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Quark-bag model with low-energy pion interactions. I. Theory
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A standard method for restoring chiral symmetry in the bag model is to introduce ari explicit external pion field.
Questions of the consistency and compatibility of this method with the assumptions of the static-cavity
approximation of the bag model are discussed. An approximate version of the model is justified. It is argued that
consistency requires treating pion-induced quark-pair creation and annihilation at the bag surface as a zeroth-order
process in pion-coupling perturbation theory. An approximation treating these pairs as an inward extension of the
pion field is discussed. The resulting model gives an improved value ofg„.

I. INTRODUCTION

When quarks are confined as in the static bag
model, "it is inevitable that chiral symmetry is
broken. The symmetry is restored if interactions
with pions are taken into account. ' ' In the MIT
bag model' the confined quark field q(x) satisfies
the boundary conditions

in„y"q(x) = q(x),
—,'n s(qq) =B

(1.1a.)

(l.lb)

on the surface S of the bag. Here n„ is the unit
inward normal to the surface. The condition
(l.la. ) is equivalent to requiring that the quark
have an infinite mass outside the bag. ' Both of
these conditions break chiral symmetry. Thus
the axial-vector current based on the confined
quarks,

A„o(x) =2:q(x)y,y„rq(x):8 (x),
where e~(x) vanishes outside the confinement
volume and is one inside, is not conserved for
zero-mass quarks, but satisfies

O'A, q(x) =-:q(x)y, ~q(x): 5g(x),

where n, 5&(x) =S„ev(x). The by-now standard
method for restoring chiral symmetry in the bag
model involves introducing an auxiliary massless
pion field. ' ' The essence of this approach is
that if a pion contribution to the total axial-vector
current is included,

A„(x) = A, o(x) fs,fr(x), -
the total current is conserved, if

O =s'A, (x) =e'A„o(x) —fs'7(x) .

Here and throughout f is the pion decay constant
(f=93 MeV). In effect the divergence of the quark
contribution becomes a source for the massless
pion field at the bag surface.

There is, of course, already a pion in the bag

model, appearing as a massless quark-antiquark
state. ' It is believed that pion-bag interactions
should emerge naturally in the original unadorned
bag model when surface fluctuations (bag fission,
etc. ) are taken into account. However, despite
some progress in treating bag-bag interactions
we are still far from a dynamical theory of rel-
ativistic interactions. '"" Thus it is attractive
to explore approximations starting from the
static cavity model. In the case of low-energy
pion interactions PCAC (partia. l conservation of
axial-vector current) comes to our aid as long
as we are willing to introduce a pion field. We
shall assume, however, that the pion field appears
only as an approximation to a bag pion, that a
theory with an explicit pion field is inherently
redundant, and that we shall consequently need
to take particular care to avoid double counting.
For the sake of definiteness and consistency
chiral symmetry should be built into a modified
bag Lagrangian, versions of which are Chodos
and Thorn's linear 0 model' and Jaffe's nonlinear
0 model "hybrid chiral bag. "' Although these
Lagrangians have been discussed as classical
field theories we shall treat them as quantum
field theories (in the static cavity approximation).

Versions of chirally symmetric bag models
have been used in perturbation theory to study
low-energy pion-nucleon scattering" and, more
specifically, the renormalization of various hadron
masses"' and a calculation of the pion-nucleon-4
coupling constants. " It may seem that a phe-
nomenology of low-energy bag-pion interactions
is well in hand. However, basic questions of
procedure have not yet received adequate discus-
sion: Where is the pion field'? Should it exist
only outside the bag? How does one formulate
perturbation theory in the pion-bag coupling
constant? In addition there are questions of
consistency: How does one reconcile the existence
of two pions in the theory? How does the pion
affect the size of the bag through a. chirally sym-
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metric version of the nonlinear boundary condition
(1.1b)?

We take up these questions in Secs. III and IV
after reviewing the basic chirally symmetric
bag model in Sec. II. We regard the external
pion field as an approximation to the amplitude
for finding the c.m. of a composite pion at a given
spacetime point. This interpretation is consistent
with the Donoghue-Johnson' treatment of the c.m.
motion of the pion bag, wherein the static cavity
boundary serves as an artificial barrier to the
free motion of a composite pion. The chirally
symmetric eigenstate must not be so constrained—
hence the necessity in a chirally symmetric theory
of allowing the pion to appear at positions other
than within the confines of the static cavity. This
interpretation also requires that the pion be able
to move freely in some sense across the bag
boundary. It is preferable to represent the pion
in terms of quarks for distances comparable to
the bag size, whereas an elementary-field de-
scription should be adequate at larger distances.
Thus a nucleon serves as a source for a pion
field, but that field must in turn give rise freely
to quark-antiquark pairs inside the original
nucleon. We propose an approximate treatment
of the effect of these additional pairs by extending
the definition of the pion fieM into the bag interior.
Chodos and Thorn also suggested this approach,
but for different reasons. ' This approximation
forms the basis for a practical perturbative
model of bag-pion coupling. Miller, Thomas,
and Theberge have studied an identical model,
but they do not insist upon an interpretation of
the internal pion field as a reflection of excited
quark-antiquark pairs, nor do they require a
rigorous treatment of the nonlinear boundary
condition. " The model is applied in a determina-
tion of the masses, couplings, and other param-
eters for the low-lying nonstrange hadrons in the
following paper (hereafter referred to as II)."
Although many of these parameters have already
been evaluated in piecemeal fashion in hybrid
chiral models, '""'"we attempt a complete treat-
ment, including corrections for the c.m. motion.

the explicit quark-antiquark form inside. ""'
The action is (omitting gluons)

0

d'x —qy ~ eq -8 + d'x 2(D„-v)2
V V

(2 1)

where the bag surface S separates the inside (V)
and outside (V) of the bag, and where

sing sing
(2 2)

x =
I v I/f, and 9 =fr/171. The action is invariant

under the usual nonlinear chiral transformations

5q =—0 ~ 7y,q,

&7 = f[8 —(1 -x—cotx)m x (8 x 9)].
The equations of motion are

sln2g
8'm 9" -— (5 —&,& )8 m =0 in V,2x

(2.3)

(2.4a)

ie„y"q=0 in V,

in„y"q =(e" "5«)q on S,
(2.4b)

(2.4c)

A A
n ev. = — 5 — 1 — . (&. —m v )i sin2g

x —q7' y e~ '~"5~~q on S.j 5 (2.4d)

It is useful to note that the boundary condition
(2.4c) at S above implies that

qe"'"5«q=0 on S. (2.5)

—,'(n s)(qe"'"5«q) =a ,'(a„v)-'.-
The conserved axial-vector current is

(2 8)

A.„(x) X„o(x)-f 2
8 „w2X

The nonlinear boundary condition follows from
requiring that the action be stationary with respect
to variations ig S. Direct variation of S gives.

II. REVIEW OF THE BAG MODEL WITH
- CHIRAL SYMMETRY

where

g

It is convenient to start with the nonlinear
model of Jaffe' although other nonlinear models,
or the original linear g model of Chodos and
Thorn, wouM serve as well. Jaffe's results
are summarized in Eqs. (2.1)—(2.8) below. Since
the pion field is to be regarded as an approxima-
tion for a composite quark-antiquark state, the
field is introduced only outside the bag. We use

A„q(x) = ,qy„y, rqe» . - (2.8)

The equations of motion and boundary condtions
(2.4) assure that A„(x) is conserved.

We wish to consider a perturbation theory based
on a formal expansion in inverse powers of the
constant f. To second order the action (2.1)
becomes
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A =A, +A, /f+A, /f',
where

A. = d'x —qy. Bq -I3
v' 2

6 x 8~7T —2 tPx gg ~

V

A,/f =-2 d'xqe"'""q,
S

A, //'= --.' f Px[(Tr s,Tr)'/3/' —x'/3(a„ir)']

+ g LPGA Qgx
S

(2 9)

tion Hamiltonian may seem superfluous, since
the linear boundary condition (2.10) implies that
q„q =0 for eigenfunctions in the free-cavity ex-
pansion for q (2.11). However, we show in the
Appendix that its expectation value on a perturbed
eigenstate does not vanish if we define the value
on the bag surface as a limit of the values inside
the bag. Indeed the expectation value of Hl itself
vanishes on the perturbed eigenstates.

As a preliminary illustration of perturbation
theory with the Hamiltonian (2.12) we ca.lculate
the shift to order 1/f' in the energy of the spheri-
cal nucleon. In lowest order it is a three-quark
state with quarks in the lowest orbital with wave
function

The free fields for which Ao is stationary satisfy
the usual conditions

iy By=0 in V, iy ~ nq=q on 8,
8'm=0 zn V, n 8m=0 onS,

(2.10)

and may be used as a basis for a quantum pertur-
bation theory. In the usual static-cavity approx-
imation, the equations (2.10) are solved for the
static-cavity eigenmodes, and the fields are
quantized accordingly:

q =Q [q„(x)e '"~'b„+q„'(x)e' "d~],
n=p (2.11)

The pion field couples to the ~~uarks only at the
surface of the bag. It gives rise to excitations

- of the quarks as well as producing quark-anti-
quark pairs. The second-order term in the action
is peculiar to the particular formulation of a
chirally symmetric action. Other nonlinear
models give a different second-order term. How-
ever, the first-order terms are common to all
models. Thus more model-independent results
must be of first order in perturbation theory or
of second order in cases in which A, /f ' has no
effect.

It is convenient in discussing the spectrum of
perturbed states in the static-cavity approxima-
tion to separate the Hamiltonian in first order
as follows:

(j,(&ur) U

4 4~ (k''rj, (~r)U/ ' (2.13)

where R'N' =0'/[1-j, (A)'], &@ =0/R, U is a two-
component spinor, and 0= 2.04 so that j,(Q)
=j,(Q) a.ccording to (2.10).' To second order the
action A, does not contribute to the energy of the
state. " Thus the energy shift is found from III
above, and it is

~ (0 IH& I g)(p I H, I 0&

Ep
(2.14)

V'g„=0 zn V,

r ~ V7„=—(0 ~qy, rq ~)/& on S, (2.15)

where I)))) is a state containing one pion and three
quarks, one of which could be excited. However,
we shall neglect terms in which the quark is
excited, allowing only spin and isospin rearrange-
ments of the ground state. The unperturbed state
! 0) and the unexcited state I p) are annihilated
by the first term in HI. Therefore, it does not
contribute to the energy shift in this order, and
we are correct in omitting terms of higher order
in H/ in (2.14). Since the intermediate state con-
tains. unexcited quark states, the energy shift
(2.14) can be found by solving the cia.ssical equa-
tions

H =HO+HI

.where
where v refers only to the quark degrees of free-
dom in I p). To be more specific, we have

H, = Q (g„(b tb„+d„d„) + QE a~ a
n=p m=p

d'x ,'qq: + —,
' d'x:qiv—~

7) y /fq: .
S S

(2.12)

40mf '

(2.16)

The first term in the expression for the interac- where X=—,
' and
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(2.17)

is the nucleon axial-vector charge of the original
model. ' The nucleon axial-vector charge in this
model is Ag~. In terms of these constants,

2

100 8''R' fej
(2.18)

where g, , etc. , is an operator acting on the spin
of the ith quark. The intermediate states ) v) in
this case consist of nucleons and 4 states of
various spins and charges. The expression for
the energy shift is valid=for the ~ as well as the
nucleon. The expectation value (Zo',. o,.7, T,.) is
57 for the nucleon and 33 for the 4. Barnhill and
Halprin' advocate omitting the terms with i =j
as corresponding to a renormalization of quark
mass and cavity energy. Doing so makes it
impossible to separate the AN coupling from the
gN4, etc. , and is undesirable for our purposes.

Although this calculation is axiomatically com-
plete and consistent based on the action (2.1) we
shall argue in the next section that further anal-
ysis of the significance of the pion field reveals-
that the calculation is incomplete to this order
in 1/f, and so it must be modified. The proposed
modification sets X =, 1.

III. THE PION BAG VS THE PION FIELD

(3.1)

Donoghue and Johnson obtain an expression for
the wave function by calculating the bag-to-vacuum
matrix element of the quark component of the

We discuss in this section the consequences of
one interpretation of the static-cavity pion state
in a theory with an elementary pion field. An
interpretation rather than an analysis of fact is
necessary here, since we do not propose here
to identify the origin of the spontaneous break-
down of chiral symmetry, a phenomenon that is
presumably connected with the mechanism that
gives rise to quark and gluon confinement. These
questions go beyond the static cavity approximation
to the bag model —even beyond the bag model it-
self.

In the absence of an external pion field there
is a stable low-lying quark-antiquark bag state
that is a candidate for the pion. It can be arranged
to have zero mass in the chiral limit. '" Donoghue
and Johnson' propose that the static-cavity eigen-
states be regarded as localized wave packets of
the true momentum eigenstates in analogy with
states in a nonrelativistic shell model. Thus the
pion-bag state is regarded as the superposition

axial-vector current (1.2):

(O, ba() lA'„'q(x) le, bag) =MRf fd'p e"*p„4(p).

(3.2)

f=0 5jR., , (3.4)

where R, is the radius of the pion bag. With a
recent value" R, =3.8 GeV ', f=135 MeV, about
40'%%ug higher than the experimental value. This
is not bad in view of the approximations involved
in defining Q(P).

The Donoghue-Johnson interpretation gives a
new meaning to the static cavity: It serves not
only to confine the quarks in their relative separa-
tion, but it also provides a mechanism for local-
izing the center of mass of the state. If the pion
is indeed the Goldstone boson of broken chiral
symmetry, then the pion should behave in the
absence of other hadrons as a free massless
particle. " The mere existence of a localized
pion eigenstate in the theory implies a breakdown
of chiral symmetry. Clearly this particular prob-
lem is associated with the static-cavity approxi-
mation and not with the original Lorentz-covariant
formulation of the model. But we do not have a
satisfactory quantum theory for the bag in three
dimensions; therefore, we work within the ap-
proximation. Chiral symmetry is also lost in
this approximation by the confinement of the
quarks, as discussed in the beginning of Sec. I.
We suggest that introducing the pion field serves
not only to restore chiral symmetry at the bag
surface, it should also in a sense restore trans-
lational invariance to the static pion-bag state.
We say "should" because it is not obvious that
the action (2.1) does the job. However, a "correct»
formulation of the theory should, in fact, do it,
and the theory defined by (2.1) is at least sug-
gestive of a restoration of translational invariance
to the pion as discussed below.

We note that in perturbation theory, when the
pion field couples to the pion-bag state, the quark
and antiquark may annihilate to produce the ex-
ternal field. If we accept the wave-packet inter-
pretation of the static-cavity eigenstate, restora-

The right-hand side follows from (3.1) and the
identification of A„(x) as the axial-vector cur-
rent. The matrix element is readily calculated
from the wave function (2.13) giving

fs'P(z) = v N,iN'[j, '((or) j,'((o—r)]e ""'8(R —r),
(3.3a)

fVQ(x) = 24Npj, ((or')j, ((or)re ""'8(R r)-, (3.3b)

where N, =3 is the number of colors. From the
normalization of (j)(p) f is found to be
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tion of translational invariance produces a some-
what similar effect: The spreading of the wave
packet gives rise to a finite amplitude for finding
the c.m. of the composite pion outside the confines
of the original cavity. The spreading of the wave
packet should occur freely, independently of the
smallness of the coupling 1/f. Indeed, if we
examine the annihilation amplitude, we find that
it is proportional to (3.3b), which determines f
in the Donoghue-Johnson scheme. Thus, although
the annihilation graph is counted formally as first
order in 1/f, it is actually of zeroth order. We
must calculate the pair annihilation and creation
processes to all orders in the interaction Hamil-
tonian to determine the effect of the external field
upon the pion-bag state. We note that the annihila-
tion and creation amplitudes differ from the emis-
sion and absorption amplitudes used to calculate
the self-energy of the nucleon in Sec. II, in that
an extra factor v N, appears in the former ampli-
tudes. In effect f~@ N, and the expansion in powers
of 1/f is formally an expansion in powers of
I/v N, .

Although pion emission and absorption in the
nucleon may still be treated in perturbation theory,
it is evident that the pion field, once emitted, can
give rise to additional quark-antiquark pairs in
the nucleon bag before being absorbed, as illus-
trated in Fig. 1(b). Just as in the case of the pion

bag, these processes must be treated to all orders
in the interaction Hamiltonian, since they are of
zeroth order in 1/f.

The necessity of treating pair creation and an-

nihilation to all orders in the interaction Hamil-
tonian (2.12) makes it difficult to determine the
pion eigenstate in the interacting theory. In fact
it is likely that, with a more complete under-
standing of the nature of the vacuum, " the pion
eigenstate of this particular theory would be found
wanting. Thus we seek a modification to the action
(2.1) that retains some of the desirable features
of the static cavity approximation and is capable
of taking into account pair annihilation and crea-
tion processes at the bag surface in a nonpertur-
bative manner. A crude but simple modification
extends the pion field into the bag so that it is
continuous at the bag surface. The internal field
is intended to represent in an approximate manner
the quark-antiquark pairs that are produced by
the external field. Thus to avoid overcounting
in the modified theory we must exclude additional
pair creation and annihilation induced by the ex-
tended field. Turning off the field external to a
cavity, leaving only an internal field, gives an
analog "pion» eigenstate in a wave packet some-
what like that of (3.3a). Turning it on allows the
wave packet to spread continuously across the
cavity wall.

It should be reemphasized that the elementary
pion field is always to be considered as an ap-
proximation to a composite object. Such an ap-
proximation should. be valid only for low-energy
pion interactions for which the pion wavelength
is large compared to its bag size.

The revised action (2.1) now becomes"

A = d'x —qy 5q -8 — d'x ,'(D„fr)'—
2 V+V

d'x qe""5"q,
S

(3.5)

where it is understood that the pion field is
continuous across the bag surface. The equations
of motion (2.4) are modified so that (2.4a) now

holds in Vas well as V and (2.4d) now reads.8.. ~. = ~. . i —. )(~ ..)
2x

sin2x

(3.6a)

n,. ~'=0 on S, (3.6b}

(b)

FIG. 1. Perturbation diagram for nucleon self-energy
to order 1/f 2 showing (a) a conventional contribution
and (b) a quark-pair contribution induced by an external
pion.

where the notation I

' means the value outside
minus the value inside. The nonlinear boundary
condition (2.6) be comes

2(n s)(qe'"'""5'~q) B, (3.7)

where it is necessary to interpret the derivative
acting on g as the average inside and outside. '
Because of the different boundary condition (3.6)
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the strength of the pion field produced by the
nucleon in (2.15) is changed. Thus the pion-
nucleon coupling constant and axial-vector charge
Ag„ is changed. The effect is simply to set X=1
[(2.16), (2.18), etc. ] as noted at the end of Sec.
II. As we shall see this change gives better agree-
ment with the experimental values. Jaffe' was
first to call attention to the rather large value
of the nucleon axial-vector charge that results
from excluding the pion field from the bag interior.
This problem has plagued subsequent analyses
that neglect the effect of quark-pair creation and
annihilation induced by the external field, and has
led to some ingenious proposals for remedies. "
The reduction of X that results from making the
pion field approximately continuous across the
surface is general and well known (see Ref. 4).

As a matter of convenience, the internally ex-
tended pion field is treated as though it were
massless in (3.5) and with the physical mass
in II. The assignment of a zero mass is just-
ified approximately by Eq. (3.3). Although the
equations are not exactly consistent, i.e. , the
gradient of (3.3a) is not the time derivative of
(3.3b), they are consistent in shape and magnitude.
Furthermore, the four-divergence of the current
defined by (3.3) vanishes, corresponding roughly
to the Klein-Gordon equation for, P.

IV. CHIRAL NONLINEAR BOUNDARY CONDITION

A necessary consequence of restoring chiral
symmetry to the static cavity is the chiral mod-
ification [(2.6) and (3.7)] of the nonlinear boundary
condition (1.1b). We consider in this section the
effect of the chiral nonlinear boundary condition
(3.7) on bag states and propose a slight modifica-
tion in the procedure for static-cavity calculations
that improves the stability of the nucleon in pion
perturbation theory.

The nonlinear boundary condition is found by
making the action stationary with respect to the
position of the bag surface. It has been interpreted
as a condition for balancing the field pressure
against the bag pressure B at the surface. " In
the semiclassical static spherical-cavity approx-
imation, minimizing the energy with respect to
the radius is equivalent to imposing (3.7) as an
equation for the expectation value of the normal-
ordered product averaged over the surface. "

In perturbation theory the bag energy to order
1 'is

degeneracy and zero pion mass,

E,(R) = —P/R'f', (4.2)

where P is a dimensionless constant. Now let
us suppose that Eo(R) is minimum at R Ro. Ex-
panding about this radius gives

E(R) =E,(R,) + ,'(R -R,)-'E,"'(R,) +E,(R) . (4 3)

R -R, -6R =-E;(R,)/E;(R, ). , (4.4)

But the change in E,(R) in going to the new
radius is clearly of order 1/f'; the new value of
the energy is therefore found to order 1/f' by
evaluating (4.1) at R, :

E =E.(R.) +E,(R.) +o(I/f ') (4 5)

To find the energy to this order we are not re-
quired to change R.

Problems arise, however, in a quantitative
determination of the minimum (see Sec. II). Al-
though the correction E,(R) may be small (-20%%uo)

when evaluated at Rp its derivative is generally
large; i.e. , the pion field exerts a strong inward
pressure on the bag. (The effect is reduced some-
what by allowing the pion to pass into the bag
interior, but it persists because of the discontinu-
ity in the radial derivative of the pion field at the
surface. ) The inward pressure can be sufficient-
ly great as to give a large negative value of 5R
(4.3). As the bag shrinks, perturbation theory
also fails, since the dimensionless parameter
1/f'R' grows. Thus one can hope that higher-
order terms come to the rescue but, if they are
needed, we cannot proceed with low-order per-
turbation theory. Perhaps we must forsake
perturbation theory, "but the qualitative successes
of the quark model in describing the light hadrons
argue in favor of the perturbative approach. We
propose a modification in the standard procedure
for static cavity calculations that increases the
stability of the bag, i.e. , allows values of I 5R I

& 0.15R.
It is traditional to minimize, not the cavity

energy, but the mass, after correcting for c.m.
motion. "" The mass is obtained from"

M(R)' = E(R)' -Z(R)', (4.6)

where, for the n-quark bag with all quarks in the
Sy /2 orbital,

Minimizing the new expression (4.2) gives a, new
radius R that differs from Rp by an amount formal-
ly of order 1/f':

E(R) =E,(R) +E,(R), (4.1) &'(R) = ~(x/R)' (4.7)

where E,(R) is the energy of the bag without the
pion field present and E,(R) is the correction to
order 1/f'. In the approximation of SU(6)

and 7=2. For the nucleon, the correction E —M
is about 250 MeV. The effect of including the
c.m. correction in the minimization procedure
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g Q(Pg p

0
(4.9)

where q is the Dirac wave function of a single
quark. Thus the true charge radius (r~') before
correction for the pion cloud is smaller than that
given by the static-cavity calculation. Other static
or quasistatic parameters can be corrected by
similar methods as discussed in II.

V. SUMMARY AND DISCUSSION

is to reduce the outward pressure of the fields—
hence a destabilizing effect. lf, however, E(R)
were minimized first and the correction applied
without further adjustment of R, stability would
be increased.

The procedure for correcting for the c.m. mo-
tion is not determined by the static-cavity ap-
proximation —in fact the puri'st might insist that
it is preferable to minimize E rather than M since
it corresponds more accurately to the nonlinear
boundary condition. The effect of minimizing
before correcting is to.produce a slightly larger
bag, the size of which reflects more the c.m.
wave-packet size rather than the size of the wave
packet of relative motion of the quarks. A con-
sequence of the wave-packet interpretation is
that all bag parameters must now be corrected
for the spreading of a finite wave packet. The
procedure, in the spirit of the Donoghue-Johnson
method, is straightforward. ' " For example, in
calculating the charge radius of the proton (ex-
cluding the pion for the moment), one evaluates

(4.S)

The first quantity on the right is given directly
by the static-cavity wave function, ' and the quantity
(r, ') depends both on kinematic effects, which
are small, ' and on a large positive contribution
of the form

Thdberge, "but for different reasons. The re-
sulting theory may then be used for perturbative
calculations as long as the pair creation and an-
nihilation processes are omitted. A slight mod-
ification in the standard procedure for correcting
for the c.m. motion of the hadron in the static-
cavity approximation allows for a stable nucleon
bag to lowest order in the pion coupling and

permits a consistent calculation of the mass re-
normalization in perturbation theory, as described
in II.

The approximation of replacing quark-antiquark
pairs by an elementary field is crude and deserves
further analysis. It would be useful to have a
more explicit scheme that allows these pairs to be
taken into account.

We have given some attention to the chiral non-
linear boundary condition, which follows in an
axiomatic way from the chirally symmetric action.
Although one may criticize the hybrid chiral
model as being rather ad hoc, and question the
validity of the boundary condition, we believe it
is necessary to take it as seriously as the chiral
linear boundary condition that gives the coupling
to the pion. Both are needed in order to restore
chiral symmetry to the static-cavity approxima-
tion.

The suggested modification in the procedure
for correcting the bag mass for c.m. motion helps
to make perturbation theory consistent. This
result is desirable, since higher-order terms,
particularly those involving the pion self-coupling,
are model dependent. An additional benefit is
that it is more in the spirit of the Donoghue-
Johnson interpretation of the static cavity as a
localized hadronic state. Corrections to the
static parameters are cleaner if the bag radius
reflects the geometry of the wave packet, rather
than some partially corrected geometry. These
corrections are discussed in II.

We have offered a justification for a phenome-
nological approach to a chirally symmetric theory
of pion-bag coupling that strives for consistency
with the current understanding of the meaning of
the static-cavity approximation. The pion is ap-
proximated at long wavelengths by an elementary
field. It interacts with quarks at the bag surface
in a manner dictated by chiral symmetry. Although

emission and absorption processes may be treated
in perturbation theory in inverse powers of the
pion decay constant, pair creation and annihilation
cannot be treated in this way. We propose, there-
fore, extending the definition of the field inside
the bag to take approximate account of these
processes. This extension was also proposed by
Chodos and Thorn' and Miller, Thomas, and
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APPENDIX

We consider here the manner in which the
linear boundary condition on the quark fields,
expressed in the form (2.5) is satisfied in quantum
perturbation theory. To first order in 1/f it takes
the form

qq +qi7 ~ Pry, /fq = 0, (A1)

As an introduction we consider the problem in the
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classical perturbation theory' of a quark coupling
to an external pion field with Hamiltonian

P eo

H= d'x qt Iq
2 j

E=&:qq:+:qir rry /fq:)

~ (Ol:qq: I X)(XIHzl p. )(WIHr I O)

+-' j"+ (qq+qiy. & /fq).
S

(A2)
(OIHrl rc)(rrl:qq: I p)(p IH, IO)

(E, —E„)(E,—E„)
The unperturbed eigenfunctions satisfy

—in ~ Vq„= &„q„ in V; —iy ~ nq =q on S . (AS)

The perturbed eigenfunctions satisfy

-i~ ~ Vq=~q in V,
—iy ~ nq =(I +iy,7' w/f)q on S .

(A4a)

(A4b)

Writing q =q, +5q and substituting into (A2), we
have to first order in 5q,

E &uo —
& (qo5q+5qqo)d x

S

+-,' (q, 5q +5qq, )d'x
S

+~ q,iy, ~ rrq, /fd'x
S

(A5)

Thus there is a cancellation between the surface
term from the quark kinetic energy in H and the

qq term. ' The linear boundary condition (A4b)
or (Al) on the other hand requires that the second
term in H vanish. Thus E has the form &p+
—6rd+5&u in (A5). The expression for 5q can be
found in perturbation theory by using a Green's-
function technique. Writing

where the sum includes both positive- and nega-
tive-energy states, we find, by standard methods,

~(O I:qiv~ rr'y, /fq: I p)(p IHq I O) +c.c.

(A9)

where the omitted terms can be shown to vanish
to order 1/f'. In the example of the computation
of the nucleon self-energy in Sec. II, the sum over
intermediate states was truncated to include only
states with quarks in the. ground state, but with
a possible rearrangement of spins and isospins.
We follow the same approximation here: In the

' first and last terms in (A9) the states Ip) are
so constrained, and in the second term, either
the state Irr) or Ip) is so constrained. The matrix
element of H~ between such states, when summed
over the pion modes, gave the classical field g„
of (2.15), where v labels the quark configuration
contained in Ip). The operator:qq: on the other
hand connects the ground state to excited inter-
mediate states. The structure of the various
contributions to I" is most easily understood
graphically, as illustrated in Fig. 2. In these
graphs the solid lines represent quarks and the
dashed line, the propagator for the pion. The
symbol && represents the operator:qq: . The
symbol o represents the poer taro: i'' rry, /fq:.
The bold line denotes a quark that has been excited
from the ground state. The thin line is an un-
excited quark line. The order of presentation
of the graphs in Fig. 2 corresponds to the order

q(x') = — d'x G„(x',x) 2y,iy,7' rr/fq(x),
S

or to first order in 1/f,

(A7)

e b

5q = g " d 2x'q„(x') 2iy,f ~ rr/fqo(x) (A8).
n~ (dp —(d

0
Since the solution (A8) was constructed explicitly
to. satisfy (A4b) to lowest order in 1/f, qo+5q
must satisfy (Al).

We now proceed with the quantum perturbation
theory of (2.12) using the illustrative example
of the nucleon of Sec. II. We wish to show that
(Al) is satisfied as an equation for the normal-
ordered expectation value on the perturbed eigen-
state. Since in this case the pion field is produced
from the quarks, it is necessary to work to second
order. in 1/f'. We want to evaluate

b

cI

/A b

FIG. 2. Diagrammatic representation of contributions
to the expectation value Il (A9). Symbols are explained
in the text.
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of terms in (A9) with the second term correspond-
ing to the third and fourth graphs. The letters
stand for the quantum numbers of the quarks in
a representative term in the expectation value

on the three-quark state. We shall now argue
that the contributions depicted by the three graphs
in each column in Fig. 2 cancel. For the left-
hand column they are, explicitly,

x g fq x q'(x'') ,',iy, q rr, -(x')q„(x') " ' xq, (x)ir ~ rr, (x)y, /yq, (x), (Ayq)
n (do —(dfI

where 7,,(x) is a c-number field satisfying

V'g„, =0 in V,

1tl' V7Tg~ = — qg+57q on S .

(A11)

q,5q, + 5q,q, +q,i7' ~ fr~,y, /fq, , (A12)

where 5qb and 5q, are the first-order shifts in
the classical eigenfunctions qb and q, due to the
external field z„,. This shift is precisely what
is required to meet the boundary condition (A4b).
In the form (Al) this boundary condition implies
that

(q, &q+,)(I +fr, & 7T .If)(q, +&q,) (A13)

and therefore, writing (A13) to the appropriate

But the expression (A10) may also be written using
(A8) as

order in 1/f, using q, q, =0, we find that (A12)
vanishes. Other contributions, including the quark
"self-energy" contribution, may be handled in
similar fashion. Thus (Al) is satisfied as an
equation for the expectation value on the state
to order I/f'. Q.E.D.

An important conclusion to be drawn from this
analysis is that the operator:qq: cannot be set
to zero on the surface, even though in the free
cavity expansion (2.11) the coefficients of the
operators q„q, etc. , all vanish. The problem
is caused by the representation of the perturbed
state on this basis. The sum over cavity modes
converges in such a way that the action of the
operator: qq: on the surface must be defined as
a limit of values obtained inside the bag, in the
same sense as in the classical expression (A8).
For this reason we have taken pains to include
such terms in Hl in (2.12).
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