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Quark-bag model with low-energy pion interactions. II. Application

C. E. DeTar
Department ofPhysics, University of Utah, Salt Lake City, Utah 84112

(Received 12 November 1980j

The hybrid pion —quark-bag model discussed in I is applied to a calculation of masses, pion couplings, and other
parameters of various light hadrons in an effort to determine the extent to which the bag parameters must be
modified in the presence of pion interactions. Corrections for the finite spread of the c.m. wave packet are also
included in each case.

I. INTRODUCTION II. FEYNMAN RULES FOR PION-BAG COUPLING

In order to apply the hybrid chiral models, dis-
cussed in Ref. 1 (1}, to such interesting processes
as the two-nucleon interaction, it is necessary to
determine the extent to which coupling to the pion
requires changes in the parameters of the bag
model. " Although others studied these changes' '
none has considered obtaining agreement with a
large assortment of static parameters and masses
at the same time except the authors of Pef. 7. In
addition important corrections for the bag c.m.
motion have not been included. "

Our perturbative analysis begins with the modi-
fied action of I and Ref. 6 written here to first or-
der in 1/f, the inverse pion decay constant:

To facilitate perturbative calculations of the re-
normalization of various parameters we use the
Feynman rules listed in Figs. 1 and 2. Their de-
rivation is sketched here.

The static-cavity approximation requires the
neglect of baryon recoil'; hence the use of static
propagators for the nucleon and &. 'The spin de-
gree of freedom for the & is written in tensor no-
tation so that the spinor U„& satisfies
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Since the pion field extends continuously into the
bag, a plane-wave basis is suitable for perturba-
tion theory.

Starting with the modified action (1.1}we pro-
ceed to calculate to order 1/f' in pion perturba-
tion theory and in the static approximation (no
nucleon recoil) the magnetic moments and charge
radii of the nucleons, the axial-vector coupling
constant of the nucleon, and the decay width of the

To facilitate the calculation we derive Feyn-
man rules for the various couplings to the static
bag in Sec. II. The parameters listed above de-
pend directly on the radius of the nucleon and the
c.m. kinetic energy but not explicitly on other
parameters such as the color coupling constant and

bag constant. They are calculated and adjusted for
the motion of the c.m. wave function in Sec. III.
Results are presented as a function of the bag ra-
dius in Fig. 4. In Sec. IV we describe and present
results of a calculation of the mass renormaliza-
tion of the nucleon and &(1232), and the p, ~, and
7t mesons. Conclusions are given in Sec. V.
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FIG. 1. Feynman rules in the static limit, derived
from pion-bag coupling. A ~ (3 1 basis is used for spin
&and isospin &2. The indices p, , v, i,j and the spinor 0-

refer to spin and e, P, l, rn and the spinor v isospin.
The form factor p (k) is given by (2.4) with appropriate
choice of R.
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is the bare nucleon axial-vector charge. ' Since
x = 2.04 for the S&,-cavity eigenmode, g&= 1.09.
The operators 0 and v act on the nucleon spinors.
In (2.3) the quark wave functions are taken to be
unperturbed by gluon interactions.

A similar analysis yields the basic mN& and
m4& couplings listed in Fig. 1. The bare AN
coupling constant is given, of course, by the
Goldberger-Treiman relation:

gal ~,
&0= (2.6)

The renormalized constants also satisfy this rela-
tion within our approximation of neglecting varia-
tions in form factors due to the continuation to
physical masses. The bare width of the b, (1232)
is given by"

4r', =—&'(k,R, )k, , (2.7)

Pm O, ) =O

FIG. 2. The c'orresponding rules for electromagnetic
coupling. To low order in q = (p'- p) the bare bag
form factors are

3

go'~„U„= 0 (2.1)

2 0u= 3 Qgm, er 2m~Pp,

the spin-2 operator is S„= 20„"„6~;—M»e,.;„, and charge,
@8m el 4 rBe ~ml ~~Su ~ml3

where k~ = 227 MeV, the physical-pion c.m. mo-
mentum. No recoil correction has been made.
Each vertex is proportional to the same form fac-
tor (2.4), since the calculation is carried out in
the SU(6) limit, neglecting gluon interactions.
However, in application it is intended that the
baryon legs be evaluated for physical masses. The
nucleon and & have slightly different radii when
gluon interactions are considered, so we have
used R„when renormalizing the nucleon mass and

R~ for the &." In any case, for small k the form
factor is quite insensitive to R. It will be ob-
served that j,(kR) oscillates for large k because
of the sharp bag boundary. In this region the
pointlike-field approximation for the pion is not
valid, nor is the sharp boundary realistic.
Therefore we introduce a cutoff at the first zero
of j, where kR = 4.5. We have then

~=-l/2 j=l v(kR) = S(kR)e(4.5 —kR}. (2.8)
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where

v(kR) = Page, (kR)lfR,
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(2.4)
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The baryon couplings are obtained by calculating
the matrix elements of iA., between the various
bag and bag-pion states. Thus, for example,

This aesthetic cutoff is not necessary to provide
convergence of self-energies, etc. , as in the
original cutoff static pion-nucleon field theories. "
Convergence is inherent in the behavior of the
Bessel function. Removing the cutoff changes
self-energies by only a few percent.

For completeness the electromagnetic form
factors for the "bare" nucleon, "bare" 4, and w

have been included in Fig. 2. Again these quanti-
ties are calculated in the no-recoil approxima-
tion. ' Hence, only the low-frequency behavior is
plausible —i.e. , the static magnetic moments and
the charge radii. To some extent it is possible to
correct for the neglect of recoil when the c,m.
wave packet is taken into account. However, in
the absence of a detailed knowledge of the c.m.
wave function, higher moments cannot be calcula-
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ted reliably. Thus
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where ~= (k'+ m, 2)V'. To this order the masses
m~ and an~ are taken to be the real parts of the
physical masses and v(kR) in (2.4) and (2.8) is
defined in terms of the renormalized constants
g„=1.24 and f= 93 MeV. The mass shifts are
given by

where in the approximation of neglecting gluon, and
pion interactions

(r„2),= 0, (2,2).= -0.530R'

5m„= Z„(m„), 5m~ = Z~(m~), (3.2)

f2= 0.202A, p, „/(u2 = —2 .

The pion is given its physical charge radius of
(2. 2)~2= 0.78.'4

III. RENORMALIZATION OF STATIC NUCLEON
PARAMETERS

N N
We give here results of a calculation of the

nucleon magnetic moments, charge radii, the
nucleon axial-vector charge, and the decay width
of the 4. The bare quantities are corrected for
pion interactions to order 1/f'. In computing the
corrections we have used throughout the values
g„=1.24 and f= 93 MeV in v(kR) in the highest-
order term as a matter of convenience. . The dif-
ference between values obtained with this choice
and the use of the unrenormalized value is of the
same size as the neglected higher-order terms in
1/f', and so is no greater than the expected error.
The correction for the finite 'spread of the c.m.
wave packet is applied to the bare quantities. No
attempt has been made to correct the pion renor-
malized quantities for the c.m. motion —i.e. , the
c.m. correction and pion correction are both
treated independently as though they were of the
same order. The quantitative justification for this
treatment is given in the discussion (Subsection
F) below.

)
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N N
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N 'y ~ N

P-8

N ~ N

N~A

A. Wave-function renormalization

The single-loop pion self-energy for the nucleon
and & [Fig. 3(a)] is

25 1 "
k d(() v'(kR)()

3 (2)))2 (E —(u —m~+ie)

32 1 " k d&a v'(kR„)
3 (22)2 (E —~ —m~+ie) ' (3.1)

FIG. 3. Diagrams contributing to (a) baryon self-
energy to order 1/f, (b) electromagnetic vertex re-
normalization, (c) nucleon axial-vector-current re-
normalization, (d) DNA coupling-constant renormaliza-
tion.
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and the wave-function renormalization factors are
given by

Then
d'P14(P) i'=1. (3.9)

Z~= 1 —e„, Z~= 1 —E~,

where

(3.3)
d'x e'~'*(N„bag1J" (x, 0) N„bag)

25 1 "
k d(d v'(kRN)

N N N 3 (2N)2 ~2
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3 (2N)

(3.4b)
and g =

PBBS
—mN.

The factors Z„~' and Z~~' multiply each vertex
with an external nucleon and 4 line, respectively.
Since Z„and Z~ are both less than 1, they reduce
the bare values.

B. Nucleon magnetic moment

The wave-function renormalization contributes
to the bare moments

5&z= (3+ rr3)&2~N ~ (3.5)

Four vertex corrections shown in Fig. 3(b) also
contribute to the magnetic moment. The contribu-
tion from the pion current is

( p2 p4
+ (2m' -@)11- 2+Gm' 8m'

+ 0(P'/m')

where p, is the corrected magnetic moment and Q
is the nucleon charge in units of e. Thus the c.m.
correction yields

(3.11)

2m' p, = -+—'

1(P') 1&P'&
+ 2 4 2m Q2(g+ ~ 7'3) .

2

d'P 0'(P+ P2)4(p -~l/2) E 1

x U2tF, (q')Z" +F2(q')iq„o""/2m] U, , (3.10)

where E2=E(p —j/2) and E, = E(p+q /2) and U, and

U, are plane-wave spinors for the nucleons. " The
matrix element on the left-hand side is calculated
in the static cavity approximation, leading to
(2.9) for the uncorrected electromagnetic form
factors. The three-vector matrix element on the
right-hand side gives, for small q,

jqxg 2 p' 7 p'
2m

4 P'dP14(P)1' 1--—,+ ——.03 JB ~2'

100 1 k d& v'(kR N)

27 (2N)2 CO Following Johnson' we estimate
(3.12)

32 1 k d&a v'(kR N)()d2, + 2&v)

27 (2N)2 2(d ((d+ (d2 )

The nucleon and & vertex corrections are

(3.6)

0 1 k dR v'(kRN)
PN 2 (2 v 3I 32 (2N)2 &2

(3.7)
1 k d(u v'(kRN)

27( V 3)i 2 (2N)2 (~+ ~ )2

Finally the correction for the motion of the c.m.
is made to the bare vertex. Following Donoghue
and Johnson' we write

)&,»2)= f 4( ))~4&),f),' (3.8)

where )P(P) is the momentum-space wave function,
normalized according to

C. Nucleon charge radius

. The wave-function renormalization contributes
to the bare value (2.6)

5(r')2 = —(3'),(~2+ ~2&3)&N . (3.14)

The four vertex corrections of Fig. 3(b) are, re-
spectively, these:

&P'&= 3(x/R)', (3.13)

with x= 2.04 in the present calculation, and we
drop the terms in (P4)/m4. The pion corrections
are calculated using the physical values for g~ in
v(kR) here and throughout.

The corrected magnetic moments for the neutron
and proton are displayed in Fig. 4 as a function of
BN. In Table I the various contributions are sum-
marized.

50 1 kdu) v'(kR„), 2 9 5 k

9 2' (d 4(d 4 (d )

9 (271) ((d2, + (d) ' k 4(d 2(d((d2, + CO)2, 2(d ((83+ (a)) 2(d2(CO + ~)2 (3.15)
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TABLE I. Proton and neutron magnetic moments, proton and neutron charge radii (in fm),
nucleon axial-vector charge, and decay width of &, as modified by pion interactions to order
1/f and the c.m. motion, for various nucleon bag radii.

Rg(GeV ) 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

proton

2m4p&

2m~/@ g

2m6p,

2m(6p&+6p& ~+Op )

2mdp,

-0.97 -0.79 -0..66 —0.56 -0.48 -0.41 -0.36 -0.31

0.32 0.25 0.20 0.17 0.14 0.11 0.10 0.09

0;96 0.77 0.62 0.51 0.43 0.36 0.31 0.27

0.31 0.23 0.17 0.13 0.10 0.07 0.05 0.04

0.84 0.67 0.55 0.75 0.63 0.54 0.47 0.42

1.33 1.52 1.71 1.90 2.09 2.28 2.47 2.66

2m 2.47 2.41 2.43 2.49 2.82 2.89 2.99 3.11

neutron

2m4p~

2mbpz &

2m4p,

2m(6&+ 6p& &+ 6p,„)
2m|5p, ,
2m/0

0.65 0.53 0.44 0.37 0.31 0.27 0.23 0.20

—0.34 —0.29 -0.24 —0.20 -0.18 —0.15 -0.13 —0.11

-0.96 —0.77 -0.62 —0.51 -0.43 —0.36 -0.30 —0.27

—0.65 —0.52 -0.42 —0.35 —0.29 —0.24 -0.20 -0.18

-0.17 -0.15 -0.13 -0.12 -0.11 -0.10 -0.09 -0.09

-0.89 -1.01 -1.14 —1.26 -1.39 —1.52 -1.64 -1.77

2m —1.71 —1.68 -1.69 —1.73 —1.79 —1.86 —1.94 —2.03

proton

g( 2)

-0.18 -0.17 -0.16 —0.15 -0.14 —0.13 -0.13 —0.12

0.13 0.11 0.11 0.10 0.09 0.08 0.07 0.07

0.36 0.31 0.27 0.24 0.21 0.19 0.17 0.16

0.30 0.25 0.21 0.18 0 ~ 16 0.14 0.12 0.11

—0.08 —0.11 —0.14 —0.17 —0.21 —0.25 -0.29 —0.34

0.25 0.33 0.42 0.52 0.62 0.74 0.87 1.01

0.47 0.47 0.49 0.53 0.58 0.64 0.71 0.78

neutron

g(&2)

0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05

-0.36 —0.31 -0.27 -0.24 —0.21 —0.19 -0.17 —0 ' 16

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

—0.30 —0.25 -0.21 —0.18 —0.16 —0.14 -0.12 —0.11
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1ABLE I. (Continued. )

RN(oeV ') 3.5 4 0 4.5 5.0 5.5 6.0 6.5 7.0

&aAz

~gANN

~CABAL

&SAz+ &gANN+ 20SAN/ + OaA//

&aA c.m.

0

—0.80 -0.57 —0.42 -0.32 -0.25 -0.19 -0.15 -0.12

0.06 0.04 0.03 0.02 0.02 0.02 0.01 0.01

0.38 0.27 0.19 0.15 0.11 0.09 0.07 0.06

0.15 0.10 0.07 0.05 0.04 0.03 0.02 0.02

-0.21 -0.16 -0.12 -0.09 -0.08 -0.06 -0.05 -0.04

0.42 0.32 0.25 0.21 0.17 0.14 0.12 0.11

1.09 1.09 1.09 1.09 1,09 1.09 1.09 1.09

1.30 1.26 1.22 1.20 1.18 1.17 1.16 1.16

grz/r'

or~/r'
grN~/r'

a r~&/r 0

-1.54 -1.06 —0.73 -0,50 —0.34 -0.20 —0.10 -0.02

0.91 0.69 0.53 0.41 0.30 0.23 0.16 0.12

0.53 0.39 0.29 0,23 0.18 0.14 0.12 0.10

0.05 0.04 0.03 0.02 0.02 0.02 0.01 0.01

0.27 0.19 0.14 0.10 0.08 0.06 0.04 0.04

~~rz+ ~rNN+ ~ hx ~ N + ~rhea)/r

gr, /r'

(MeV) 70 67 64 61 58 54 50

0.22 0.24 0.26 0.26 0.26 0.26 0.25 0.25

1.16 0.89 0.70 0.57 0.46 0.40 0.34 0.28

r(MeV) 166 143 126 112 100 89 80

1 (v" /v)
D = (v'/v)' —(v'/v) —— (3.16)

proton are given in Fig. 4 and Table I as a func-
tion of R.

5( 2) (3, )
25 1 k d~v'(kR„)

(N 2 2 3 9 (2v)2 ~2 P 0&

(3.17)

kdcov'(kR„)6(r') = (1+ pr, ) (), —
( ),

" (r~'), .

Here v'=dv/dk and v"=d'v/dk'. The c.m. correc-
tion is obtained from (3.10) rather than using the
method of Ref. 8. The dominant contribution
arises from the wave-. function overlap, which is
more directly determined by computing the rms
spread of the c.m. wave pa.cket:

&gz
0 (3.20)

The vertex renormalization from the four graphs
of Fig. 3(c) is given in an obvious notation, re-
spectively, by

D. Nucleon axial-vector charge

We consider here the order-1/f ' renormaliza-
tion of the axial-vector charge only, rather than
the full axial-vector form factor. The relevant
graphs for the axial-vector current are given in
Fig. 3(c). The wave-function renormalization con-
tributes

rg+ r2+ r3 (3.18) , 25 1 kd~v'(kRg)
AA 27 (2v)2 40

(3.21)

Here r, refers to the position of the ith quark,
each of which appears in identical spherically
symmetric orbitals. Since the charge density is
used to give the quark distribution, the rms spread
is proportional to the charge radius. From (3.10)
the correction is

&(r')= (p + ax, )3 (r~')0+—O(1/yn ) . (3.19)

The higher-order terms in 1/m' are neglected. "
The corrected charge radii for the neutron and

0 128 .1 kd&uv'(kR~).
27 (2v)2 ~((g+ (g )

0 160 1
t

kd&uv'(kR~)
(2v)2 ((g + (g)2

The c.m. correction is found by a procedure ana-
logous to that described above (3.10) for the elec-
tromagnetic form factors. "'" The correction is

(3.24)
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magnitude of (x„'), an undesirable result.
Clearly there is no particular nucleon radius for

which all parameters agree with the experimental
values within the assigned theoretical uncertain-
ties. However, agreement is worse for R„~4
GeV '. Thus, barring any surprises from higher-
order pion corrections, these results cast doubt on
small-radius versions of the nucleon. 4 From Fig.
4 we find that the range 4.5&R„&5.5 GeV ' gives
Bpproximate agreement for the magnetic moments,
I'~ and g„. In this range the proton squared charge
radius is in the range 0.49 to 0.71 fm', at most
35% low, and the neutron squared charge radius
is in the range -0.21 to -0.12 fm', too large at
worst by 75%. These quantities are particularly
sensitive to the treatment of the bag surface and

the neglect of correlations among the quarks;
therefore we do not weight them as much in
choosing the preferred range. In the range 4.5
&R„5.5 GeV ' the error in the c.m. correction is
estimated from (3.31) to be about 25% of the value
of the correction. Thus the quantity of largest un-
certainty is I'~ with an error of 15% of its net
value from this source, the expected error in
other quantities being about 10%. The error in
the pion renormalization, estimated from (3.32),
is about 20% of the change due to renormaliza-
tion, or less than 10/0 of the value of all quanti-
ties except (r„') for which it is 20%. The approx-
imate equality of both errors justifies the neglect
to this order of c.m. corrections to the pion cor-
rections.

Increasing x by 20% has the effect of increasing
the magnitudes of all quantities except the charge
radii. Agreement with experiment occurs at high-
er R„ for 1"~ and g„and lower RN for p.~ and p,„,
giving slightly better concurrence of the results
(see IVC below).

IV. BAt -MASS RENORMALIZATION

A. Unrenormalized mass

For the unrenormalized masses, we use the
model of Johnson, ' which includes an approxima-
tion to the original model2 as a special case. In
this version of the bag model the cavity energy for
a bag with n massless quarks in the 8&, orbital is
given by

M'=a'-n(x/R'),

where x = 2. Johnson uses a scale-dependent
coupling constant

27T

9 In(~+1/RA)

(4 2)

(4.3)

and chooses I3. = 1. This form is not derived. It is
introduced in order to give smooth behavior for
RA = 1 and the correct lowest-order scaling for
RA «1." A novel feature of Johnson's version of
the bag model is the form of the zero-point ener-
gy, proportional to

Z(R)=a-b&(R). (4.4)

1
4 la - ot(RO»l (4.5)

where A, is the radius for which -I3 is minimized.
It is assumed that the vacuum is completely satu-
rated. This constraint reduces the number of
free parameters, giving B~'/A as a function of a,
b, and z (4.3). We may on occasion consider pa-
rameter values that do not satisfy (4.5). Without
(4.5) the original model' can be recovered in the
approximation A large, b= 0 so that depends
only on & and Z only on a. The c.m. momentum
correction'can be kept in the form (4.2) or ab-
sorbed into Z with the choice x= 0 as in the ap-
proximation of the original model. '

The constant a represents the finite Casimir effect
to lowest order in &(R), which has been calcula-
ted, but remains controversial because of uncer-
tainties in the physical relevance of the high-fre-
quency modes. '" Values of 0.30 to 0.65 have
been quoted for a. The second term represents
second-order vacuum fluctuations that also contri-
bute to the Casimir effect. They have not been
calculated. Johnson argues that they are attrac-
tive and treats b as an adjustable, positive con-
stant.

A principal innovation of Johnson's scheme is
his model for the quantum-chromodynamics
(QCD) vacuum that pictures it as a, dense static
ensemble of empty bags. The bag constant is the
energy density of such a vacuum, relative to the
zero-field vacuum so that

2.04 Z(R) n g(R) 4m
(4.1)

B. Renormalization-of bag masses

1. Nucleon and h(1232)

where the terms are, respectively, the quark
kinetic energy, the zero-point energy, the gluon
interaction energy with p,,= —0.70, g, „=0.70/3,
p„= -0.70/2, p~= 0.70/2, and the bag volume
energy. The mass is found by correcting for the
c.m. motion, thus

Prior to the advent of the quark model, Chew
and Low proposed a model for the & based on a
cutoff Yukawa theory for low-energy pion-nucleon
interactions. " The Chew-Low model differs from
the present model in that the bare & is absent and
the form factor v(kR) is replaced by a cutoff P-
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wave phase-space factor, appropriate to a point-
like nucleon (i,e, , R —0). The model produced the
4 as a mN resonance when the cutoff was set at
k = 1 GeV. The bag form factor v(kR) for R = 5

GeV ' is so much weaker than the pointlike form
factor of the Chew-Low model that no ~-like res-
onance is produced in the absense of an explicit
bare 4.' Thus the bare 4 in the bag model plays
the role of a Castillejo-Dalitz-Dyson pole" in the
Chew-Low equation rather than a pole arising di-
rectly from the rN interaction. Accordingly, we
shall consider the 4 and N in perturbation theory
starting from the bag states. The lowest-order
self-energies of Fig. 3(a) are modified by the
contributions of Fig. 5. Summing these self-ener-
gies to all orders, but neglecting intermediate
states with more than two pions corresponds
closely to the Chew-Low model with an additional
elementary &. Because of the weakness of the
form factor, the higher-order graphs of Fig. 5

and others give a negligible contribution to the
real part of the mass shift, and give a small but
more significant contribution to the imaginary
part. " Thus the real part of the mass shift is
given to a good approximation by (3.1) and the
imaginary part of the mass shift of the 4 is
found to a good approximation by the method of
Sec. IIIE, which is equivalent to computing the
imaginary part of the self-energy diagrams of
Fig. 5, together with those of Fig. 3(a), but in the
latter diagrams, using the unrenormalized coup-
ling constants.

2. The mesons p, m, and n

The static model is applied with much less cer-
tainty to the lighter hadrons. We consider only
the lowest-order self-energies here, given in Fig.
6. The degenerate static limit is a reasonable
approximation for the &. For a massless pion, a
generalization of expression (2.18) of I applies,
namely,

TABLE II. Contribution to(P»„.o;r;-a; 7,.) from the
various intermediate states.

25 (1V)

8 (N)
8 (u)

24 (0)
24 (p)

32 ~~)
25 (&)

8 (v)

is the p meson (neglecting quark excitations), and
the expectation value is 24 (see Table II). If we
convert to momentum space and give the pion a
physical mass, (4.6) becomes

24 "kdav'(kR„)
4l (d (2 )2 3 I

/

which may also be derived directly from momen-
tum-space matrix elements as was done for N
and 4 [see (2.3) and (3.1)].

For the p meson the spin-isospin factor is de-
composed into m and (d contributions as shown in
Fig. 6 and Table II. The ~ contribution is treated
as above giving exactly 3 the mass shift (4.8).
The r contribution, however, must be handled
differently. The p„, -m„„-,, vertex is calculated
with degenerate p and m bag states, but we wish to
use the physical mass for the pion. The recoil of
the w bag state is neglected, but a relativistic
treatment is obviously more appropriate. In addi-
tion the rb„and r„„,d states are in fact identical, so
one must avoid double counting the intermediate
state. We propose using the vertex calculated for
the degenerate case as the physical form factor,
with the momentum k representing the c.m. mo-
mentum of the intermediate pion and with no cor-
rection for the continuation to the physical pion
mass. These assumptions are embodied in the
pen vertex function

2

goo 8 2g 3 ~ i i i' j j jf 4l I ~ J
(4 6)

where we must use a =+ 1 for quarks and -1 for
antiquarks. In the case of the (d meson, the only
intermediate state in the decomposition

(Ul QK,.IJ,.V'g X)( Q tgl7gtg Ql) (4.7)

FIG. 5. Example of diagrams contributing to the 6
self-energy to order 1/1 4.

FIG. 6. Contribution to meson self-energies to order
j/f 2
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-ic,.~~(2k -p), ' 12m, ,
v(l klR, )

lkt
(4 9)

where i refers to the Cartesian isospin index of
the p, j, and k to pions, p is the four-momentum
of the p meson, and k, that of the pion. The
quantity ~k~ is evaluated in the c.m. of the p
meson. The mass shift for the p meson becomes

6 "kd~v'(kR, )
(2w)' 3 (d

mg+,— k d~ v'(kR ), ', (4.10)
1 8 "", 2m'
2r'3 . SPAN@

—4& + zf

I', =—k,v'(k, R) .=2 (4.11)

Because of the approximations involved in (4.10),
the mass of the p cannot be computed as reliably
as that of the N, 4, or cu.

The mass of the r meson is also renormalized
through the process shown in Fig. 6. We have
used

The two terms arise from the &m and m7t intermed-
iate states, respectively. The second term has
been reduced by 2 to correct for double counting.
The decay width of the p meson is then

1 24 )( 1 (d mgZ, (m,)=,— kd~v'(kR, )I, +
(2&) 3 3 '(m~ -m~ /2m —(d &d' 2m, R'+ m ) (4.12)

C. Adjustment of parameters

There are six parameters A, a, b, z, x, and J3

to be adjusted to produce five masses m~, m„,
m„m„, and m, and a nucleon radius in a range
such that the several parameters of Fig. 4 are
close to the experimental values. In addition we
may want to consider following Johnson' and im-
pose the constraint (4.5). Although there are cor-
relations among the masses, particularly m, and

m„, there are also correlations among the para-
meters; the net effect as it turns out is to over-
constrain the parameters. Therefore, we seek
solutions giving preference to the nucleon, &, and
& masses and the parameters of Sec. III in this
order.

The masses are calculated following the pro-
cedure discussed in I. After minimizing Eo(R)
(4.1) at R =Ro for a given hadron, we evaluate

E(RO) = ED(R0)+ Z(RO), (4.13)

and then apply the correction (4.2) at the value R,.
'Thus we are treating the pion self-energy and the
c.m. correction as independent perturbations of
comparable order. The shift in R, to order 1/f'
is determined from I to be '

6R=-Z (R,)/E;(R, ),
where, using (4.1) and E,'(R, )= 0,

(4.14)

where &u' = (k'+ m~')'~'. This form is based on the
vertex (4.9) but with a form factor that reflects the
size of the pion. The ambiguities in a continuation
from the SU(6) degenerate mass to the physical
mass make this result rather unreliable.

using the original version of the model' but with
a c.m. correction given by (4.2)." The values of
the masses, radii, and coupling constants are
shown in 'Table III. The pion mass is somewhat
large. 'Thus we are unable to produce the zero-
mass pion of Donoghue and Johnson without further
modification of the model. ' However, the compu-
tation of the pion self-energy Z, is sufficiently
unreliable that we do not consider this to be a
serious defect of our calculation. The shift in
nucleon radius 6R„=-0.5 GeV ' results in a net
radius of R~=4.5 GeV ', the lowest radius pre-
ferred by the various nucleon parameters of Fig.
4

For comparison, we have also considered using
the currently conventional method which mini-
mizes M'(R} (4.2). In this case the perturbed bag
masses are given by first minimizing the unper-
turbed mass formula to determine A, and then
evaluating (4.2) at R„but with E(R,) =E,(R,)
+ Z(R, ). The order-1/f' shift in radius is found in
analogy with (4.14}to be

(4.16)R =Ro —[2E,(R)Z(R)]'/M'"(R) i„~
The best results are shown in Table IV. In this

m (MeV) Ro (GeV ') 6R(GeV ') Z (MeV) n

942
1235

836
787
268

5.1
5.4
4.8
4.8
4.3

-0.6
—0.5
-0.2
-0.2
-0.1

-142
-126
—56
—95
—33

1.6
1.6
1.6
1.6
1.6

TABLE III. Results of calculation with correction for
c.m. motion applied after minimization of the bag energy.

Eo (Ro) = 16vBRO+ (p. —b)& "(Ro)/Ro. (4.15)

It is found that the best results are obtained in the
limit of large A without the constraint (4.5)—i.e. ,

x=2.04, K =1.52, a =-0.55,

B /A = 0.020, A= 7788 MeU,
I' =86 MeU

b=0

B ~ =156 MeV
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m (MeV) Ro (GeV ') 6R (GeV ') Z (MeV)

938
1229

834
769
396

4.9
5.0
4.3
4.3
3.8

-1.0
—0.8
—0.7
—1.0
—0.4

-167
-156
—81

-132
—45

1.6
1.6
1.4
1.4
1.3

x=2.04, & =1, a =0.4, b =0.52

B'~ /&=0.42, ~=375 MeV, B'~ =158 MeV
=97 MeV

example we have used Johnson's constraint. The
shift in nucleon radius is substantial, giving a
net A~= 3.9 GeV, reflecting the destabilizing ef-
fect of this procedure for treating the c.m. cor-
rection. For this reason we prefer the former
method.

'To illustrate the sensitivity to the choice of
parameters, we give results of an alternative
calculation in 'Table V, once again minimizing
E(R) before correcting for c.m. motion. Here we
use x= 2.5 and obtain a slightly larger nucleon and
more massive pion. This parametrization re-
spects the constraint (4.5).

The width of the p meson was calculated using
(4.11)without c.m. corrections or higher-order
corrections in 1/f'. It is lower than the experi-
mental value (I', = 158 MeV) (Ref. 17) as was the
bare value of I'~.

Although the pion mass is rather large in all
three examples it should be noted that the c.m.
correction (4.2) for the pion is substantial. In the
example of Table III, the bag energy before cor-
rection is 730 MeV and the c.m. momentum is
680 MeV. Therefore, it would take only a 7% de-
crease in bag energy to reduce the mass to zero.
The corresponding decrease for Table IV is 12%
and for Table V, 10%. It is quite likely that these
figures are within the margin of error of the

TABLE V. Calculation with x=2.5 using the procedure
of Table III.

m (MeV) Ro (GeV-') 6R (GeV ') Z (MeV)

939
1230

824
770
355

5.2
5.2
4.7
4.7
4.6

-0.5
—0.5
—0.1
-0.2
—0.0

-138
-138
—59
-99
-27

1.7
1.7
1.5
1.5
1.5

x=2.5, K =1, a=0.3, b=0.42

B' /A=0. 435, A=372 MeV, B' =162 MeV
=87 MeV

TABLE IV. Results of calculation with minimization of
the bag mass after correction for c.m. motion.

model. Nevertheless, one may be surprised that
it was not possible by a slight change in para-
meters to produce a zero-mass pion as did Don-
oghue and Johnson. " The reason lies in the fol-
lowing peculiarity of the calculation: The nucleon
mass arises from a positive bag contribution that
is essentially proportional to a scale parameter,
say B~', and a negative self-energy due to the
pion cloud that has an intrinsic scale set by the
pion decay constant f and grows violently as the
radius shrinks. The optimum mass, as a function
of this scale, is dominated at small B (large
radii) by the bag contribution, and at large B by
the pion self-energy. Thus there is a maximum
value of the optimum mass that usually occurs at
uncorrected radii of 4 to 4.5 GeV . If this maxi-
mum is smaller than 940 MeV, the correct nucleon
mass cannot be reached. The excluded portion of
parameter space is the part that includes zero-
mass pions. At the edge of the excluded portion
the corrected nucleon radius is too small to give
reasonable values for the nucleon parameters of
Fig. 4. If the strong-coupling constant is scale
dependent with a small value of A, the p-m mass
splitting is reduced (these being of smaller radi-
us), giving a, higher pion mass. For this reason
large values of A are preferred. Increasing x
does not help, as we see from Table V. The rea-
son for this is that in doing so, the proton mass is
reduced, requiring a shift in the other parame-
ters, and enlarging the excluded region of para-
meter space.

It is interesting to compare the parametrization
of 'Tables III-V with those of the original model. '
Because of the large value of A, the strong coup-
ling constant in Table III is essentially indepen-
dent of It, and is about 25% smaller than that of
Ref. 2." The principal reason for this reduction
is that the pion self-energy shifts the baryon
masses by more than the meson masses. In the
original version of the model such a shift is com-
pensated by a larger value of Z, and a smaller
value of &,. The pion self-energy by itself does
not contribute significantly to the N-4 mass
splitting.

With the larger value of x of Table V it is nec-
essary to recompute the parameters of Table I
that have x-dependent c.m. corrections. The new
values are given in Table VI. The charge radii
are the same as in Table I. If the same criterion
for theoretical error is applied here as in Fig. 4
and Sec. III, then any value of A„ in the range 3.5
to 7 GeV ' gives acceptable nucleon magnetic mo-
ments, values from 4.5 to 8.0 give acceptable val-
ues of g~, but the results for I'~ suggest 5.0-A~
& 7.0. Thus considering the charge radii as well,
complete harmony occurs in the range R „=6-7
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TABLE VI. Baryon parameters with x=2.5.

3.0 3.5 4.0 4.5 5.0 5,5 6.0 6.5 7.0 7.5 8.0

2mppp
2mn ~n

I'g (MeV)

2.89 2.74 2.70 2.70 2.72
-1.79 -1.76 -1.76 -1.76 -1.79

1 51 142 142 135 1 30
207 173 173 148 129

2.78 2.87 2.98 3.11 3.24 3.39
-1.84 -1.91 -1.99 -2.07 -2.17 -2.26

1.27 1.24 1.22 1.21 1.19 1.18
113 100 88 78 69 60

V. CONCLUSION AND DISCUSSION

Having incorporated the pion into the bag model
and considered the effect of the finite size of the

TABLE VII. Calculation illustrating the possible
effect of a finite pion size, otherwise using the procedure
of Table III.

m (MeV) Rp (GeV ') 6R (GeV ') Z (MeV)

940
1236
781
748

17

5.2
5.2
4.8
4.8
4.7

—0.09
—0.10
—0.04
-'0.03
—0.02

-27
—20
—8

-30
-10

1,7
1.7
1.6
1.6
1.5

x=2.7, K =1,
/~ =0.440,

1,=44 MeV

a =0.65, b =0.8
~=370 MeV, B =163 MeV

GeV '. However, the hadron masses cannot be
reproduced at this radius. On the other hand, at
R„=4.7 GeV ', as suggested by Table V, the re-
sults are as good as those of Table III with x
= 2.04. Therefore, we consider either parametri-
zation to be acceptable, although that of Table III
gives a somewhat better pion mass.

Finally, we illustrate the sensitivity of the para-
meter adjustment to the assumption that the size
of the pion and a finite spread of the bag surface
can be neglected. If the bag radius A is regarded
as the rms position of the bag surface, then an
appreciable pion-bag interaction may instead occur
at a separation R' = (R'+ R, ')~'. Replacing R in
v(kR) in Eq. (2.8) by R' has the effect of reducing
the pion-field contribution substantially. The re-
sult of a calculation yielding a nearly zero-mass
pion is summarized in Table VII. A nucleon radi-
us of 5.1 GeV is obtained, giving these values of
the nucleon parameters: 2m'~= 2.82, 2m'„=- 1.69, (r')~= 0.49 fm', (y')„= -0.14 fm', g„
= 1.40, and I'~ = 103 MeV. With the exception of a
very low decay width of the p meson, the results
are as satisfactory as those of Table III, but the
modification in the model is rather ad hoc.

wave packet on the various static parameters,
we find, on the whole, better agreement with
measured masses and other parameters than in
the original. bag-model calculation without renor-
malization due to pion interactions. With the re-
sults of Table III and R„=4.5 GeV ', we find (see
Table I) 2m p~= 2.43, 2m'„= - 1.69, g„=1.22, and
I'~=126 MeV, compared to previous values of
2, -1.3, 1.09, and 50 MeV, respectively. ' ' The
calculated squared charge radius of the proton,
0.49 fm' has not improved, but the neutron has
acquired a negative squared radius of roughly the
correct magnitude. However, these latter para-
meters are strongly affected by quark correla-
tions. "

The c.m. corrections are generally substantial
and larger than the renormalization due to pion
exchange. Thus it would seem that in order 1/f'
we have reached the limits of accuracy of the
calculation. Further improvements must be
sought in a better understanding of the origins of
confinement. Such an understanding could provide
a better description of the bag surface and a bet-
ter characterization of the pion. Indirectly, it
would provide a more accurate c.m. wave func-
tion.

Witbin the more limited scope of the present
calculation one may want to study further the ef-
fect of incorporating explicitly quark-antiquark
pairs in place of the internal pion field, as dis-
cussed in I. The effect of the internal field upon
the calculation is substantial. Without the inter-
nal field, the value of g„would be 50% larger"
and I"~ would be more than twice as large. In our
calculation it is not possible to accommodate such
values.

Finally, there is the question of the size of the
nucleon bag. ' Although we are unable to study the
regime R~&3.5 GeV ' because the perturbation
theory fails, we find that reasonably good results
for several baryon parameters and hadron masses
can be obtained with A„=4.5 GeV . At this radius
the expansion parameter for c.m. corrections is
(p')/2m'= 0.3 and for pion corrections, E = 0.2
[see (3.32)]. Therefore, the use of perturbation
theory is justified a Posteriori.
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