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Static spherically symmetric scalar fields in general relativity
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In 1957, Bergmann and Leipnik attempted to find static spherically symmetric solutions of a special form of the
field equations of general relativity. They were not able to find explicit expressions for the gravitational potentials,
and they did not realize that such expressions could be found by using a different coordinate system. Although
Buchdahl developed an elegant procedure for finding, by inspection, the solutions sought by Bergmann and Leipnik,
his procedure is severely limited when applied to the spherically symmetric case. Indeed, his procedure fails to
identify one whole class of such static solutions. The object of this paper is to show that, under the assumptions of
Bergmann and Leipnik, the integration of the field equations is almost trivial, and to identify the missing class of
solutions,

I. INTRODUCTION

do' = d8'+ sin'8 d(t) ', (4)

and both A. and v are functions of r alone. They
were not able to find explicit expressions for A,

or v, and did not realize that such expressions
could be found for the gravitational potentials by
using a different coordinate system.

Buchdahl' developed an elegant procedure for
finding, by inspection, solutions of (1}and (2}
when a solution of the vacuum equations

R]~ =0 (5)

is known. His procedure produced the explicit
expressions for the solutions sought by Bergmann
and Leipnik. Since, by Birkhoff's theorem, the
spherically symmetric, static or nonstatic, solu-
tion of (5) is unique, Buchdahl's procedure is
severely limited when applied to the spherically
symmetric case. Indeed, his procedure fails to
identify one whole class of such static solutions.

The object of the present paper is to show that,
under the assumptions of Bergmann and Leipnik,
the integration of the field equations is almost

In 1957, Bergmann and Leipnik' considered
solutions of the field equations of general relativity

1
R]~ —2 g]~R = -KT];

when the energy-momentum tensor has the special
form

)(T(~ =i)', (V(V; —', g(/g -"V V„), (2)

where V is a scalar, and V, = Bvt'sx'. The authors
assume the line element is static, spherically
symmetric, and has the form

d8 =8 dt -e dy' -y do'

where

trivial, and to identify the missing class of solu-
tions mentioned above.

II. THE INTEGRATION OF THE FIELD EQUATIONS

It is known' that (1) and (2) are equivalent to

R„.= —p, V&1/";,

and that these in turn imply

(6)

(7)

—+2 v+ — =p(V}e
v', „(v')' A.

' v'

2 2
(10)

r 2 x,v'-)(. '= —(e' —1},r
V'V=0,

and (I}becomes

(12)

( 2 (v ).)/2V/) (
2 (X u)/2 V) —0ar ''

Bt

From (12), V'=0 or V= 0. These two cases re-

From the assumption that the line element is static
and spherically symmetric, (6) will imply that
t/"& also has these properties. This does not, how-
ever, require that V = V(r, t} be independent of t.
For the moment, it will only be assumed that P,.
is spherically symmetric and has been placed
into the form

v, =(v', o, o, v),

where the prime and dot, respectively, represent
partial differentiation with respect to y and g.
Using the Takeno4 formulas to calculate R„ leads
to the field equations

(v')' A'v'
vlF ~ ~ (V&)2

2 2
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quire different considerations.
Case I. V=O, V'gO. If &=0, then the general

solution of (10) is

~2vfeP x)/2
7 (14)

2@I (P x)/2 k

where k is an arbitrary constant, (14) and (15)
will yield

(15)

where l2 is an arbitrary constant. Since (13) can
be integrated to give

m, = -'. [n —(n'+ 2p, }'l'], (28)

W=(A+ ar)e ". (29)

In both (26) and (29) A and 8 are arbitrary con-
stants. The roots m, and m, may, of course, be
real or complex numbers.

W as given by (26) will be a solution of (24) if
and only if

provided n'+2p, g0. When cy. '+2p. =0, the general
solution of (24) is

v'=n V', (16) AB(n'+ 2p, ) = —1, (30)

where a is an arbitrary constant. Therefore, and, (29) will provide a solution of (25) if and only if

v=nV,

where an arbitrary constant of integration has
been absorbed by the line element. From (15),

'k 4(yl )2 aV/y2 (18)

8 =+1.

The solutions, therefore, become

a dt2 (A nl +g 2 )
4 n

(Aemyr +~em'} 2do2-

(31)

(32)

and the line element (3) has the form

r4(yl)2
e++dy -y dgk2

+4 nV

ds 2 — aedv2t. (dy) 2 r 2do2
k

(20)

ds'=e "dt' —(Aar) e "'dr'
—(A+ r) 'e ""do'. (33)

By obvious transformations, it is possible to put
(33) into the isotropic form

where n, A are arbitrary constants, ~, and m,
are given by (2'7} and (28), and B satisfies (30), or

4 ar
ds'= e""dt' —

&, (dr)' r'do'-, (21)

This suggests the transformation of coordinates
r =V(r) to obtain

ds'= e""dt' -r 'e "'(dr'+r'do'). (34)

Using the transformation r =1/r, (34) will, after
dropping the bar, yield the line element

where now r =r(r), and V; now has the form ds 2 el2lrdt2 e air (dr 2 +r 2-do 2) (35)

y( = (1, 0, 0, 0). (22)

The constant k' can be absorbed by linear transla-
tions of y and 5. Dropping the bar, the line ele-
ment becomes

dS = g+ "dt2 —~"4enrdy' -~ 2dg (23)

TV"-uS"--&p,W=0, (24)

WW ll
(W

I )2 — eRt'

W =W(r) is still an unknown function.
Since the gradient P, has the components (1, 0, 0,

0), the Takeno formulas can be used to give, in
this coordinate system, the field equations

a line element which was found by Yilmaz. ' It is
also contained in Buchdahl's class of solutions
as a limiting case.

Returning to the general line element (32), the
determination of a class of solutions which are
all asymptotically flat will be anticipated by re-
quiring

mar +gggm2r (36)

to be equal to zero at y = 0, and then transforming
r = 0 to the point at infinity by the inversion r = 1/r.
This implies A = -B, and coupled with (30) yields

A = Jt =1/(n'+2p—)'l2 (3'7)

Equation (24) is a linear differential equation of
the second order with constant coefficients, and
its general solution is

Hence,

W=e~" ' sinh(yr)/y, (38)

where

~&m ir +~em 2r (26}
where

y = (n'+ 2p)"/2 (39)

m, =-,'[n+(n'+up)"], (2'7)
The inversion r =1/r will, after dropping the
bar, lead to the line element
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ds'=e"' dt' —e "" [yr '/sinh(yr '}) dr'
' '[yr '/sinh(yr ')]'r'd(r', (40)

a line element which is clearly asymptotically
flat at r =~. When y = 0, (40) reduces to the Yil-
maz line element. When n = 0, (40) is equivalent
to one found by Szekeres. ' The Buchdahl class
of solutions can be obtained by transforming (40)
to isotropic form by means of the transforma-
tion

e'"'= 1+=I (1 —=I
hl f hl
F) g ri' (41)

where k is an arbitrary constant. Hence (40) con-
tains all solutions of this class of solutions, and
the class can be established by elementary ana-
lysis.

Case II. The Missing Class of Solutions: V'=0,
Vgo. Under these conditions, (13) implies V= con-
stant. Without loss of generality, we may take
V=1. The field equations (9)-(11) imply

dp dA z v—+ —=e
dx dx

d v cia. = (e —1)/x.
dx dx

(47)

(48)

If A, = A. (x) is to be regular at x = 0, then A, (0) = 0.
Without loss of generality it is possible to require
v(0}= 0. Letting a prime represent differentiation
with respect to x, (47) and (48) become

v'(0) +z'(0) =1, (49)

(50)

X(x) =-x-—x + ~ ~ ~
1 '7 2) 3 gP

=6pr -~3«p, r + ~ ~ ~,

v(x) =-*,x -~x'+ ~ ~ ~

-45' r + ~ ~ ~
j 2 ~ 2 4

(51)

(52)

(53)

(54)

v'(0} —A. '(0) = lim [(e —1)/x] = A. '(0).

Hence A. '(0}= —,', v'(0) = —',. Differentiating (47} and
(48} and repeating this procedure yields A."(0)= -~4, ,
v"(0) = - 44LS. This implies

v'+A, '=
p,re

v'- x'= 2(e~ —1)/r.

By differentiating (42) and using (43), v can be
eliminated to give

(42)

(43)

In turn,

=$+—gr p, r + ~ ~ ~

e"= 1+-,' p.r'+~3p p, 'r'+ ~ ~

(55)

(56)

A."+ (e —1) + —,(e —1)(e —2) = 0,k 2 X.

r r' (44)

which can be reduced to a first-order differential
of Abelian type. Unfortunately not too much seems
to be known about the solutions of this type of
differential equation. There is, of course, one
trivial solution of (44), e~ = 2. This leads to the
line element

ds2= p.r'dt' —2dr' -r do' (45)

1x=2pr

reduces (42) and (43) to

(46)

Although an explicit solution for the gravitational
potentials in this coordinate system is unavailable,
Egs. (42) and (43) can be used to find the first few
terms of the Taylor expansion of these solutions
at any point in space. We illustrate for the point
r = 0. The substitution

Since the energy-momentum tensor T~ satisfies
the relationships T,'= T,'= T', = —T4, T' = 0, i 4 j,
this class of solutions must represent a perfect
fluid for which this coordinate system is comoving.
It is, however, a perfect fluid of a special type
because the pressure and density must be equal.

III. CONCLUSION

Up to coordinate transformations, all static
spherically symmetric solutions of the field equa-
tions 8„=—p, V, V& have now been found. In order
to find other spherically symmetric solutions,
nonstatic gravitational potentials must be con-
sidered. Even in this situation, it is possible
to show that a coordinate system always exists
for which V, =(1,0, 0, 0) or V, (0, 0, 0, 1). Just as in
the static case, two separate classes of solutions
will exist depending on whether it is assumed that
P, is a spacelike or timelike vector.
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