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Dynamically broken chiral symmetry with bag confinement

T. Goldman*
California Institute of Technology, Pasadena, California 91125

Richard W. Haymaker
Louisiana State University, Baton Rouge, Louisiana 70803

(Received 6 August 1980)

We lay the groundwork for a model of low-lying mesons in the spirit of the MIT bag model but which also takes

into account dynamical chiral-symmetry breaking. We depart from the static cavity approximation in that we

dynamically break chiral symmetry prior to confinement and we confine only in the qq relative coordinate. We show

that single-gluon exchange in the qq system is a strong component of the force that drives the symmetry breaking.

We verify that our approximations respect the chiral Ward identity prior to confinement. For the pion, we find that

our boundary condition on the relative coordinate results in a small chiral breaking in that it raises the pion mass

from zero to -120 MeV.

I. INTRODUCTION

The MIT bag model of quark confinement' with
perturbative quantum-chromodynamic (QCD)
corrections has been quite successful in repro-
ducing the observed hadron spectrum with the
notable exception of the pion. ' This state tends
to come out much too massive, ' but more impor-
tantly, there is no evidence in the calculated
structure for any (approximate) Goldstone-boson
characteristics. The many successes of current
algebra' [PCAC {partial conservation of axial-
vector current)] demand that such a picture be
considered unacceptable. Some progress on the
mass problem has recently been made by Donoghue
and Johnson. ' They note that for a light state,
such as the pion, it is important to remove center-
of-momentum fluctuation contributions to the
energy of the state calculated using the MIT bag
method, as this method does not calculate the
system energy in an eigenstate of total momentum.
On the other hand, there are compelling reasons
to adopt the view described by Pagels and by
Pagels and Stokar' in which the pion is a conse-
quence of dynamical symmetry breaking in QCD
and in which the current-algebra quantity f, (pion
decay constant) can be calculated with confidence.

A major shortcoming in the MIT bag treatment
of the pion is the inadequate treatment of the
strong qq binding in this channel. Their pion owes
its existence to the chiral-breaking confining force
which gives a large mass to the p-p system. The
pion mass is subsequently lowered via a spin
splitting effect from gluon exchange. But gluon
exchange is a chiral-invariant force, it is attrac-
tive in the pion channel, and if it is sufficiently
attractive to bind a chiral multiplet to negative
mass squared, ' then it can destabilize the vacuum
and leave a Goldstone pion via the Nambu-Jona-

QCD 8 U (1 (1.1)

where I & consists of quark and gluon kinetic
terms, L~+~ contains the conventional quark-
gluon and gluon-gluon interaction terms of QCD
which are usually treated in the perturbative
fashion of loopwise Feynman-diagram expansions,
and L ~ describes the confining effect of the bag
volume energy density which is believed' to arise
from path-integral effects which are not obtainable
even by summing to all orders of a perturbation
theory using LqcD LU i& describes small in-U (l)A
stanton effects which break the axial U(1) sym-
metry. The calculational approach of the MIT
group has been to use L =L, +L, where

(1.2)Lo =LE+L~, L~ =L~co +LU

and L, is treated nonperturbatively, while L, is
treated as a perturbation. (I «»„effects were

Lasinio mechanism. ' Therefore we believe that
the important elements are present in the MIT
bag model but that the order of importance of the
various forces should t)e reconsidered.

In this paper we follow up on the idea that chiral-
invariant forces at medium distances in QCD
(intermediate between the asymptotically free
region and confining distances) are responsible
for the dynamical symmetry breaking. We then
subsequently impose a confining boundary condi-
tion to the otherwise Goldstone wave function. In
neither the original MIT bag, ' the improved pion
bag of Donoghue and Johnson, ' nor the present
model is any attempt made to maintain the axial-
vector-current conservation at the surface of the
bag. However, this is far less serious a problem
in our model as we shall attempt to show.

The MIT bag picture' of hadrons may be de-
scribed as an effective Lagrangian density of the
form
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added by Horn and Yankieiowicz. ') However,
since L ~ violates chiral symmetry, L, is not
chiral invariant even for zero quark mass.
Spontaneous -symmetry -breaking -induced PC AC
never has a chance to appear due to the oblitera-
tion of the initial invariance in Ll. Some effort
is now being made' to find a chiral-invariant form
ofL .

Here we consider an alternative calculational
grouping procedure (in the meson sector only),

0= ~' geD+LU(~)„~ I-i=La

treating the effects of confinement as a small
effect where appropriate. Now L, is chiral in-
variant for vanishing quark masses, and we ex-
pect that if L, is treated carefully enough to find
bound states (e.g. in mean-field perturbation
theory), then, for the effective value of the strong
coupling constant n, & z," some critical value
to be determined dynamically, spontaneous sym-
metry breaking (SSB) will occur and we will be
able to find a Goldstone pion. Note that there is
a consistency check on this procedure: Since z,
decreases as the appropriate length scale (=A ')
decreases; we must find such Goldstone pions
with a natural size sufficiently small so that con-
finement effects can be neglected on that length
scale and yet sufficiently large such that a, & n,"".
For mesons with a small enough spatial extent
it is clear that the effects of I.~ must be small.
This chiral-breaking I ~ will also affect the usual
PCAC relations; in particular, inferred current
quark masses may differ from those obtained in
the usual PCAC analyses.

A few comments may be in order on the nature
and origin of L~. Actually, as far as is presently
conjectured, ' the object in full QCD that appears
is L,„„,not L ~, where the former may represent
the effects of instantons. " However, all of the
effects of L, , vanish if only one quark is mass-
less, "and we start here from a chiral-SU(2)-
invariant L& in which both the up and down quarks
are massless. (Actually we only need these quark
masses to be sufficiently small so that the chiral-
symmetry-breaking effects that they induce are
negligible compared to everything else on the
scale of SSB effects. ) Furthermore, such in-
stanton effects would be expected to leave the
pion massless as they, and so any confinement
produced by them, violate chiral U(2) but in a
chiral-SU(2) -preserving manner.

Recall, however, that the quark masses are
scale-dependent quantities, with variation de-
termined by the renormalization group, "and their
values grow with increasing distance scale. Such
growth itself would have a confinementlike effect
(at least, until their own growth freezes the

variation with scale of the fermion self-energy
graphs in the manner of the Applequist-Carazzone
decoupling theorem"). This effect can give rise
to a nonzero pion mass since it is an explicit
chiral-SU(2)-symmetry-breaking effect propor-
tional to the "ultraviolet" (current-algebra) quark
masses. ' ' We will return to this point in Sec.
IV.

It should be noted that there may be more than
one mechanism that can produce confinement,
that are active on different scales. We have in
mind the instanton effects' and the growing cou-
pling constant analyzed by Ball and Zachariasen. '4

The one with the shortest length scale will dom-
inate the spectrum, shielding any others which
could then only show up in large-momentum-
transfer scattering. It is very important to main-
tain L, , effects since, as shown by 't Hooft, "
they provide the chiral-U(1)„breaking observed
in the g-q mass splitting. Horn and Yankielowicz
examined this quantitatively for instantons of
scale p & p ' and found consistency with the ex-
perimental mass values. We neglect the g-g
splitting interaction here. Any further attraction
of this type in the pion channel must be included
along with gluon exchange as part of the driving'
force for dynamical symmetry breaking. "

The outline of the rest of this paper is as
follows: In Sec. II, we display the gluon-exchange
Bethe-Salpeter description of the qq bound states
using mean-field perturbation theory. Cutoffs
and approximations are introduced to make the
problem tractable, and the wave function for the
massless pion is obtained in the SSB regime. In
Sec. III, we study the definition of the electro-
magnetic current and the corresponding Ward
identity. We then formulate the axial-vector
current and examine its anomalous Ward identity.
The divergence of the current is used to identify
the pion decay constant f,. In Sec. IV, confining
boundary conditions for a relative-coordinate
bag are quoted" and applied to the wave function
from Sec. II. The result is the energy of the pion
state as a function of bag size. The bag volume
energy is added to this and the total minimized
to find the pion mass. Finally, Sec. V briefly
summarizes our results and describes our con-
clusions.

II. SPONTANEOUSLY BROKEN CHIRAL-SYMMETRIC
WAVE FUNCTIONS

Our basic idea as described above is to take
into account the known short-range qq forces to
dynamically break chiral symmetry before im-
posing confinement. In this section we obtain
wave functions for qq states to replace the free
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wave functions used in the usual bag model, We
propose to calculate the one-particle-irreducible
generating functional I'[(I), II)] in an approximation
that has the following properties: (i) it is capable
of producing a dynamically broken vacuum, (ii)
the strength and range of the q(7 forces can be
related to the masses, couplings and wave func-
tions of the pseudoscalar Goldstone bosons and
the other mesons that arise naturally (scalars,
vectors, and axial vectors), (iii) the approxima-
tion does not introduce explicit chiral breakings,
i.e. , it respects the axial-vector-current Ward
identity, and (iv) it is tractable.

We take a phenomenological approach to this,
patterned after the Nambu-Jona-Lasinio (NJL)
model. ' The NJL model remains the only really
tractable approximation to dynamical symmetry
breaking. The simplicity stems from the fact
that their interaction term is a four-fermion
point coupling. That is, of course, not the case
for QCD but we can argue that a separable inter-
action is a sensible approximation and this gives

as
color
singlet

i =S,P, V, A,
T

G
2

FIG. 1. Approximation of t -channel gluon exchange
by a separable form representing the lowest bound
states.

us the needed simplicity. Approximations of this
type have been developed by a number of au-
thors" " including one of us (R.H. )." Janus and
Cahill" and Janus" have compared the separable
approximation to numerical solutions of the non-
linear Dyson equation for a (t) a model and found

good agreement. More will be said about these
developments in our conclusions, Sec. V.

To be specific let us take the simplest qq force,
i.e. , the single-gluon exchange, to illustrate the
approximation. The action A. for gluon exchange
can be written

d =
Jl d'xp(x)((y x -m, )d(x) — ' I d xd'y((tx') xy„d(x) . )(y)x y td, (y), '' (2.1)

where m, is the current quark mass, and X" are
the Gell-Mann matrices. If we were to replace
1/(x -y)' by 5'{x—y) {times an appropriate dimen-
sional constant) this would give essentially the
NJL model.

Our approach is based on the following physical
picture. The gluon-exchange kernel E in a qq
Bethe-Salpeter equation is attractive in the meson
channels (color singlets). It is possible in prin-
ciple to make an eigenfunction expansion of E
and for energies near an eigenvalue, E can be
well represented by the outer product of eigen-
functions of the corresponding bound state. A1-

I

though the ground work has been laid to solve
the Bethe-Salpeter equation and the Schwinger-
Dyson equation to generate symmetry breaking,
we will not be that ambitious here. We use this
argument to motivate our basic ansatz as shown

in Fig. 1. We approximate the one-gluon exchange
by a simple separable form in the meson channels.
The specifics of this approximation are developed
in this section.

A. Phenomenological action and generating functional

We will replace the action, Eq. (2.1), with the
following:

+g dXdgdg IG'~ & g ~ 47 p 3 +G~ 2T $+5 X g 47 (tp5

—& *(f,y'y„f(x)d, le%,y'y"f(y)d, ) —G '(x.x"y„y,f(x)d, )(yy, y'y"y, f(y)d, )} (2.2)

where x, =X= —x/2, x, =X+x/2, x, =X-y/2, x, =X+y/2, and g, =g(X-x/2) etc. a is to be summed from
0 to 3. In going from Eq, (2.1) to (2.2) there are a, number of implicit summations and definitions that
are suggested by Fig. 1. In Eq. (2.2), (T()T f(x)(l)) for example has the quantum numbers of a meson,
whereas ((()A."y„g) in Eq. (2.1) has the quantum numbers of a gluon. The function f(x) is introduced in order
to give a soft q-q-bound-state-meson vertex. This is taken to be a function with a simple form in momen-
tum space:
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d'p, ~ „. A' iA'K, (AR) (2.3)
J (2s)' ' A'- P' 4s'R

2
where R = (-x' +x')'~', and K, is the modified Bessel function. This shows anexponential cutoff in R with range
l/A in the spatial direction. As A-~, f(x)-6'(x). The significance of Ais that itis a measure of the
range of gee qq force terat is relevant in determining the properties of the loauest-tying bound state. (F»
example, although the Coulomb potential has an infinite range, only a finite range has a significant bear-
ing on the lowest bound state. ) The coupling strengths are determined in terms of c(, and A from overlap
integrals which we describe below. 'The gluon-exchange force gives equal couplings in the pseudoscalar
and scalar channels and in the vector and axial-vector channels and zero in the tensor channel which has
been incorporated into Eq. (2.2). The -', is a convenient factor [= —", (color-singlet projection) xa (flavor
projection) x 2 (term in the action, not a graph)], which we choose not to include in the definition of the
G's.

The action is now in the form in which one can use the NJL techniques to generate dynamical symmetry
breaking via a self-consistent field approximation. We do this but we use the language of mean-field
perturbation theory" or "1/N expansion"" which are all equivalent for this problem. The idea is to intro-
duce composite or constraint fields for the mesons in such a way that the action is bilinear in. quark fields.
One can then do the path integrations over quark fields leaving a nonlocal action in the meson fields that
can be expanded in perturbation theory. In this way we obtain the one-particle-irreducible generating
functional F[g, (P, meson fields]. We give only a few intermediate steps (see above references for more
details). Add to A in Eq. (2.2) the term

I
2

dX G dx X+ — 7 x X—— + 0 X
I, 2j 2 2 2

+ G~ dx(j X+— viy, f. (x)P X- — + m (X)
X Qt x 3p,

2 2 2

3 2

2 2
G» dxg X+2 7 y~f(x)g X-2 ~+ V(, (X)

X Q x 3p
2 2

G» J dx(t( X+— » y„y,f(x)g X—— + A(((X)

Varying the action with respect to the meson fields gives constraints which relates them to bilinears in
the quark fields. The mass parameter p is introduced solely to give the meson fields conventional di-
mensions. The numerical factors are chosen for convenience. The resulting action. is

2

& = g(sx«Ti({~+—
)& '(»2«(i((~-2 I

—"2 sxI(ii'(z)I'+(~ (x)l*-(&;(X('—(&„(&(I'I

where

q- ~(X,x) = iy. s,[5'(x) + g(x)] -m, 5'(x)

f ( )[xg~ (x7"—(X) + gp&"iy, (("(X)

g» ~"y"V—„"(X) g» ~"y" y—,A „"(X)]

(2.4b)
V(o) = —l (0, 0, o"(I') = 5„,v, 0, 0, 0) . (2.7)

g is the "classical" term; the second term is a
saddle-point correction. This is the starting
point for all further calculations in this section.

From Eq. (2.6) we can get immediately the ef-
fective potential V(o):

and

2&2 2v 2
gp= 3 Gpg ~ gv= 3 Gv (2.5)

We only allow a nonvanishing minimum in the
isoscalar part of the g field. Before writing
this out, however, we need to have the propagator
$ for a constant field o.

r[y, g, o",",V„",g„"]=a—i TrlnS '. (2.6)

and x, =X —x/2, x, =X+x/2 as before.
The one-particle-irreducible generating func-

tional to lowest order in the mean-field approxi-
mation is

B. Quark propagator

We have introduced two nonlocal functions f(x),
. g(x) in the propagator, Eq. (2.4). The role of
f(x) is to cut off the short-range core of the qq
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interaction. At short distances f(x) is less singu-
lar than 5'(x). We view this "soft" term as orig-
inating from QCD and expect that any calculation
of it would also produce a "soft" contribution to
the iy 0 term of S '. Hence we include a function
g(x) which we also take to be less singular than
5'(x). We choose the form of g(x) to be simple in
momentum space,

which has been fit to e'e data and will be dis-
cussed shortly.

We need to find S, fortunately only for a con-
stant g field. S satisfies

(2.9)

Since for constant o, S and S ', depend only on the
difference coordinate, this is soluble in momen-
tum space:

= (x —1)f(x) . (2.8)

This introduces a new parameter A. , but it can be
eliminated in terms of the "dynamical mass" MD

g„2 p2 p2 p2 q (2.10)

y p(~A'- p')(A'- p')+ g oA'(A' p')-+ m, (A' p')-'

D( p') (2.11a)

where

D(P') = P'(P' ~A')'

—[g, Ac' m+, (A' —p')]'. (2.11b)

Consider for a moment the case in which g(x) is
absent (A. =1). The propagator has three poles.
The lowest one we identify with the quark mass,
the other two represent the cut in an approximate
way. Clearly for A. c 1 there are still only three
poles and any other form would proliferate this
number. This simplicity guided our parametriza-
tion of g(x).

At this point we set m, = 0 for simplicity since
it does not directly play a large role in determin-
ing the pion mass in our approach. The added
complication is straightforward and will be in-
cluded in a global fit in another paper.

The minimum position of the effective potential
will fix the value of g.

(2.12)

for fixed M, and these pole positions are deter-
mined by the single parameter (A. A2). Note from
Eq. (2.11) that gpv x M, but rather the two are
related by the equation

M'(M' —~A2)2=g 'v'A4. (2.16)

As A-~, M-g~v.
For later reference, we define A, B (m, = 0),

y pa(p')+F3(p')
D(p') (2.17)

where A( p') = (XA' —p')(A' —p'), B(p') = (&A' -M')
(A' p'), and D(-p') is given by Eq. (2.14).

Our quark mass which we denote by M is the
pole position in the propagator. The term dynam-
ical mass MD as used by Pagels and Stokar' is a
short-distance quantity defined by

X(P') 4M„'
y(p2) p2 P

where

D(P') Ip2=u2= o (2.13)

From here on we substitute v for cr in the quark
propagator.

The quark mass M is given as the smallest root
of

s-'=y p&(p') -x(p').

M~ parametrizes the approach to the short-dis-
tance limit and it has been fit to e z data by Hagi-
wara and Sanda. " They obtain a value of M = 240
MeV. In terms of our parameter,

Hence D(p') can be written

D(P') =(P'-M')(P'-P, ')(P' P'), -(2.14)
4M '=g v A'=M(&A' -M') . (2.18)

where (m, =0)

M
p

2 + yA2 ~ (4gA2 3M2)1/2
2 2

(2.16)

This could be used to eliminate A.. Whether or
not the present determination of MD is reliable,
we can use our. value of MD to compare with other
determinations of it.
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C. Effective potential; spontaneous symmetry breaking

The effective potential is given by Eqs. (2.6) and
(2.7):

V(o)=-6Tr„i Jl ~ 1nS '(p)+ —o . (2.19)

(The factor of 6 comes from three colors times
two flavors. ) Wick rotating and evaluating the
angular integrals we obtain (m, = 0)

FIG. 2. Normalized overlap integrals for the de-
termination of coupling strengths G&.

OO 2 2+2 2

V(o) = —, p'dp' ln[p'(p'+ ~&')')+ln 1+, , ~,,, +—o'. (2.20)

The first logarithm gives an infinite but o-independent term so it is irrelevant and we drop it. The re-
maining integral is finite. We then look for a minimum of V(cr) for nonzero o and find v (=(o)). This
gives

(2.21a)

Using Eq. (2.16) we can eliminate v in favor of ~ and obtain

3& p. p 'ln~ '-; +~'p, 'ln, ~+~'p 'ln ~,
+

2~2(p 2 ~2)(p 2 bf2)(p 2
p 2)

(2.21b)

This gives one relation involving Cp, ~, ~, and ~.
As one decreases the mass ~ to zero, the interaction strength ~& needed to give that mass goes to a

critical value G~""'. Taking M- 0 in Eq. (2.21b), we find

3~2' 1/2
g (crit)

P 4p2 (2.22)

This is the value of G„at which dynamical symmetry breaking sets in. G I, must be larger than this in
order to obtain a finite constituent quark mass which we call ~.

D. Determination of 6; in terms of gluon-exchange strength G.,
We now need to determine s p y „z from the gluon-exchange graph which is proportional to ~,. We

project the gluon-exchange graph on our separable form as indicated in Fig. 1. The coefficients G,. are
determined by closing this off with wave functions on the right and left as indicated in Fig. 2. Writing this
out in momentum space we obtain

A2 A2
2.(T&2743)[ (s)&t(2).3+G~'(~&.)»(».)43 —Gv (&'.)»(~')4~

A q A P
—G '(r, ~,),.(~'~,).,+ Gr'(o"")»(~..)43]

where p, =P/2 —q, p, =P/2+q, p, =P/2-p, p4=P/2+p, for scattering 1+2-3+4. We projected onto a
color singlet, dropping a factor of —", from both sides, but displayed the flavor tensor.

We now calculate the overlap in the initial and final state with the wave function

I & A2TO

y, (q) = ~ (q) ~. —,S(q),

where the 1 are the Dirac matrices. We make the projections at P =0 and for chiral-symmetric wave
functions, i.e., the strengths G, are fixed prior to symmetry breaking. Hence & (q) =r 'q(&'-q')/
(zA' q'),
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s )8, k'l' 2 G 2iG &)e, i &;,~r (2.23)

where

d4p d4q Tr[S(p) 1 &T S(p)y" S (q)r r"S(q)y ]
(2v)' (2m)' (q —P)'(~ —P )(~ -q )

d4p Tr[S (p)r&r'S(p)r*T ]
(2~)4 (g2 p 2)2

(2.24)

and

5, =1 for S, I', T, &,. =-1 for V, &.
d'q Tr[S(q)']
(»)' (~'-q')' (2.26c)

m~, e~ = G~'X~',

where

(2.26)

d'q d'p Tr[S(q)'y'S(p)'y„]
(2'�)4 (27))4 (g2 q2)(/2 p2) (p q)~

(2.26a)

g2 g2

16m'~' 3
(I X)2+X— (2.26b)

and

These are diagonal in the space-time indices i, j,
and the flavor indices &, P Cl.early the scalar
(I'=I) and pseudoscalar (r =iy, ) cases are equal
as are the vector (o =y„) and axial vector (I'
=y„y,). This is just a result of chiral symmetry.
Further 6 is zero for the tensor case (I'= o,„) be-
cause the trace is zero before integrating. There-

G~ =G~, G~ =Gv', and Gr -0. Carrying
out the flavor traces, the pseudoscalar case gives

A2

4m X
(2.26d)

These integrals. are evaluated in the Appendix.
Finally, the relation between &, and GJ is

G 2ZA2

' v[(1 ~)'+Xv'/3] (2.27)

If we take for G~ the smallest value that gives
spontaneous symmetry breaking, i.e., the critical
value G„'"'"= (sv'&/4&')' ', we obtain

2
+ (crit)

4 (1 ~)2+~v'/3 ' (2.26)

We return to this result after establishing a rea-
sonable range of X.

Similarly we can find Gv,

(2.29)

where

and

d q . d p Tr[S(q)y, S(q)y S(p)y„S(p)y ]
(»)' (»)' (&'-q')(~'-p')(p -q)'

A2
(X'+1) 4 ——~+ (v' —9)

64 ~ 3 i

d'p T S(p)y'S(p)y"
v (2~)4 (p2 p 2)2

A2

8m2~ ~

(2.3Oa)

(2.sob)

(2.3Oc)

(2.sod)

These integrals are evaluated in the Appendix. Using these results, we find

G, ' (~'+1)(4 —v'/3)+ ~(v'- 9) O.O46~

(1 —X)'+ Xv'/S '
(1 X)'+ Zm'/3

' (2.31)

This ratio varies only between 0.696 and 0.710 for any positive X. In the NJL model, this ratio is 0.5 and
thus this is a departure from a four-fermion interaction.

E. Meson propalators

The meson propagators are obtained from the generating functional Eq. (2.6). The pion propagator is,
for example,



DYNAMICALLY BROKEN CHIRAL SYMMETRY %ITH BAG. . . 731

Q2p

6 .( )6 e( )
=-I&~ (~,»]-8 (2.32)

"Sources off" means that after taking functional derivatives of I', the classical fields are all set to zero
with the exception of o'=v. In momentum space we have

d4q» (iy. I}S q -—(iy„I)SI q
(&, s) --6gp ~ I x4 2 ( 2 )

~ (2n') (~2 2) 2 + I"

where i),
' is given by E(I. (2.21). Using E(I. (2.17) for S gives

! P) t' Pl f, P'&, (

u(p, )
'(~2-) =-24&'g, 'z

( ),t

~I p 2 ~

~~ ~24
~

~4 2 I

~

2~

4
~

~~

~
~

2 2 2

~

2 ~

p

2

~

2

~
~

2

~

~

~I
~

~ ~ ~I
&I q ——I+ I q+ —

II
q' -—I+i(f'+

I q ——I& q+ —
I

q
-),

(2.33)

(2.s4)

F. Wave functions

The bound-state wave functions are 4 &&4 ma-
trices in Dirac space transforming like g. For
the pion, the momentum-space wave function is

(t), (q, P) =7.(f),(q, p),

(t) (q, p) =sIq+ —Iiy, f(q)s q- —I.Py.
2] ' 2) (2.35)

We will go to the center of mass where P = (Es, 0),
where E~ is the bound-state energy, which is zero
for the pion. The x-space wave function is given
by

For the pseudoscalar case, the bracket vanishes
for P'=0 as it must since the m is a Goldstone bo-
son and the current quark mass rn, =0. This is the
first check that the cutoff procedure does not vio-
late chiral symmetry.

The vector and axial-vector propagators can be
calculated similarly but we will delay that discus-
sion to another paper. All the propagators can be
calculated in closed form using the integrals in
the Appendix.

I

y (k, p) = y'.(k, p)+, S k+ —Iiy j(k)S k-
2

6g2 Pl(. - P

d4
x i q, Tr [iy,f(q}(I)(q, P}].

H =i 4 Tr [iy,f(—k) &jb,(k, P) ]
de (2.38b)

and similarly for II . Therefore

y,(k, P) =y'„(k, p)

+6g'5), (P')IPS k+
2

iy j(k)S k ——P P

(2.37)

Q', (k, P} is a free wave which we will discuss fur-
ther in Sec. IV. The solution is trivial: Taking
the appropriate trace and integral gives

6 2

a=a'+a ~
z

p
2

" d4ux,Tr iy j(q}SI q+ iy,f(q)S q- ——I,'

(2)()' . )( 2 ' 2&

(2.38a.)
where

y, (x, P) = J~d'qe-""y, (q, P). (2.s6) (2.39)

At equal times q x=-q x, and one can evaluate
the integral over qo by residues. The remaining
integral over q can be evaluated by series as
sketched in the Appendix.

In Sec. IV, where we impose confinement, we

need to know more than the wave function Eq.
(2.36). This wave function falls exponentially for
larger r and has an eigenvalue &~=0. Confine-
ment in the relative coordinate imposes a bound-

ary condition at finite R to replace the condition
at ~. In other words we need a general solution
of the Bethe-Salpeter equation with an inhomoge-
neous term which will include growing behavior
for large r. This is not difficult since our Bethe-
Salpeter kernel is separable. Consider

where we have used the equation for S, ', Eq.
(2.33). In Sec. IV we will Fourier transform this
equation and impose the confining boundary condi-
tion. Note that the unconfined eigenvalue condition
is recovered in E(I. (2.39) by going to the P' =0
pole.

G. Summary of the parameters of the chiral-invariant
model

We have introduced parameters in a way that
makes our action, E(ls. (2.4), resemble a o model.
However, there are no kinetic terms for the meson
fields to fix their normalization, and hence we have
redundant parameters. In this section we remove
the redundancy by normalizing the pion propagator.
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the confinement correction to f, and the value of

MD must be very well known to infer A. We are
encouraged in our crude choice in (iii) above by
a different argument discussed in Sec. IV which
determines a very similar value of A. (v) Figure
4 shows that, for fixed X, n, decreases as A in-
creases; if n,'""'were zero, this would parallel
the asymptotic freedom property of QCD very
closely. Thus there is a much larger range of A
that is consistent with there being sufficient
strength for SSB to occur than might be naively
expected.

The experimental value of n, at the very large
scale given by A is extremely poorly known. Fur-
ther, this approach has been carried out to lowest
nontrivial order only, so the precise value of n,
is unspecified since an explicit renormalization
subtraction scheme has not been determined. How-
ever, we have made rather rough approximations
and wish only to ask if n',""-n, calculated here.

The parameter A~ is used to characterize
&exPt asS

FIG. 4. Values of e, necessary to obtain M =0.3 GeV
from the core of one-gluon exchange, cut off at distance
A ~. Families of curves are as in Fig. 3. The points at
A = ~ correspond to o, '"'(see text).

rametrization of the propagator breaks down. That
is, it has three poles at M, p, p, . For MD
=M/2'~', M=p, this gives MD=240 MeV for our
choice of M =300 MeV. Our parametrization of
the propagator is about the simplest conceivable
one and it may seem disconcerting to see that a
value for MD consistent with experiment allows
such bizzare infrared behavior. Recall, however,
that the p, poles are actually a crude representa-
tion of the cut for the dispersive representation of
the quark propagator. As is true for the electron
propagator in QED, one might expect that the true
cut touches the pole: It is interesting to speculate
whether a better representation of the cut might
lead to a prediction for MD by satisfying this con-
dition as a constraint. (iii) For the purpose of
fixing parameters for what follows, we will choose
MD=400 MeV. Then for f, equal to its experiment-
al value, A =1 GeV and ot,

~
„„„=0.76. (iv) Pagels

and Stokar obtain' M~=275-300 MeV. This would
force us to accept values of f, =70 MeV. We be-
lieve this is encouraging, since the effects of con-
finement have not yet been included: The syste-
matics of such an inclusion must be to increase
the pion wave function at the origin (since nor-
malization is preserved and the large-distance
components are suppressed by confinement) and
so also the value of f, . The slow variation of f,
versus A for fixed M~ shown in Fig. 4 means that

12'
251n(Q'/A ') (2.45)

~exet(1 GeV2) 0 6+0.8
S ~ 0 6 (2.47)

where the asymmetric uncertainty reflects the
widely accepted belief that o.',(Q') does not decrease
as Q'-0. (Difficult to prove in the nonperturbative
regime; but see Ball and Zachariasen, Ref. 14.)

We have argued above that A represents the
mean scale of Q of gluon exchanges involved in
constructing the meson bound states. Thus Eq.
(2.47) is to be compared with n,

~

„„=0.76 ob-
tained for A=1 GeV. Of course, this does. not
prove that the picture of meson structure drawn
in this section is correct. Nonetheless, it is a
reasonable consistency check on our basic assump-
tion: Gluon-exchange forces may very well be
strong enough, on a scale srnallex than the can-
finement scale, to induce spontaneous symmetry
breaking and so significantly affect the contribu-
tions of confinement energy to the meson spec-
trum.

in the Q' region above the g/J where four quark
' flavors are active (where MS refers to the modi-

fied minimal-subtraction scheme). The value of
A~ is believed'~ to lie in the range 100-600 MeV.
We are interested in much lower values of Q', so
we have

&"exet "(Qe)—
23 ln(Q'/m &') + 25 ln(m &'/A M s ')

(2.46)
to account for the fewer flavor degrees of free-
dom active below charm threshold. This formula
is good to 0(n) down to Q~-m '. Thus
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III. ELECTROMAGNETIC AND AXIAL-VECTOR
CURRENT AND f„

T((x) -T('(x) = e*o ")q(x)

a, (x) -a', (x) =a„(x) -s„o.(x).

(3 3)

In the previous section we represented the bound-
state couplings to quarks by a nonlocal interaction
involving given functions f(x) and g(x). Since these
are not treated as dynamical variables the defini-
tion of currents in this model is nontrivial. It is
nevertheless possible and we do so in this section.
We find the locally conserved electromagnetic cur-
rent in this model in order to lay the ground work
for calculating the electromagnetic form factors.
The demonstration in this section that there is a
locally conserved axial-vector current is crucial
since only then can we claim that our softening of
the q-q-meson vertices is chiral invariant. We
show that the axial-vector current Ward identity
is satisfied and this leads in turn to a simple ex-
pression for f,.

A. Electromagnetic current

To calculate an electromagnetic effect we sim-
ply use the generating functional I', Eq. (2.6), but
replace& and S ' byA«and SEM '.

2 „(p, . . . , A „)=A E„-i Tr 1nSE„' .
The photon couples to any process through the
vertex,

( )
6SEM (x2, x1)

31 2% 1 6a ( )

2
= iQ 6~(y —x,)dy"8 '(2, 1) . (3.5)

1

Going to momentun space we define the vertex with
the momentum routing shown in Fig. 5(a) which
gives

&'(p p, ) =() f4(r (0* —1),)[( +(/(p. (p.))-
2'

We will identify the electromagnetic current by
coupling a photon field to our action, Eq. (2.4), in
a gauge-invariant way. We then verify that it sat-
isfies the local current-conservation Ward identi-
ty.

The technique to get gauge invariance of nonlo-
cal products involves introducing a line integral
of the gauge field. I et us write the action Eq.
(2.4) in a more compact form:

2

A dXzdX2 X2 X2 p Xz Xz dx F X

-If~f(P. —fP, )) . (3.6)

y" = t:(x, —x,)" +x~ .
The tilde means four-dimensional Fourier trans-
form. Note that for the point-interaction case,
i.e. , g(p) =0, f (P) =1, that Eq. (3.6) becomes
f'" =Qy'".

The g integral results from evaluating the dy" in-
. tegral on a straight-line path between x, and x,.
The substitution is

where

S '(x„x,) =iy. S,[6'(x, -x,)+g(x, -x, )]
—3it(x, -x,) .

(3.la)

(3.lb)

(a)

(b)

P3

We now generalize the action to one that is invari-
ant under the electromagnetic U(l) gauge trans-
formation.

2

ARM= dld2 2 SEM
' 2 l l —— gxF X,

(c)

where

(3.2a) P/2

P

P/2

(3.2b)

A path for the line integral will be specified below.
A« is invariant under the gauge transformation,

p(x) -q'(x) =e 'o"("' y(x),

FIG. 5. (a) Momenta in the quark-current vertex. (b)
Pion-intermediate-state term in the axial-vector-cur-
rent vertex. (c) Momenta for quark-pion-axial-vector-
current vertex. (d) Momentum sharing necessary to
interpret the integral I in the Appendix as a triangle
graph.
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The Ward identity following from local charge
conservation is

p..l"(p. ,p, ) =@[8 '(P.) -8 '(P, )]. (3 7)

Our vertex satisfies this identity. To see it, use
the fact that f (p), and g(p) are functions of p',
which gives

d
P2 sp f (P2-CP2) =-~~f (P2 -&P2) (3 8)

and similarly for g. This gives

p, „r (p„p,) =qp, y

««[y (p. u. )g-(p. u.)-d

0

B. Axial-vector current

We can proceed in a similar way to find the
axial-vector current by buiMing a gauge-invariant
action and isolating the coefficient of the axial-
vector gauge field. (This gauge field is introduced
solely as a means of finding the current and is
then dropped. ) Hence we look for an action that is
invariant under the transformation:

(t)(x) -0'(x) =e("'~('g(x),

T()(x) -T()'(x) =e(&'»)T(x))),

e„(x)-7()„'(x) =(2„(x)+(),p(x),
where Q, is the set of three axial-vector charges
whichgenerate SU(2) x SU(2) together with the three
vector charges Q. Q, acting on quark fields is

(3.10)

-g(/f (P. Cp, )] — (3 9)

which upon integration gives (3.7). If we insert our
assumed forms for f and g, then 1 "(p„p,) can be
evaluated in closed form.

(7'/2)y, . [There is an additional U(1) axial-vector
generator but that invariance will eventually be
broken. ] The meson fields also transform under
this gauge transformation. We will focus only on
the T( and isoscalar o in the action Eq. (2.4):

(o+iy 7 (() -(o'+iy, v' ~ )('&

—e(~'())'2(& +iy r ~ &)ei~' 82'
Following the electromagnetic case,

(3.11)

Sax (2, 1) =exp(iy, —(s„dy" I
8-'(2, I)

(1+2 )/2

( (1+»/2 ~x exp~ -iy, — (8 dy" ~, (3.13)
I, 1 2 " j

and where S '(2, 1) is given by Eq. (3.lb). We
choose to break. up the line integral at the mid-
point in order to have a more symmetric expres-
sion which has technical advantages later. The
axial-vector-current vertex must satisfy the Ward
identity

P.„I"."(P.,p, ) =-—[y,S '(p, )+8 '(p.)y.]. (3.14)

The axial-vector gauge couplings can be obtained
from the generating functional l,„given by

I',„[(I),. . . , (T)„]~A,„-i Tr lnS„'. (3.15)

The "Gaussian term" Tr lnS ' is needed in order
to get a nonzero v and cannot be neglected in cal-
culating the axial-current vertex for nonzero v.
The axial-vector vertex is obtained by coupling
the@" field to quarks, but also to include the ))

intermediate state.

2

A, ~= d1d2 2 S„' 2, 1 1 —— dXF X,
(3.12)

where

(3.16)

5S.„'(2,l) . 1+2 58 ' 5S ' 5'8I","(3,2, 1) = '" ' —f(2 —1)g/v'(iy, X), , 5 iTr
( )

8 '" 8 iTrS
(
-)'"N

(3)
d5.

(3.17)
Referring to 8,„-, Eq. (3.13), note that the 52S„' term would vanish if the interaction was local, i.e., if
g(x) -0 and f(x) = 5'(x).

The first term in Eq. (3.17) is the direct coupling of the axial-vector current to quarks:

5S.. '(2, 1) 5S '(2, 1) O'I' ' 5'I',„
5(T)„(3) 5((((4),5((((4)5)(/(5) 5(( (5)5(g (3)

The second term is represented diagrammatically in Fig. 5b. The axial-vector meson mixes also, but we
will neglect it here. Carrying out the functional derivatives gives

1(2 I) 2 (1+2)/2
=i—y, 5'(y —x,)dy "8 '(2, 1) —S '(2, 1)i—y', 'b —x2)d) "~

(3) 2 (1+2)/2 2 1
(3.18)
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Going to momentum space, using the same definition as the electromagnetic case [see Eq. (3.16)] gives

(3.19)
0

(pa, p~) = —y» Jl dp(y p[1+g( p)] —gvf (p)) —
& d&(y .p[1+g(p)] -gvf (p)] —ye,

~P2 2

where p is defined as (p, +p, —gp, )/2. Similariy we define the qq-v-„coupling in momentum space with
the momenta shown in Fig. 5(c). This gives

0

I'l;(p. , p. ,p, )=- ', ' g,r, , d~f(p) — deaf(p),
P2]J, ~ 0 -1

where p= (p, +p, —gp, )/2. If we multiply this by p, we get
I

p.„I.', (p. , p. , p.)= 'r.g,—f p, ,'l f——p. ,' -2f—l ', '
~

2)

(3.20)

(3.21)

We could give the expression for the full axial-vector-current vertex in momentum space but it is not
very illuminating. However, it is interesting to look at the divergence

g(p +p.
)

Pa, l'a(P. Pi) =2E(P. Pi)+ ~ -i
)

G(Pa)
(ppi

where

(3.22)

(3.23)

(3.24)

s(p. , p, ) —y.s '(p, ) —s= '(p. ) .—ry, syvf( 'r ')
d q — P P P Pc(p)-=—ssi, sr t(p)y, s q ——s q ——,q+ —s q+ — s(q)y, f1 q —-— r q+ ——rj(q) I.(27()a ' 2 2 ' 2 2 2 2

The right-hand side of Eq. (3.22) collapses to give
the Ward identity, Eq. (3.14). Note that we have
used Eq. (2.33) to establish that

G(P) = vm, -'(P) . (3.25)

We can now calculate f„using this result.
First note that G(P) is the divergence of some-
thing —which we now define to be G('(P), G" (P)P„
=G(P). By invariance G" (P) is proportional to

Call the proportionality constant f, (P ). The
amplitude for a p,. to couple to the axial-vector
current p'„,. is

5;qG" (P) =5;if,(P')P" . (3.26)

Taking the divergence and using Eq. (3.25) in the
limit as p- 0 gives

f, (0) =v, (3.27)

since X),(P ) has a unit residue at the pion pole.
The convention in Eq. (3.26) is chosen to agree
with the o model in which f, = v also. The decay
constant defined this way has an experimental
value f, = 93 MeV.

IV. MASS SHIFT OF THE PION DUE TO
CONFINEMENT

We now impose confinement by relaxing the bound-
ary condition on the wave function at infinity in the
relative qq coordinate x, and imposing an appro-

I

priate condition at finite separation. This new
boundary condition is developed in another paper. "
We will lift a result from that paper and use it
here. We refer the reader to Ref. 16 for details.

In the MIT-bag cavity approximation, mesons
are built up by putting a q and q in a static cavity.
In our picture we have a "cavity" only in the qq
relative coordinate. The qq system can be in an
eigenstate of total momentum P [In practi. ee we
will choose P = (E, 5).] Physically we picture this
as a model of QCD confinement which restricts
the separation of a qq pair. Our implementation
of this closely parallels the MlT-bag development.
We find a linear boundary condition on the qq wave
function which corresponds to zero particle flux
across the surface. We then supply a volume en-
ergy and a quadratic boundary condition which
guarantees classical stability of the surface, i.e. ,
zero flux of energy and momentum across the
surface.

We will impose the following linear boundary
condition on the meson wave functions:

r r4r' r'4r" r+f(4-—r'r &4' rr')
surface

(4
where Q is a meson wave function in the center-
of-mass frame as described in Sec. II F. The
unit vector x is directed in the x = x, —x, direc-
tion. This condition implies r ~ J= 0, where J is
the relative-coordinate current density"
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(4.2)

This is analogous to the MIT-bag condition for
single quarks:

The solution of the inhomogeneous Bethe-Sal-
peter equation for the pion is given by Eq. (2.39}.
Fourier transformation of the full wave function
takes the form

(ir y —1)g = 0, r ~ gyp) = O. y(x, P) = y'(x, P)+ d'(x, P), (4.3)

The condition Eq. (4.1) is not strictly applicable
to the problem in this paper and we need to justify
its use here. The assumptions in deriving Eq.
(4.1) were: (i) q, q have equal mass, (ii) qq are in
the center-of-momentum frame, (iii) the confin-
ing region is spherical in the three-space relative
coordinate, and (iv) the particles are noninteract-
ing. Points (i) and (ii) pose no problem. Point
(iii} restricts the states we can look at. Point
(iv) is not true for our case. The pion starts out
as a zero-mass bound state before confinement.

We nevertheless feel that Eq. (4.1) gives a rea-
sonable starting point. The problem of finding a
boundary condition for interacting particles is
that particle current can flow in the Wick-rotated
relative time direction and it is no longer suf-
ficient to just look at the three-space part. This
is a relativistic effect coming from retardation.
One then needs to consider a four-dimensional
relative coordinate cavity. " But such a cavity
will not be a four-sphere at finite energy, and the
shape must be determined by stability. These
problems are beyond the scope of the present
paper. We will ignore the possibility of our bag
leaking in the fourth direction. We will set the
relative time equal to zero and look at the mass
shift caused by squeezing the wave function into
a three-space bag.

We calculate the mass shift for the pion orQy.
All other states are near the 2M threshold and so
confinement is expected to have large effects. In-
deed, these other states may be better calculated
in the MIT fashion as confinement first, then
short-distance gluon-exchange effects as a per-
turbation. The pion, however, is well below
threshold; its structure has been determined
above by shorter-distance interactions leading to
spontaneous symmetry breaking: We expect only
small effects due to confinement as it acts only
on the long-distance tail of the wave function for
this state.

where Q'(x, P) is a free wave.

y'( xP)

d'ke ""Sk+ —I'y,f (k)S k-
2

B' is given by

(4 4)

(4.6)

y'(x, P) =

lE —2M F ~ cr

4M 2M
(4.6)

We can reduce Eq. (4.4} to a single integral and
do it numerically. However, there is a simple
effect going on when we impose confinement which
gets masked by the technical details. Only the tail
of the wave function is relevant in determining the
mass shift for a moderate size bag. Since it is
insensitive to the inner structure we will let ~-
in this calculation. That greatly simplifies Eq.
(4.4). Of course 8, '(P') blows up. To handle
that we use a new cutoff ~ on the dispersion rep-
resentation of X) . ~ is a chiral-invariant cutoff
and in fact was used by NJI . We emphasize this
is only a convenience. We can pick 0 to get f,
correctly. [If we transform the appropriate value
of 0 into an inverse length scale, we find (&'
—4M')'~' —0.7 GeV which corresponds nicely
with the value of & used in Sec. II.] Finally S(k)
= (y k —M) ', f (k) = 1. The question of the value
of the dynamical mass MD is moot since M is a
constant.

With these simplifications, let us evaluate Q(x,
P). We set the relative time zero, k x= —k ~ k.
We can get Q' from Ref. 16.

E+ 2M

(EG ~ o [2(k'+ M')+ EM]Gi

3Eg' " k'dk ( [2(k'+ M') —EM]G EG ~ o 1
Mv'~, ', Q'+ M')'~' s —4(k'+ M') (4.7)

where

F = q, (qr), C =j,(kr),

F = irqj, (qr), G= irkj, (kr), .(4.6)

r

and s = E'= P'= 4(q'+ M'). We have used the re-
sult H' = — /E( )2'vMThe dispersion integral for

is
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3sg' " ds ' s ' —4M'
3p' „2 s' —s s'

4N

We choose g' to give X), a unit residue, as de-
scribed in Sec. II:

the MIT bag calculation: The bag volume energy
is added to the quark energy and the whole is min-
imized at R - ==R, ,

(4.i6)
n g~~

g 4g 4g2 s' s'

Then f, = t,

(4.10) (This is properly M as c.m. motion has already
been removed. )

M2 3M2 " ds' s' —4M2 j-/2

2 2
'= v'= = —,—, . (4.11)

g 477 ~~2 s s

We now impose the boundary condition. Writing
Q = (~on), we then find Eq. (4.1) in terms of 2 x 2

matrices:

x ~ OC+ Br ~ 0+iA+ix ~ oDr ~ a= 0. (4.i2)

E . q

3E 2 ~"k dk(k'+ M')'~' sinkR
4M R „(k'—q')

d l "' k dk sintR
(k2+ M2)~~2(k2 2)

(4.13)
where R is the bag diameter. These integrals can
be evaluated by series as described in the Appen-
dix. This condition must be real since there is no

longer a continuum of states and one can check that
the imaginary part of the integrals cancels against
the imaginary part of Q, '. In the absence of in-
teractions the condition reads

E . q (4.14)

(This occurs in one of the four 2 x 2 blocks, the
other three blocks give the same condition, up to
multiples of o r. ) Thus our final eigenvalue con-.
dition reads

0= —2M — —+ ~B (4.IV)

1000

Q = 1.44(Gev)

IOO-

C3 f
Q3

The only difference from the MIT result is the
change to the exponential form of R dependence
from the R ' dependence of confined states found
by the MIT group. We emphasize that this dif-
ference is due to the gluon-induced quark binding,
and in fact, due to that binding being so strong as
to induce SSB thus generating a mass scale for
the wave function even for quarks with zero "cur-
rent-algebra" (ultraviolet) mass.

The values of A obtained from numerical fitting
to the solutions are'shown in Fig. 6 (A is slightly
M-dependent). M was fixed in Sec. II. This leaves
S to be determined. In our bag, the quark and
antiquark may separate to a distance R; this is
only R/2 from the fixed center. In the MIT-bag
calculations, the c.m. motion is ignored and this

which is very similar to the MIT condition with
the exception of the reinterpretation of R and E
and the factor of 2 associated with the center-of-
mass reduction. To get to the bound-state region
we must continue to positive imaginary values.
As one would expect, for the noninteracting case
there are no solutions here since both terms in
Eq. (4.14) become positive.

Figure 6 shows the lowest solution (denoted
E, I~) to this equation for two values of M. As
indicated, the curves are well fitted by Bessel-
function behaviors of large argument:

@ I I) -~R-'~~ s-»R
II' (BC (4.16)

which might be expected from expansion of Eq.
(4.13) in the large-R region. "

Calculation of the pion mass now proceeds as in

ev)

10-

l4
I

7 8
R(GeV )

I I

9 10 11

FIG. 6. E~~sc vs bag diameter R. R/2 is the radius
of the relative bag. E~~sL- is the contribution to the pion
mass arising from relaxing the large-r boundary con-
dition on the pion wave function and replacing it with the
bag boundary condition. Volume-energy effects are not
included. An approximate fit for this range of R is in-
dicated on each curve.
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gives a good fit to the heavier states. Since there
the maximum distance of a quark from the fixed
center is R„» we must have R/2 = Ru~Y. For our
bag to have the same volume energy as MH's bag,
therefore, we can use the same value' of B,

B = B~,r = (0.14 GeV)~, (4.18)

since we have used R/2 in this volume term in
Eq. (4.16).

It is now trivial to solve (4.17) numerically, and
substitute the result in (4.16). We find

R, = 7.1 GeV ' (M = 300 MeV)

= 6.7 GeV ' (M = 330 MeV) (4.19)

and

M, = 120 MeV (M= 300 MeV)

= 110 MeV (M= 330 MeV). (4.20)

These values have uncertainties of + 20%, not in-
cluding any systematics of the initial approxima-
tions. In both cases, more than half (65%) of the
mass comes from the volume-energy term.

These results are encouraging. Recalling that
the radius of this state is R/2, we see that our
pion is very similar in size to that calculated by
the MIT group and to other hadrons. ' However,
we have already projected out c.m. motion, and
can see why the state is smaller: the gluon inter-
action has pulled the wave function sharply in-
wards from the form it would take for massless
quarks.

There remain two possible problems:
(1) Our confinement condition is still not chiral-

SU(2) invariant. As discussed in the Introduction,
this poses the problem of understanding its origin,
since the conjectured mechanisms of coupling-con-
stant growth and/or large instanton effects seem
to preserve chiral-SU(2) invariance. However, it
should be noted that quark mass terms in the La-
grangian ("current-algebra" or "ultraviolet" mas-
ses) are scale-dependent quantities: The current-
algebra values' of order 5-10 MeV are valid on
distance scales ~ 1 GeV ', i.e., in the region of
dynamical SSB. As the distance scale increases,
these values grow and this also produces a con-
fining effect on quarks. Since this effect is pro-
portional to the current-algebra mass, it is con-
sistent (with current-algebra analyses) for this
effect to be the origin of a finite pion mass. None
of this precludes other sources of confinement
from acting on larger distance scales. If the ac-
tive mechanism of confinement in the region of 1
GeV ' preserves chiral SU(2), and this can be
formulated in bag terms, the result of this section
would again be M, = 0. We would then have to go
back to the Bethe-Salpeter analysis in Sec. II with

nonzero quark current-algebra masses to see what
value they generate for M, .

(2) We have used B~r but not the zero-point
fluctuation energy Z, /R„,r discussed by the MIT
group. We have done so because we do not attach
the same physical reality to the cavity approxi-
mation as they do: The MrI' calculation leaves
only color magnetic interactions inside the bag
whereas we have included gluon "Coulombic" ef-
fects. We believe that this attractive interaction
reflects the same physics that the negative Z,
term represents in the MIT calculation.

Milton" has argued recently that if a specific
renormalization scheme is employed, Z, &0 (vs
Z, = —1.84 in Ref. 2). We believe that the re-
normalization freedom allows the Z, term not
associated with gluon exchange to be removed
entirely: again, the use of this term in Ref. 2

must merely mock up the attractive "Coulombic"
effects of gluons that are otherwise omitted. For
reference, we note that Milton's Zo term causes
a small increase in R, but a large (&& 2) increase
in M„ if Z, = —1.84, R, is reduced to about 4
GeV ', and this produces a negative value for M, .
This is probably due to effectively double counting
the Coulombic part of the gluon exchange. Finally
we note that Milton has described a small negative,
fermion zero-point fluctuation term": If this
alone is included (Z, = —3/16m) we obtain R, = 6.7
GeV ' and M, = 100 MeV, which is negligible
change within the uncertainties.

V. DISCUSSION AND CONCLUSION

In this paper, we have studied dynamical chiral-
symmetry breaking due to strong qq forces on a
scale smaller than the confining radius. In par-
ticular, this leads to a zero-mass Goldstone pion
for physical strong-interaction parameter values
close to those inferred from experiment. A con-
finement scheme, similar to the MIT bag system,
but expressed in terms of relative quark coordi-
nates was then imposed on the interacting wave
function. Since the Goldstone pion is a deep bound
state with binding energy 2~, the wave function
is exponentially damped -e ~". The effect of the
boundary condition is to replace this large-~ be-
havior with a condition at the surface. We find
the boundary condition can be satisfied by adding
a small admixture of exponentially growing free
wave -eM". This leads to a small mass shift of
the pion and a small change to the otherwise Gold-
stone pion. It is because of the radically different
spatial dependence of that wave function from that
of free quarks in a cavity that confinemerit pro-
duced only a weak effect on the pion mass. We
found that the pion acquired a small mass, rea-
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sonably close to its experimental value. This is
as opposed to the MIT calculation, which initially
produces a large value for the pion mass, fol-
lowed by perturbative corrections which lower it.
More significant than the failure of that approach
to obtain a reasonable mass value is its failure
to explain the Goldstone character of the state.

As was argued in the Introduction and in Sec.
IV, the chiral-symmetry violation of the baglike
confinement condition need not be in conflict with
current-algebra results if it "turns off", i.e.,
B-0 in the limit of vanishing ultraviolet quark
masses, mU~. This will be the case if B repre-
sents the effect of the increase of these masses
with increasing distance scale. If that is so, then

M,-0 also in the limit m~-0. This does not
preclude the existence of other, chiral-symmetry-
preserving confinement mechanisms effective at
even larger distance scales. (However, these
could not be described simply by a nonvanishing
value of B.)

It is difficult to answer the question of whether
QCD has sufficient strength, at distances less
than the confining radius for light mesons, to
cause spontaneous symmetry breaking. We view
our calculation of the strength of the short-range
core of gluon exchange as evidence that it is a
large component in driving dynamical symmetry
breaking. The 7t. -q mass splitting is evidence that
U(l)~ breaking forces are also significant since
they must help drive the pion to negative mass
squared but keep the q mass squared positive. We
believe that our approach of extracting a separable
interaction from the deepest bound state and using
it to approximate the nonlinear Schwinger-Dyson
(NLSD) equations is a sound one. We cite as evi-
dence Cahill and Janus" who solved the NLSD
equations numerically and found good agreement
of the solution with this approximation in a y2o
model. Also, Janus" found that when fully eor-

rected propagators (solutions to the N&SD equa-
tions) were used, this increased the effective at-
traction over the bare ladder approximation. If
this result is true for QCD, then there is more
attraction in gluon exchange than our naive cal-
culation indicates.

The combination of these elements provides a
clear outline for an understanding of a (qq) com-
posite almost-Goldstone pion in confined QCD.
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APPENDIX INTEGRALS

1. Overlap integrals

In Sec. IID we encountered the following inte-
gral:

d'q d p Tr[S(q)'yj'S(-p)'y, j
P (2&)4 (2&)4 (A2 q2)(A2 p2)(p q)2

(2.28a)

where S(q) = y ~ q(h2 —q')/(M2 —q'). Taking the
trace and performing a Wick rotation gives

d'q d'p (A'+ q') (A'+ p')
(22)4 (2x)' q'(XA2+ q')'(p —q)'(XA'+ p')'p

The angular integration gives

Define p'= XA'x, q'=XA'y, then we obtain

(1+ ~y) ' (1+u)
8x4Z2, y(1+y)', (1+x)' ' (Al)

A' "" (1+ Xy) ' (x+y)(1+ x)
642'X', y'(y+ 1)' (x+ 1)'

(A2)

Also in Sec. IID we encounter 6~ which, upon us-
ing similar techniques, reduces to Define
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1 ~ 'tit

(A3) (z 2 z 2 A2 P2)ll h

(~i

=
3r' =13 2r'

CO = — +— (d = ——+6~ (A4)

7
+m = i2=

2. Meson propagators

The 7r propagator integral can be expressed in
terms of

g~ and 8~ can be evaluated in terms of the follow-
ing w's:

1
GO pp CO py 4)y p

f 1/(q'-A') )

(1/( '-A')'i
1

[(q —P/2)' z,—'][(q+ P/2)' —z, '] '

(A5)

where z,. take on the values, M, P, , p . I is a
triangle graph and J is a box graph. Because of
the special kinematics they can be expressed in
terms of the two-point bubble graph. For exam-
ple, I looks like the graph in Fig. 5(d).

If we disperse this in the s(=P') channel there
are three normal thresholds and we get

8 2 2 2 16'~ 2+ 2"""(s' —s)2s' ——~ ' ' -A' "''*~" (s' —s|2s' ——+ ' ' -A')
4 2 4 2

1 ds's(s', 2z„2A)
16 2 s' z '+z '

4(xi+A j sl s)2sl I
2

4 2

(A6)

where

g(s, x, y) =-([ —(x -y)'][s —(x y)'])' ' (A7)

These are subtracted bubble graphs that can be
evaluated in closed form.

3. Fourier transforms

The integrals in Sec. IV can be cast into series.
The basic step is to use the following identity:

»&, = 2e "~ dtK, (Mt)cos atJ qdq sinqR —2 "R

+ 2i singR dtKp tI/It e'"
(A8)

A similar formula holds for the other integral in
Eg. (4.13). The second integral in Eq. (A8) can
be converted to a f~ integral, and the J" integral
can be evaluated in closed form. Then a small
argument expansion of Kp gives a simple series
expansion.
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