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By solving Nambu's equation for a simple bound state, we demonstrate that a confinement

potential of the form re b' between two particles can be understood as the potential due to the

transmission of a bound-state-like field. Such a potential satisfies physical boundary conditions

at infinity and can tightly confine particles if b is sufficiently small. Some experimental implica-

tions are discussed.

The consequences of quantum ehromodynamics
(QCD) are very difficult to compare with the enor-
mous amounts of data of strong interactions, espe-
cially at low energies. Even the qualitative features
of the confinement of quarks have not yet been un-
derstood satisfactorily on the basis of the QCD
theory. The motivation for studying the Nambu
equation' for a simple bound state is as follows: It
appears that one cannot work out quantitative conse-
quences for QCD without having a clear qualitative
picture of field theory beyond perturbation expan-
sions. To get such a picture, one may study the qual-
itative behavior of Yang-Mills theory' in a simplified
situation such as that in 2+1 dimensions. However,
it is not clear how to generalize such a qualitative pic-
ture in 2+1 dimensions to the physical 3+1 dimen-
sions. In view of this, it is worthwhile to study a dif-
ferent simplified situation, namely, a bound state in

which the couplings of fields are as simple as possible
and the dimensions of physical space remain intact.

To study the amplitude of a bound state within the
field-theoretic framework, one must consider an ap-

proximation which is better than the power-series ex-

pansion. Bound states are in general described by the
Bethe-Salpeter equation. 4 For our purpose, we only

consider a very simple bound-state equation which

was first proposed by Nambu in 1950.' %e are able

to obtain a potential of the form re b' by solving the

Nambu equation in a particular time-independent
limit. This potential between two particles can be re-
lated to a force transmitted by a field described by
the Nambu equation, just as the Yukawa potential
between two nucleons is due to the exchange of a
meson described by the Yukawa equation
(V' —a')@=0. This type of potential with small b

resembles that of a string model and can provide a

very tight confinement of particles. '
Let us consider a simple Lagrangian involving the

fermion P, two massive scalar particles 4, and 4q,
and a massless scalar particle U:

y( y „8„+—m ) y X(B,d, —8„4,+ m, 'C,'&, ) ——,
'

( r)„U) ' + X G, yy( y; + 4 t) +g.C te. U +g, C Jg, U
i a, b i a,b

The ladder-approximation scattering amplitude between 4, and @b is given by (a'b'~S ~ah), i.e.,4

( —i) g, g~ Jtd(12)Ag' (1)Ab' (2)D(x) x2)B,(1)BI(2)—
+(—i) (g,gb) „' d(1234)A,' (1)Ab (2) (Dxtx2)h, (x) —x3)bq(x2 —x4)D(x3 —x4)B,(3)Bb(4)+, (2)

where d(12. . . ) = d x~d xq. . . , A,'"(1)= (a'~4&, (x, ) ~0), Abt(2) = (b'~4j(xq) ~0), B,(1) = (0(4,(x~) ~a),
Bt (2) = (0~kb(x2) ~b), etc. ; D (y) and &, q(y) are, respectively, the propagators of Uand &&, b

The Feynman amplitude is defined by

&(12,ab) =B,(1)Bg(2) —g, gp Jl d(34) h, (x) —x3) hb(x2 —x4)D(x3 x4)B, (3)Bp(4)+—
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It describes the bound state and satisfies the Nambu equation

[(4)tg mg ) ( 82' mb ) gagbD (xj —x2) l & (12,ab) =0 B]~= II/Bx|~, 82~ = 0/Bx2~

r f r

iP„m, ri 2 i IP„mba + —ma
m, +mb ex„' m, +mb Bx„

mb
2

g,gbD(—x)'B(x) =0 . (7)

We are interested in a static solution of (7). Let us

consider a special time-independent limit in which the
Nambu equation (7) takes the formb

[ [ 7' —m, '(I —q') ]['7' —mb'(1 —viz) ]

ggbD( r ) ]—B( r ) =0, r &0, (8)

where we have chosen a particular frame of reference
in which P = 0 and P4 = i ( m, + mb) ri, 0 ~ ri ~ l. In
general we have P„~ = —(m, +mb)27i~, so that small

values of q correspond to strong binding between 4,
and 4b, and q =1 implies weak binding. In solving
a field equation, one usual assumes a particular form
for the solution because there is a rich array of solu-
tions for field equations in general. ' Based on physi-

cal boundary conditions at infinity, we expect the am-

plitude B( r ) for a bound state to damp like e b',

b & 0, for large r. Therefore, we assume a spherical-

ly symmetric solution with the form

B( r ) =Ar"e ' r = (xy, z) (9)

We have a solution if and only if n =1. In this case,
Eqs. (8) and (9) lead to the result

r ' [12b —2(1 —q ) (m, + mb ) g,gb/4m ]—

+4b[2b —(m, +mb )(1 —g )l

+r[b2 —m, (1 —ri2)][b —mb (1 —g )] =0, r &0

where the inhomogeneous term B,(1)Bb(2) is

dropped. 4 We note that Eq. (4) is also valid for
scattering states. In terms of the center-of-mass
coordinate X„and the relative coordinate x„, one can
write 5(12,ab) in the form

5 (12,ab) = exp(iP X)B (x)

X,= (m, xi + mbx2) „/(m, + mb), x,= (xi —x2)„,
(6)

where P„' = (pl +p2) „'= —m' is the mass squared of
the bound state. It follows from (5) and (6) that the
Nambu equation can be written as

~here
b' = m, '(I —q') = m, '(1 —7i') =g.gb/(32m')

If m, & mb one does not have a solution of the form
(9).

Since both ends of the 4, (@b) line can be at-
tached to the P (P) line in Feynman diagrams, the
static solution be interpreted as the potential between
two fermions. The reasori is as follows: The time-
independent wave function B( r ) of the bound-
state-like field is described by Eq. (8), just like the
time-independent wave function of the meson field is
described by the Yukawa equation (V' —a')@(r) =0.
When one described the interaction between 'two par-
ticles in terms of a potential, one naturally requires
that when the potential is inserted into a Schrodinger
equation to compute the scattering amplitude, it
should reproduce the field-theoretic S matrix in the
nonrelativistic range. In this way, the solution
4b(r) ~ e '"/r of the equation ('72 —a2) lb =0 can be
understood as the potential transmitted by a meson
field. Similarly, the solution Are b'can be interpret-
ed as the potential transmitted by a bound-state-like
field described by Eq. (8). A major difference
between these two potentials is that the Yukawa po-
tential can be obtained in perturbation theory, while
the confinement potential (11) cannot be obtained in
the usual perturbation theory. In general, a potential
obtained in perturbation theory will be singular at
r =0.

The Lagrangian (I) is evidently too simple to be
realistic and too naive to be taken seriously.
Nevertheless, we stress that the essential equation for
the confinement potential in our discussion is the
time-indepenent field equation (8) rather than the
Lagrangian (1). We note that any field described by
the time-independent Nambu equation (8) can lead
to the static confinement potential (11).

To illustrate an essential difference in the qualita-
tive picture between field theories in two spatial
dimensions and those in three spatial dimensions, let
us consider the Nambu equation in two spatial
dimensions. We have

D(r-) =I/(4~'r') .

When m, =mb we have a solution

B( r ) =Are

(10) -g.g D(r) B(r) =0, (»)u b

J

where r = (x,y). If one substitutes the solution of
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the form (9) with r = (x,y), we have

n'(n —2)zr" 4 —[(n —I) [b(2n + l)(n —1) —bnz]

+bnz(n —2) [r" 3+

occurs at ro = I /b. This gives

E,q
—B(ro) ) 50 GeV, b & 1.5 MeV . (15)

apart from other terms. These two terms cannot be
canceled by other terms and they cannot vanish at
the same time for positive b and real n. Thus one
does not have a solution of the form (9) for the case
of two spatial dimensions, in sharp contrast to the
case of three spatial dimensions.

Suppose that the potential between quarks in the
charmonium can be approximately described by the
potential (11). With the help of the experimental
results for the mass spectrum of the charmonium, we
can estimate the constants 3 and b in the potential
(11). We find that

B( r ) =(0.212 GeV )re ~', b =1.55 MeV

by inserting (11) into the Schrodinger equation with
charmed quark mass m, =1.152 GeV. With these
values for A and b, we can fit the charmonium mass
spectrum within 5% for S, P, and D states. For ex-
ample, the numerical values of the total mass (i.e.,
2m, +E) for 1S, 2S, 3S, and 4S states are 3095,
3684, 4164, and 4598 MeV, respectively. This is to
be compared with the experimental results 3097,
3685, 4030, and 4415 MeV. We see that the poten-
tial (14) is a rather good. approximation. It should be
stressed that the parameter b in (14) is small and,
therefore, bound-state energies of low-lying char-
monium states should be unaffected by the presence
of the exponential. Also, in order to improve the fit
of the 3S and 4S states one must include the most
important correction that due to the fact that they are
above the threshold for bare-charm production. Of
course, there are other corrections such as the rela-
tivistic correction, etc. The results of computer cal-
culations show that the charmonium mass spectrum
is sensitive to the parameter 3 but insensitive to the
values of the parameter b, as long as b is smaller than
1.55 MeV.

We note that the physical boundary condition for
fields at infinity requires b & 0. It is very likely that
this is true in general in a field-theoretic framework
and, therefore, the confinement of particles cannot
be absolute in principle. Of course, if b is sufficiently
small, we may not be able to detect isolated particles
(quarks). Based on (14) one may roughly estimate
the energy E„needed to separate quarks by calculat-
ing the maximum potential energy. The maximum
of the potential B(r), determined by dB(r)/dr =0,

Since the value of b cannot be determined accurately,
we are unable to obtain a reliable answer for the
value of E„by fitting the charmonium mass spec-
trum.

This paper describes a small step beyond perturba-
tion theory and gives the salient features of a poten-
tial transmitted by a bound-state-like field which sat-
isfies Eq. (8). The significant result is that the time-
independent field equation (8) leads to a potential
which can tightly confine particles. Such a tight (but
not absolute) confinement potential appears to be in
harmony with rare events of detecting fractional
charges in the experiments of Millikan and of Fair-
bank and collaborators. According to the present in-
vestigation, the essential equation for the confine-
ment potential is the Nambu equation (8). Presum-
ably, a realistic model for quark confinement should
have this type of equation in static limit. It is hoped
that such discussion will shed light on our ultimate
goal of understanding confinement in QCD. We
have considered only simple scalar fields in the pa-
per, a detailed study of Yang-Mills fields and fer-
mions with more complicated gauge-invariant cou-
plings is desirable.

Notes added in proof (a) Quark. potential with
V(r) 0 for large r has been considered as a screen-
ing effect of the original potential c r by the creation
of a quark-antiquark pair within the context of in-
frared confinement. See J. Kogut and L. Susskind,
Phys. Rev. Lett. 34, 767 (1975). (b) The considera-
tions in the paper can also be applied to the straton
model; see Hung-yuan Tzu, in Proceedings of the /980'
Guangzhou Conference on Theoretical Particie Physics
(Science Press, Beijing, 1980), Vol. 1, p. 4. For an
interesting discussion of the equal-time Bethe-
Salpeter equation [related to Eqs. (7) and (8)], see
Ruan Tu-nan, Zhu Hsi-quen, Ho Tso-xiu, Qing
Cheng-rui, and Chao Wei-qin, ibid. , Vol. 2, p. 1390.
(c) The author wishes to thank Professor K. C.
Chou, Professor H. M: Fried, Professor T. C. Hsien,
and colleagues at Brown University for useful discus-
sions.

The author should like to thank the help of M. D.
Xin and T. M. Yan. This work was supported in part
by NRC and in part by Southeastern Massachusetts
University.
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