five terms in Eq.
(5.12), which are equal to T„+T&for the 4-1
monopole, consist only of terms that are positive
semidefinite. Therefore, fixing the value of the
coefficient of the integral in Eq. (5.12) to be
unity, it is clear that

T +1' = dx (K')'+ — + x'(O'P+ ' x'(FIP+K2F~1 (1 —K2) 'l.5 , 1,2.5

&1 —K'&
dx (K')'+ ' ' +-'r'(F')'+F'K' =Tps+Tps~l

o ~ 2x (s.a4)

8 4& cg (s.as)

(2) For a classically stable monopole,

~s (T~+Td. (5.26}

This effectively sets a bound on the form of the
potential energy for which stable monopole solu-
tions exist.

As was the case in Ref. 1, the analysis of sta-
bility under dilations represents only a bound on
V~ and, if monopoles become unstable under
other modes, the equality is not ever achieved
for a stable solution. On the other hand, if (near)
equality is achieved for a stable solution, it
suggests that dilations are directly responsible
for the decay of the monopoles. Numerical com-
putations are necessary to obtain more specific
information.

VI. NUMERICAL CALCULATIONS

In order to determine the critical value of the
parameters of the theory for which the monopoles
dissociate in the models of Ref. 1 and Sec. Ij:,
trial guesses for the functions h(r} and K(r ) were
introduced into the expressions for the energy
functional, the functional was evaluated numeri-
cally, and the trial guesses were varied in such
h way as to minimize the energy. For the critical

This bound is the same as Eq. (5.23) that was used
for the models in Ref. 1, and so Eqs. (5.20)—(5.22)
and (5.24) can be manipulated in the same way as
Ref, 1 to draw the same conclusions:

(1) There can be no (classically} stable 4-1
monopoles with

F(x), G(x)-1

K(x) -0
as x~. (6.1)

As x approaches zero, for the solutions to be
nonsingular they must obey

F(x}-0

K(x) 1
as x-0; (6.2)

however, more information is needed before
numerical integration can proceed. To solve
each one of the required differential equations,
the value of the appropriate function [and the
first (nonzero) derivative for F(x) and K(x)J
must be known as x approaches zero, and then
one can numerically integrate forward in x until
x-~. As x-0, the functions have the form

values of the parameters, no (local) minimum
for the energy functional could be found.

For the case of the 4-1 monopole, there is an
additional function in the ansatz G(x} with a free
boundary condition as x approaches zero, and
this kind of variational procedure was found to be
too difficult. Instead, an attempt was made to
solve the classical differential equations for the
monopole solution directly, Eqs. (5.16}. How-
ever, because there are fixed boundary conditions
on at least some functions as x approaches zero
and when x approaches infinity, solution of the
equations is highly nontrivial.

As x approaches infinity there is a fixed
boundary condition for all three functions in the
ansatz in order for the solution to have finite
energy:
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FIG. 6. (a) Cz versus p/y for several values of y. (b) Cz versus p/y for several values of y. (c) Cz versus p/y for
several values of y; in addition, 63 2 f /64 f versus p/y is also shown. (d) The difference, Cz —(63 2 q/64 &), versus p/y
for several values of p. In all four figures the value b/g2= 3 was chosen and the curves are continued only insofar as
solutions couM be found.

Z(x}-1—C,x',
Z(x) -C, x,
G(x) -C,

(6.3)

(these are consistent with the equations and the
constraints}. The constants C~, C», and Ce are

determined by the condition that the functions
satisfy Eq. (6.1}as x approaches infinity. To
solve any one of the differential equations the
appropriate constant can be varied until the
boundary conditions are satisfied at large dis-
tances from the core. Therefore, the following
procedure was adopted.
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(1} As an initiating procedure, a trial function
for E(x) was introduced that behaved as

E(x)-cx as x-0 for a constant c,

E(x)-1 as x-~.

1.0—

.8

F(X)

Different trial functions were shown to cause no
difference in the final results.

(2) The form for E(x}was used to solve Eq.
(5.16a}. C~ was varied until the boundary con-
dition G(x)-1 as x-~ was satisfied.

(3) The form for E(x) was used to solve Eq.
(5.16c). C„was varied until the condition
K(x)-0 as x-~ was satisfied.

(4} The solutions for steps (2} and (3) were
used to solve for E(x) in Eq. (5.16b). C~ was
varied until the condition E(x)-1 as x ~ was
satisfied. The procedure of varying the constants
to meet the necessary boundary conditions in
steps (2)-(4) was found to converge within one

part in 10' after 50 trial guesses for the con-
stants.

(5) The solution for E(x) from step (4) was used
to return to step (2) and begin again. The cycle
was repeated until the energy of the solution con-
verged to within one part in 104.

The solutions for C~, C~, and C~ as a function
of the parameters P and y are shown in Figs.
6(a)-6(c) for b/g' =—,'. The curves for each of the
figures have been continued only insofar as a so-
lution could be found. E(x) and K(x) are analogous
to the functions h(r) and K(r) for the models of
Sec. II and the curves in Figs. 6(a}and 6(b}, are
consistent with the analysis of Ref. 1. As P/y
increases and the difference in the (free} energy
between the 4-1 and 3-2-1 minima becomes
larger, C~ and CE each decrease so that the core
region where E(x) =0 and K(x}=1 is larger. Once
the critical values of the parameters is reached,
near P/y=0. 93, subsequent cycles of steps
(2)-(5) in the procedure lead to further decreases
in C~ and C~ without ever converging —the core
grows indefinitely and no time-independent solu-
tion exists. The precise form of the curves and
the dependence of their form on r is not presently
understood. The curves of C~ versus P/y in Fig.
6(c) are especially interesting; the fact that C~,
which determines the value of G(x} in the core,
is not constrained to equal 6. . ./5~, is what sets
this problem apart from that considered in Ref. 1.
On the same figure, the value of 5. . ./5, , as a
function of P/y is shown and in Fig. 6(d) the dif-
ference, C~ —5, 2, /54

„

is shown. As P/y in-
creases, the difference between C~ arid 5. . ./
54, decreases —the monopole core li.es closer
to the 3-2-1 minimum. The difference does not
appear to approach zero at the critical value of

q,6

II

.2

P/r. Once the monopole becomes unstable, the
arguments in Ref. 1 imply that the energy from
the conversion from metastable phase to stable
phase is rapidly stored in the wall of the mono-
pole, further accelerating the growth of the core:
this implies that C~ rapidly approaches 5. . ./
5, , as the core grows. A typical stable solution
for the functions E(x}, G(x}, and K(x) is shown
in Fig. 7.

In Fig. 8 the dependence of the energy of the
monopole solution on |3/y is shown. As in the
cases studied in Ref. 1, the energy decreases as
the critical value of P/y is approached, pre-
sumably because of the increasing negative energy
density of the core. %hy the curves cross one
another must have to do with the detailed balance
between the kinetic energies and potential ener-
gies in the solution as a function of P/y, but no

4.7—

4.6

4.5

44

I

.6
4.2

.5
I I I

7 .8 .9
Pi~

FIG. 8. The energy of the monopole versus P/y for
several values of y. The coefficient of the integral in
Eq. (5.12) has been set to unity.

I

1.0

0 I I

0 .2 .4 .6 .8 1 0
FIG. 7. G(x), I'(x), and X(x) for a typical stable solu-

tion P=1.4.and y=2.0.
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precise understanding of the phenomena is
available at this time. Another interesting pa-
rameter to study is the potential energy contribu-
tion to the energy V~, whose bound was computed
analytically in Eq. (5.26). V~ versus P/y is
plotted in Fig. 9 and, as expected, t/'~ decreases
sharply as P/p approaches the critical value;
consistent with the bound, V@ never decreases
below -+9 for any stable solutions. However,
whereas solutions for P/y less than 0.95 times
the criti, cal value converge rapidly and solutions
for P/y greater than 1.05 times the critical value
diverge rapidly, for values of P/y near the
critical value convergence or divergence of the
solution occurs very slowly; therefore, it was
not possible to determine how close to an equality
can be achieved in the relation Eq. (5.26).

The most important result is indicated by line 2
in Fig. 3. The line represents the critical values
of P and y for which the monopole dissociates.
For values of P(T}and y to the left of line 2,
classical solutions can be found; for values to
the right, they cannot be found. If the zero-
temperature values of P and y lie to the right of
line 2, then as T decreases P(T) increases and
one proceeds horizontally on the right on Fig. 3
until line 2 is crossed; for that temperature, all
4-1 monopoles dissociate. The computation has
not taken account of the possible effects of
thermal and quantum fluctuations of the core, so
it is probable that the monopoles decay at yet
higher temperatures (to the left of line 2). In
this sense, line 2 only represents a (rightmost)
bound on the monopole dissociation. On the other
hand, within the legitimacy of the approximations,
&/g has been chosen so that line 3 represents
a (leftmost) bound on bubble nucleation. Since
line 2 lies to the left of line 3, monopole dis-
sociation occurs at a higher temperature than that
required for significant spontaneous bubble nu-
cleation.

VII. CONCLUSIONS

For the grand unified field theories considered
in this paper, dissociation of the monopoles of the
SU(4)x U(l) phase has been shown to be a natural
phenomenon in the sense that monopole dissocia-
tion precedes the spontaneous decay of a me-
tastable SU(4) x U(1) phase. '~ Depending on the
region in Fig. 3 in which the zero-temperature
values of the parameters P and y lie and on the
number density of 4-1 monopoles, several
scenarios seem possible (the uncertainty in the
precise positions of lines 2 and 3 will be ignored).

Region A. Even at T =0 the symmetry is not
broken down to SU(3}XSU(2)&& U(1}, This region
is not physically interesting.

Vy

0,3—

0.2

0.1

—0.1
.5 .6

P/y

I

1.0

FIG. 9. The potential energy contribution to the total
energy versus P/y for several values of y. The curves
are only continued insofar as solutions could be found,
although there is some uncertainty as to where pre-
cisely the critical value of P/y lies. The coefficient of
the integral in Eq. (5.22) has been set to unity.

Region B. Even though the 3-2-1 minimum is
the global minimum as T-O, the barrier height
between the 4-1 phase and the 3-2-1 phase is too
large for there to be sufficient bubble nucleation
for the 4-1-3-2-1 transition to be completed.
Monopoles of the 4-1 phase remain (classically)
stable. As T-O, there is some probability for
bubble nucleation (or monopole dissociation from
fluctuations of the core) that is too small to keep
up with the expansion rate of the Universe, and
so the bubbles that are formed do not coalesce
and percolate the Universe. The Universe is
highly inhomogeneous.

Regions C, D, E. Assuming that the transition
from manifest SU(5} to SU(4)XU(1) produces
some monopoles, then the first event that occurs
after that transition is when T leads to (P(T), r)
lying on line 2 at which point the monopoles
dissociate. (This should occur at T -10"GeV
for most P and y that lie in these regions. ) If
the number density of monopoles is sufficiently
large to compensate for the expansion of the Uni-
verse, ' the monopoles coalesce and complete the
4-1 -3-2-1 transition. Guth and Weinberg have
done a very crude computation that indicates that
there should be enough monopoles to complete
the transition. ' When the cores of the 4-1 mono-
poles coalesce, if these cores are not correlated
in SU(3) XSU(2)&&U(1), some 3-2-1 monopoles
should be produced (see Ref. 1 for a more de-
tailed discussion). If the number density is not
sufficient to compensate for the expansion rate
of the Universe and (P, y) lie in region C, the
monopoles dissociate but do not coalesce. The
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cores grow but the space around them continues
to supercool in the 4-1 phase. The only possible
hope for our Universe would be that it lie inside
one of the monopole cores. This possibility is
being presently investigated. If the number
density of monopoles is not sufficient to com-
pensate for the expansion rate of the Universe,
but (P, y) lie in regions D or E, the monopoles
dissociate at some finite T associated with line 2;
the cores grow but do not coalesce. As the 7.'

associated with line 3 is reached, bubbles form
in the space between the monopole cores and all
the 3-2-1 regions coalesce to complete the transi-
tion. In this last case the transition completes
itself at T -+ T, (except for possibly a very nar-
row, finely tuned region of parameter space near
line 3).

If in fact there is a sufficient density of 4-1
monopoles to compensate for the expansion rate
of the Universe, the 4-1-3-2-1 transition is
completed through monopole dissociation at a
higher temperature, than if the transition depended
on bubble nucleation and there is a larger range
of parameter space for which one avoids the kind
of supercooling associated with region B which
yields an empty and cold universe. ~ Since the

transition temperature is higher, there is less
latent heat released after the transition and,
consequently, less entropy.

It is probably difficult to improve'upon the ac-
curacy of the approximations made in this paper,
but there are several open questions that would
be useful to consider. For example, a better
estimate of the number of 4-1 monopoles pro-
duced in the SU(5)-SU(4)&U(1) transition would

help reduce the number of possible scenarios.
More information about bubble growth and mono-
pole formation at finite 7 is necessary. The
environment inside a single decaying monopole
at finite T would make an interesting study, es-
pecially if the results could consistently describe
our own Universe. These issues are being
presently studied.
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