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Quark and lepton masses from renormalization-group fixed points
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The renormalization-group equations describing the evolution of fermion-Higgs-boson Yukawa coupling constants
down from M~ in a grand unified theory possess fixed points which may lead to universal predictions for fermion
masses independent of symmetry considerations at M~. Our analysis predicts -240 GeV for the fixed-point t-quark
mass. Alternatively, a suAiciently heavy fourth SU(5) generation cannot be ruled out by existing bounds on the
number of fermion generations, nf, and we find fixed-point mass predictions of mT -219 GeV, m~ -215 GeV, and

m~ -60 GeV.

I. INTRODUCTION

One of the great problems of particle physics is
to understand the origin and to calculate the values
of the elementary-fermion, i.e., quark and lepton,
masses observed in the laboratory. There have
been many proposals for dealing with this question
involving, typically, the imposition of some kind
of discrete symmetry or, perhaps equivalently,
viewing it as a consequence of constraints arising
in grand unified theories at very short distances. '
Indeed, one of the triumphs of SU(5) is the suc-
cessful prediction of m, /m, in the scheme with
minimal Higgs fields. Here the short-distance
relationship m, = m, is renormalized by evolving
the Higgs-boson Yukawa coupling constants g,
and g, down from M» (~10" GeV). to the light-
fermion mass scales (= few GeV) where the prin-
cipal effect is the increase in m, due to quantum-
chromodynamics (QCD) gluonic radiative cor-
rections. ' As strong a vote of confidence for
SU(5) as this result may be, we do not know what
sets the scale of m, (=m,), or equivalently g,
(=g,), at M». Hence, a completely satisfactory
theory of fermion masses and the related problem
of mixing angles is certainly lacking at present.

A novel idea has recently occurred to Pendleton
and Ross which is not unrelated to the m, /m, re-
lation in S'U(5). In an interesting paper3 they have
suggested that the top quark, or possibly other
heavy quarks, may have masses determined solely
by the low-energy structure of the renormaliza-
tion-group (RG) equations describing the evolution
down from M» to m, [= M~, the "terrestial" mass
scale of SU(2) x U(1) electroweak symmetry break-
ing]. Here the top-quark mass is determined by
an infrared-stable quasifixed point of the RG equa-
tions and one, in principle, obtains a universal
result for the physical mt, „over a large range of
initial g„,Higgs-boson Yukawa couplings at M~.
We refer to this behavior as a quasifixed point be-
cause, as Pendleton and Ross show, g, is swept
toward a value of (-',)'~'gum(p, ') and continues to

track the strong coupling constant for sufficiently
small final mass scales p. '. Hence, Pendleton and
Ross predict upon including additional SU(2) x U(1)
corrections that the top quark will weigh in at
about 135 GeV, if it is already in the domain of
this fixed-point behavior at that energy scale.

This possibility is quite intriguing because it
illustrates that the details of the precise sym-
metry conditions determining particle masses
(or their Higgs-boson Yukawa couplings) at a pri-
mordial mass scale can be completely obliterated
by the renormalization group and replaced by the
fixed-point structure of the RG equations them-
selves. Furthermore, if such a mechanism is
operant, we may in principle already possess an
understanding of the relevant RG equations but
have no inkling as to the underlying symmetry
conditions at M„„. „d,.„, having nonetheless a pre-
diction for the fermion masses. We shall see,
furthermore, that the effect thai increases m,
relative to m, in SU(5) is precisely the strong-
interaction renormalization which principally gives
the Pendleton-Boss fixed-point behavior for gt p.
Hence, the successful m, /m, relationship may also
be a strong vote of confidence for the existence of
a real fixed-point behavior for a much heavier
fermion such as the top quark.

The Pendleton-Ross fixed point represents the
exact mathematical fixed-point structure of the
renormalization-group equations for g„,and gQI.
This is an attractive fixed point in the sense that
as one proceeds toward decreasing p, ', one should
be pulled toward the fixed point for arbitrary ini-
tial g„(M»). In fact, one finds that this fixed
point is never significantly approached for final
p,

' as large as = ~~' and is not reached until
p, '«1 GeV' whence g«D' begins to vary dramat-
ically. The authors of Ref. 3 note that numerically
their exact fixed point corresponds to -135 GeV
fol mt p (including electroweak corrections) where-
as the solution to the renormalization-group equa-
tions actually allows nz„„ in the range of 110 to
220 Geg.
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Nevertheless, we show that there is yet another
"intermediate-fixed-point" behavior of the solu-
tion to the BG equations that is relevant at p. '=m, '.
Whereas the Pendleton-Ross fixed-point behavior
is obtained by studying simultaneously the RG
equations for g,

' and gQcD our result is obtained
by treating g~D' as "slowly varying" and replac-
ing it by a constant g ~D in the RG equations for
g, ' by itself. To a good approximation pQcD' is
just the average of g~D'(p. ) over the range m, '
& g'& M»' (though we give an optimization of g
valid also in the cases studied in Sec. III involving
multiple heavy quarks). In this manner we obtain
a precise prediction for m, larger than that of
Bef. 3. Indeed, we obtain m, = 240 GeV including
the full electroweak corrections using the values
of (&jP) =v/v 2=175 GeV of Refs. 3 and 4. This
result is valid to one loop and we expect possible
significant corrections in two Loops principally
from QCD. This result is also consistent with
an upper bound quoted by the authors of Ref. 3 of

m, = 220 GeV keeping only QCD effects in discuss-
ing the rate of approach to their fixed point. We
will show, however, that this mass value is the
actual relevant fixed point obtained from the BG
equation for g, at these mass scales. The pre-
diction emerges from the simple assumption of
an SU(2) x U(1) x SU(3) desert beyond the top quark
for m, ~ p. (Mx.

To illustrate the existence of the intermediate-
fixed-point behavior the result for g, (100 GeV)
is plotted against g, (M» -10"GeV) in Fig. 1, keep-
ing only QCD effects [m, is given by m, =g, (100
GeV)xv/~2]. The intermediate fixed point is the
asymptotically constant behavior of this curve
at g, (100)= 1.27 whereas the Pendleton-Ross (PR)
fixed point is indicated by the dashed line. The
PR fixed point is clearly not controlling the actual
asymptotic behavior. Also, we note presently
that the asymptotic value of this function provides
an absolute upper bound for the mass of any+ —',

charged quark to one-loop order, keeping only the
effects of QCD. We improve the result quantita. -
tively in Sec. II. We also indicate in Fig. 1 a crude
estimate of the intermediate-fixed-point behavior
by using for g~D' the average of g~D' with re-
spect to t=lnp, over the range 100~ p. ( 10" GeV.
This result is seen to be much closer and, in fact,
we show in Sec. II how to compute the exact as-
ymptote from the intermediate-fixed-point analy-
sis.

Such large masses for the t quark may seem to
be unrealistic', it may well be that g, (M») is not
initially large enough to be swept toward the in-
termediate fixed point, even though it is likely to
suffer a large upward renormalization through
the effects of QCD in evolving down from M». In

that ease our discussion of single-heavy-fermion
BG fixed points is irrelevant, but the possibility
remains that there exists a fourth generation of
heavy quarks and leptons for which RG fixed-
point behavior becomes extremeLy likely. Indeed,
the usual bound on nz may accommodate at least
one more, ' whereas the strict limit g&

~ 6 of
Nanopoulos and Boss, ' in examining two-loop ef-
fects, may become invalid if there are heavy
quarks and leptons whose Higgs-boson Yukawa
couplings are comparabl. e to gQcD Therefore, in
Sec. III we analyze the case of a single heavy-
quark pair and a complete SU(5) heavy-fermion
generation with arbitrary g~ and gD

= g~ at Mx.
We make the simplifying assumption of no Cabibbo
mixing with the other generations and ignore
heavy-neutrino contributions. We obtain scatter
plots which represent the probability of finding
fermions in given mass ranges assuming only
the existence of the desert. Most of our points
are seen to cluster about an intermediate fixed
point and, in the case of a single heavy SU(5) gen-
eration, we obtain the most probable values for
the masses:

1.5—

O
).0 tion
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15

9, (M„-10 GeV)

FIG. 1, gt(100 GeV) against gt(Mg) including only
effects of @CD indicating Pendleton-Boss fixed point and
result assuming slowly varying g~D using average
g between t =ln(M&) and t =ln(100).

1.0

m~= 219 GeV, mD = 215 GeV, I = 60 GeV.

Again, we find that the fixed-point behavior of
physical interest is roughly determined by the
average values of the QCD and electroweak cou-
pling constants over the region of integration.

Finally, in Sec. IV we review various constraints
and examine other consequences of our mecha-
nism. For example, to what extent is the m, /m,
relationship affected by the existence of heavy
fermions which have Higgs-boson Yukawa cou-
plings of order gQco? Our essential conclusion
is consistent with that of Pendleton and Ross, even
in the case of many heavy fermions, that one can-
not rule this possibility out. Hence, one might
reasonably expect to find massive quarks in the
I,= 200 to 250 GeV range and leptons in the neigh-
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borhood of =60 GeV.
We mention that these discussions are related

to earlier works placing bounds upon the num-
bers and masses of quarks and leptons as in
Maiani et al. We believe that the fixed points
are more than mere bounds as they are the most
probable places that the masses will accumulate
at g given an approximately flat probability dis-
tribution at Mx'. Also, there has been an effort
to understand the hierarchies of mixing angles
and fermion masses in terms of the renormaliza-
tion group in the manner of Frogatt and Nielson. '
The conclusions of Ref. 9 are essentially realized
in Ref. 3 and the present work in that, in the ab-
sence of discrete symmetries one finds two hier-
archies consisting of "light" fermions (u, d, c, s, b),
whose Higgs-boson Yukawa couplings are not
sufficiently large to be within the domain of at-
traction of the nontrivial fixed point, and "heavy"
fermions including perhaps the t quark and con-
ceivably successive. generations which are strongly
influenced by the fixed points. As in Refs. 3 and

9, we have no comment on the distribution of
light-quark masses, which are sensitive to the
primordial symmetry relationships.

Also, recently Veltman has considered the prob-
lem of quadratic divergences and the necessity
of imposing caneellations of these in any realistic
dynamical-symmetry-breaking, i.e. , composite-
Higgs-boson, schemes. " These considerations
lead to similar heavy-mass predictions and may
be related to the present work and Ref. 3 in which
fixed points essentially imply the cancellation of
logarithmic divergences. Finall. y, Ross and Pen-
dleton are extending their analysis to other prob-
lems. "

We shall consider the case of a single heavy t
quark neglecting Higgs-boson Yukawa corrections
of known fermions and various corrections beyond
one loop.

M, =gu/v 2, p =245 GeV (2.2)

with ~ =78 GeV, and sin'g„= 0.23. X in Eg. (2.1)
is a "threshold factor" of order unity.

The running Higgs-boson Yukawa coupling con-
stant g(- p, ') —= g(- p', —p, ', —g') satisfies the re-
normalization-group equation to order one loop";

18~' g' =g,f-', g,
' —8g,

' —~,(t)], (2.3)

4,BM'

1' 2 I
I
I
I
I

X

I \
I

where t =lng and we have neglected the contribu-
tions of the lighter quarks and leptons, and

~, (t) = ~g'(t) + —'„'g'(t) . (2.4)

Here g„g, andg& are, respectively, the coupling
constants of SU(3), SU(2), and U(l).

The running of g, described by Eq. (2.3) is ap-
propriate to the coupling constant evaluated at a
symmetrical point in momentum space and we
must consider the extrapolation from the case of
zero momentum transfer in Eq. (2.1) which de-
termines the fermion mass. " This is analogous
to the extrapolation of e« from the Thomson
limit of Compton scattering (=~) to -q'=pM~
(=~). The extrapolation involves the diagrams
of Fig. 2(b), which are of order g,g, , and those of

m, =
~2 g, (- Am, ', —Am, ', 0), (2.1)

II. CASE FOR A HEAVY TOP QUARK

We assume that there are no heavy fermions
beyond the t quark, with the possible exception
of superheavies which have masses of order M~
and have thus decoupled for momentum scales
p. «Mx. The Yukawa coupling constant of the top
quark to a single doublet of Higgs bosons deter-
mines the mass of the top quark through the equa-
tion (we follow the conventions of Sakurai')

+ l

2

1+
2

I +
I
I
I
I
I

X

A,B

X

(b)

(a)

I
I
I
I

I
X

(c)
where g, is evaluated at zero momentum transfer
to the Higgs boson and ir/v 2 is the Higgs-field
vacuum expectation value. v is determined by the
II -boson mass and the SU(2) coupling constant g:

FIG. 2. Diagrams contributing to RG equations; G

C SU{3),A Q SU {2),B t U(&), and dashed line is the Higgs
boson. Figures {b) and {c) are also extrapolation contri-
butions.
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Fig. 2(c) which are of order g,g,
' with g, a light-

fermion Yukawa coupl. ing. The latter contribu-
tions are by themselves gauge invariant, but we
are tacitly ignoring terms of order g,

' in Eq. (2.3)
and will thus ignore these. The corrections of
order ~,g, are in principle a problem and con-
stitute a gauge dependence in the Higgs-field
vacuum polarization and in the extrapolation.
However, we expect these effects to contribute
only in the range &M~'& p,

' &&m, ' and in practice
this is not a significant contribution. Also, there
are no extrapolation effects for p, & ym, ' of order
g,'. Hence, we have to a very good approxima-
tion

g, (-q', -q', 0) =g, (-t ', I/', --t/')
l .. ..~ . (2.5)

The running of g, described by Eq. (2.3) will
terminate by decoupling for p' ~ zm, ' = &g, 'v /2,
and the quantity of interest to us is therefore

m, =~g, [-&m,', g, (M»')] . (2. 8)

16m ~=-bog, ho=11 —ye~ .2dg (2. 7)

Upon forming the difference between Eqs. (2.3)
and (2.7) and presently ignoring»„one obtains

18m '—[ln( g, /g, )]= ~g,
' —(8 —b, )g,

' . (2. 8)

For our present discussion we will simply replace
Xm,

' by =(100)' GeV' in evaluating m, and later we
will consider the solution of this implicit equation
by Newton's method, which leads to a correction
of order a few percent. y is here associated prin-
cipally with the t- t+gluon threshold and is ap-
proximately unity. Henceforth we assume & = 1.

Pendleton and Ross discovered a quasifixed-
point behavior by combining Eq. (2. 3) with the RG
equation satisfied by the QCD strong-interaction
coupling constant:

(2. 11)

we reach the PR fixed-point behavior

2 ( 2 2 v/y'

9&g, & (2.12)

which is a fixed point in the sense that all inform-
ation about the boundary condition, g, (M»'), has
dropped out. Remarkably, the case nz ——6 is quite
special since with Qp: 7 all information about M~'
also drops out, and we obtain

g, '(V') = vg, '(V') . (2. 13)

Note that Eq. (2. 12) is also equivalent to Eq. (2.9)
plus small logarithmic corrections.

Our principle concern, however, is whether one
is justified in assuming that the PR fixed-point be-
havior has set in by the time one reaches mass
scales of order ym, in evolving down from t
= lnMX. Of course, we have the exact solution
of Eq. (2.3) in Eq. (2. 10), but in the more com-
plicated case of several heavy fermions as dis-
cussed in Sec. III this will not be available to us
and an understanding of the relevant mechanisms
becomes essential. In fact, a closer examination
of the solution Eq. (2. 10) reveals that the PH fixed
point does not set in until p. &1 GeV.

First, let us examine the solution's properties
graphically, In Fig. 3 we have plotted the exact

prediction for m, in the absence of electroweak
(c,) corrections (these increase m, to =135 GeV).

The exact solution of Eq. (2.3), neglecting z, , is

g 2(p2) 8/yo

g, '(P') =g, '(M ');(M, )g, Mx

2g, '(M ') ,g, '(M ')
(2. 10)

One sees in Eq. (2.10) that in the limit

Therefore, if the right-hand side of Eq. (2. 8)
vanishes, then g, and g, are in a fixed ratio which
remains constant for all subsequent t. Further-
more, as t tends toward zero (we will generally
consider t to be decreasing from lnM» to lnm, ) any
arbitrary g, is attracted toward this fixed ratio:

2.5—

2.0—

1.5

1.0

/u, s 10

p. = 100

g,
' = fr(8 —bo)g,

' (2. 9)

and subsequently g, "tracks" along with g, for
decreasing t (we study the stability of fixed points
in Sec. III). If such a behavior has set in for t

=lnm„ then we will have an unambiguous predic-
tion for m, by Eq. (2. 9). For six quarks, t/, =7
and taking a value of o., =g, '/4» = -', at 100 GeV = p
yields m, =110 TeV which is the Pendleton-Boss

&IG. 3. g](p) against g&(MX) for p, =100, 10, and
1 GeV. Arrow denoted location of PR fixed point
and (+) denotes location of approximate intermediate
fixed point using for g~D the average as in Eq. (2.17).
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solution of Eq. (2. 10) for g, (p') as a function of

g, (M ') for three sample values of !L'. The details
of our choice of a specific g, '(t) may be found
toward the latter part of this section. We have
also indicated the point on each curve at which
Eq. (2.13) is satisfied. We see that the approach
to the PR fixed point is quite slow and does not
seem to be reflected in the location of the con-
stant asymptote until p. & 1 GeV. Nevertheless,
the curves possess a constant asymptotic behavior
as g, (Mr') gets large for each choice of !L' [of
course, we require that g, '(Mx')/(16m') «1 lest
Eq. (2.3) be disfigured by higher-order correc-
tions]. This asymptotic constant behavior literal-
ly implies the existence of some kind of fixed-
point behavior since g, (p2) is independent of

g, (Mr') as the latter becomes sufficiently large.
What accounts for this behavior which is evidently
independent of the Pendleton-Ross fixed points?

First we will give a schematic description.
Consider Eq. (2.3) by itself without forming the
combined equation (2.8). Over the domain of in-
tegration where JL{, varies from between =10" to
=10'we may consider the behavior of +, to be "rel-
atively constant, "varying from =—,'o to =-', . If we
begin with g, (10") sufficiently large, much of the
initial evolution of g, (p) is given solely by the first
term on the right-hand side of Eq. (2.3). Indeed,
if pg, '(W')» Bg,'{p') we may ignore the effects of
QCD altogether and write

16 2 g 9g 2 Mt2~ P
d lngt

t (2. 14)

16+2 g gg 2 8g 2 0 ~l/2 z p2 z~t2d lngt

(2. iS)

In this intermediate region g, must remain rela-
tively constant. Finally, the rapidly increasing

g,
' overtakes the leading term on the right-hand

side and we eventually reach the "tracking" be-
havior of the PR fixed point in which the ratio of

As p, decreases from the intermediate mass scale
M', g, will decrease by Eq. (2. 14) until it "feels"
the effects of the second term on the right-hand
side of (2.3) at some scale for which g, (!L)&g, (Mx).
Here the two terms will compete in a region in
which —,'g, ' =8g,', and we thus have

9g 2 8g 2 J!I/Iir2~ @2 ~~P2
t c (2. i7)

where g ' is a typical. value of g, '(p. ) in the inter-
mediate range. As a preliminary estimate for the
appropriate value of g,

' in Eq. (2.17) let us simply
take the average of g, '(f) over the range t, =lnp, to
Iz

——ln10". In fact, we g priori expect this to
slightly underestimate the correct g,

' since we are
making no provision to cut off our averaging at
lnM' and we include a tail from lnM' to lnMX in
whichg, '(t) is at its smallest values. Taking p
=10' for example, we find g, '=0.66 whence we ex-
pect the asymptote for this curve atg, a -', g, =1.08.
We have plotted these points on each curve and in-
deed we see they are, to a good approximation, a
description of the correct asymptotic behavior, i@-
eluding the slight underestimate as expected. Even
in the case wherein the PB fixed point is becoming
a better approximation at p. =1 GeV, our crude re-
sult is still quite good.

Hence, our graphical analysis suggests it is not
the condition of Eq. (2. 16) which determines the
fixed-point behavior of the physical Higgs-boson
Yukawa coupling at the relevant p,

' values, but
rather the condition of Eq. (2. 17) for the approp-
riate choice of g,

' with respect to t, which is
roughly the average of g,

' over the entire range of
integration. However, we can easily give a more
rigorous meaning to g,'.

An examination of the solution Eq. (2;10) reveals
that the condition of Eq. (2.11) is stronger than
one requires to be at a fixed point. Indeed, it is
sufficient that

8 g, '(M ') g, '(u')
2 g, '{M ') g,2(M ')

which can occur before [g,'(p, ')/g, '(Mx')]'~ "0 is
much larger than unity for sufficiently small

g, '(M~') and large g, '(Mx'). Let us define R
=g, (p')/g, '(Mx'). Then we may consider I/h, lnR
to be a small quantity and expand Eq. (2. 10) as-
suming also Eq. (2.18):

—1»1

g, /g, becomes constant:

g' —(8 —h )g'=0 p'«M"'d ln( / )

dt
(2. i6)

In fact, it is precisely the condition of Eq. (2.15)
which gives rise to the asymptotic behavior of the
curves in Fig. 3:

1 + (1/b, ) lnR + ~ [(1/b, ) inR]'+ ~ ~ ~

{(I/O,) 1nR/I + (I/2b, ) lnR + (I/3! )[(I/h, ) lnR]' + ))g (N )
(2. ie)

1+ lm+, (Im)'+ . .
9 8 lnR 2bo 12b0'

(2.20)
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FIG. 4. Evolution of g~(p) for several initial choices
of go =—g&(M~). We plot also the PH fixed-point condition
of Eq. (2.13) and the intermediate fixed point of Eq.
(2.22). Also, we include the se].f-consistent threshold
condi. tion of Eq. (2.23).

Hence, a more rigorous definition of g, in the in-
tegration domain of Eq. (2. 17) is given by

g.'(u')
8 lnR

(2.21)

and the actual asymptotic behavior of g, (tI) vs

gI(Mr) is
I /2 g 2(t12)

g, (t1)= 91~g,(V), &= '„M . . (2. 22)

Although Eq. (2.22) bears little resemblance to
the average value of g, '(t) with respect to t over
the domain p,

' to M~', it is quite close to this
value in practice.

In Fig. 4 we show the evolution of g, (t12) against
tI' for several initial choices of g, (Mr2). We in-
clude also the function of Eq. (2. 22) and we plot
the Pendleton-Ross fixed-point behavior, Eq.
(2.13), all with b0=7. We see that for g, (Mx')
= T, we are almost in the PR fixed-point ratio
initially and we follow their curve quite closely.
In general, the relevant; behavior is illustrated by
the curves with larger g, (MX') ~ 1. These are seen
to approach the i ntermediate-fixed-point behavior
near ln(10') reasonably well. We have also plotted
the t-quark threshold condition here, i.e. , when

or

t=&ln yg,
'—

vY
gg= — e, x =1 ~

vA, v

(2. 23)

y x(tf)
rY )n(n(r, )/n(r, )))

(2.25)

independent of the values of the coefficients e,, .
This turns out to be relevant to the cases of many
quarks and leptons analyzed in Sec. III. Here,
the same value of g, ' given in Eq. (2.21) (with
the appropriate t)0) determines the fixed-point be-
havior for any number of quarks.

We now turn to a more quantitative discussion
including the effects of the SU(2) &&U(1) electro-
weak interactions by the inclusion of ~, into Eq.
(2.3). In the general case of an arbitrary single
heavy quark or lepton we have the RG equation

(2.28)16v' =gf (flgf' —Bg ' —Cg' Dg'), -
dt

the solution of which is

Hence, the running behavior described by Eq.
(2.8) is only relevant to the right of this latter
curve and the portions to the left are unphysical.
We see that all curves eventually merge with the
PR fixed point for very small t, but that this is
to the left of our threshold conditions. We con-
clude that the only possible relevant fixed-point
behavior here is our "intermediate" fixed point
as described above.

As a point of inter'est we note that the inter-
mediate fixed point may be of slight mathematical
interest. The value of g,

' given in Eq. (2.21) de-
pends only upon its own "rate of evolution" given
by 5, and its coefficient in the differential equa-
tion (as well as its soft dependence upon M ' and,
of course, t12). Hence, for a general problem of
the form

= Z &;fy; —py;x, —= -yx, (2.24)

we will have intermediate-fixed-point behavior and
may substitute for x in the first equation the con-
stant

g
'(t) = '(t )

g'(t) ~ "02 g'(t) C "02 g"(t)
gf 0 g 2(t ) 2(t ) gr2(t )

2Agf (t()) g ('f) I b02 g (r) I 02 g (T) I b0118'', g, '(t, ) g '(t, ) g "(t,) (2. 27)

where
o3 —11 —Tss, Qo

2 —22 —2 = 2

and
t, = lnMz, t = lnp .

(2. 28)

I

In the case of the t quark, A=-,', B=8, C=4, and
D = » . The integral appearing in Eq. (2.27) must
be evaluated numerically in general. Hence, we
require the exact form of g, (t), g(t), and g'(t) be-
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fore proceeding.
The appropriate choice of g,

' amounts to the
correct choice of 5, and A. We have the usual
one-loop @CD coupling constant with b, = 7 for n&

= 6 in the form

o, =~=
( &), t=lnp. . (2. 29)

The value of A requires brief comment.
For n~ =4 and p.

' below the 5-quark threshold,
we may choose a conventional value of A from
electroproduction fits of the order 300 MeV & A
&500 MeV. As we extrapolate to higher p,

' and
excite various quark flavors we must include the
modifications in 5, . One possibility is to use the
Georgi-Politzer mass-dependent renormalization-
group equations, '4 but a simpler and quantitatively
reasonable alternative is to follow the discussion
of Ellis ««." in which one compensates the
change in 5, at threshold by a change in A by de-
manding continuity in q, at the threshold. As-
suming A = 500 MeV mhen zf = 4 then continuity
when extrapolating through the 5-quark threshold
pl.aced at p, =2m, =10 GeV gives

A=385 MeV for 4m, '& p,'&4m„'. (2.30)

to one-loop accuracy. This is probably a good
upper bound on A for our purposes. We have
performed a similar extrapolation starting with
A = 300 MeV for ~~ = 4 and assuming 200 GeV
=~, which gives A =108 MeV for p2&4m, '-.

Hence, we have

212 MeV & ~ & 108 MeV or —1.55 & lnA & -2.22 .

(2.32)

We will use the upper bound of 212 MeV in our
subsequent analysis which will slightly overesti-
mate m, .

For the remaining electroweak coupling con-
stants we simply assume n~ = 6, o.'«(M~) = »', ,
and sin'e~(M~) =0.23 with M~ =78 GeV. We are
led to the following approximate one-loop results:

g 37T

4w 5(t+51.05) '

(2.33)
gf2 3~
4w 6(159.95 —t)

'

These are seen to unify within a few percent at
-10" to 10" GeV with o.', (10")=0.24, n, (10")

Further, assuming a t-quark mass of order 100
GeV and extrapolating through the t-quark thresh-
old gives

A=212 MeV for p,'&4m, ', rn, =100 GeV

(2.31)

=0.022, o. ,(10")=0.0125, and ~sin'8~(10") =0.97
(slightly better at 0.5&10" GeV) all within one-
loop accuracy.

We can now obtain real predictions for the mass
of the t quark as follows. The mass is a function
of g, (Mr) given implicitly by

M, =~ g, (m„g, (M, )), (2.34)

III. ADDITIONAL HEAVY QUARKS
AND LEPTONS

In the preceding section we argued that the t-
quark mass, if determined by the RG fixed point,
would have a value of =240 GeV. To reach this
mass scale the t quark must already have an ef-

where z is a constant =246 GeV. We apply "New-
ton's" method to obtain m, (g, (Mx)) iteratively by
(A) choosing an initial value m, =m, , (B) substi-
tuting into the right-hand side of Eq. (2.34) and
deducing a new value m, = (v/v 2 )g, (m„g, (Mr)),
and (C) repeating (B). The method converges very
quickly in practice requiring no more than four
iterations with m, =100 GeV. The self-consisten-
cy condition slightly accelerates the rate of ap-
proach to the fixed point and slightly reduces the
fixed-point values, as expected, from thos e at
100 GeV. We do this comparison since in Sec. III
we do not worry about the self-consistency con-
straint and expect slight overestimates of about 370
if we choose tz

——ln(100 GeV).
Our final prediction for the intermediate-fixed-

point value of m, including all SU(3) x SU(2) && U(1)
effects to one-loop accuracy is m, =240 GeV. The
inclusion of two-loop effects will probabl. y increase
this prediction.

Is this a reasonable expectation? We will ex-
amine the limits placed upon mass splittings of
members of electroweak isodoublets by measure-
ments of the p parameter in Sec. IV and find that
this result is consistent with those bounds. How-
ever, to be near this result requires that m, (MX)
& 100 GeV and thus there must be a large splitting
already occurring in this generation at the grand
unification mass scale. For example, a reason-
able guess of m, =15 GeV at the grand unification
mass scale =10" GeV leads to only m, -50 GeV
at the threshold for t-quark production. This re-
sult reflects only the characteristic upward renor-
malization of m, by SU(3) x SU(2) && U(1) but does
not involve the fixed point. Also, there are other
constraints to be considered before we can accept
such a large m, value. We return to these points
in Sec. IV.

Perhaps it is more promising to consider a
fourth heavy generation in which the effects of the
fixed point are very .likely to be felt. To this pos-
sibility we turn presently.
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16m' =gr(-2gr + —2'gs' —8g,' —gr),

162' =gs(-'gs'+ -'gr' —8g ' —. ys)

(3.1)

with

9 2 17 2&r- 4Z2 +~-2' ~

9 2 5 2
4&2 +ca&~

(3.2)

It is not possible to solve Eq. (3.1) analytically
though we can easily discuss the fixed-point be-
havior. Let us presently ignore z~ and ~~, the
SU(2) x U(1) corrections, and following our dis-
cussion of the t-quark case, replace g,2 by a con-
stant value of g,2.

Equations (3.1) possess three fixed points (in ad-
dition to the trivial gr =gs =0 case) for gr ~ 0 and

fective mass = 200 Ge7' at M ~ and thus this result
might be unreasonably large. If, then, the number
of quark flavors is ~ 6 our discussion is irrelevant.
However, the possibility exists that there may be
additional flavor generations beyond the usual
three and, if so, such quarks and leptons must be
heavy. Hence, for extra generations it beomes
extremely interesting to apply the RG fixed-point
model to obtain relatively insensitive mass pre-
dictions.

Of course, there are problems in allowing ad-
ditional flavors beyond nf = 6. In particular, the
Buras-Ellis-Gaillard-Nanopoulos' one- loop an-
alysis of constraints on the successful m, and m,
predictions limits nf ~ 8. Furthermore, Nanopou-
los and Ross' find that the two-loop corrections
strengthen this constraint by =20/0, whence nz ~6.
The latter result we believe is subject to the cri-
ticism that the authors ignore the effects of order
g„'g,', etc. , such as in Fig. 5 which involve the
heavy-quark-. Higgs-boson Yukawa couplings and
which, for our purpose, are of order g,', i.e. ,
g„-g,. Since g~ effects can enter with opposite
sign to g, effects we conclude that the Nanopoulos-
Ross (NR) constraint is incomplete for sufficiently
large gH. Of course, the gH effects in two loops
could reinforce to strengthen the NR constraint.
It is of some interest to carry out an evaluation
of these corrections. " Nonetheless, it is possible
that we may tolerate nf - 8 and we will presently
restrict ourselves to this limit.

First we consider the case of two large Yukawa
coupling constants of members of a single very
heavy quark generation which we refer to as (T, B)
and we now ignore the corrections of order g,2 and
assume no Cabibbo mixing to other generations.
For such a system we have

~MOO
i

I
I
I

x'

I 2

I
I
I

X

+ etc.

FIG. 5. Sample higher-order corrections to the analy-
sis of Ref. 5 important when gz-gH

g~-0:

1617 Qg] = gg Qg ]+3g Qg~ )

16m —6g =9g'6g +3g'5g .
(3.4)

Using g =-g,' and diagonalizing we find

16m' —&g, = 16g '&g»

16' —6g —8g 6g
(3.6)

with 5gy egg + 5gyp 5&2 6g g 5gy Hence, for de-
creasing t, the positivity of the eigenvalues im-
plies that the fixed point is stable and 6g, -0 as
f-0. (We have analyzed the general case of 2n

quarks and prove that all fixed points for g, & 0
are stable. )

If we return to the case of a running coupling
constant, g,(t) we can still locate the fixed points
exactly by exploiting the symmetry g, g, of Eq.
(3.1). In case (III) consider

16m' —=g(6g ' —8g,') (3.6)

with solution

g =gp

g
2 ( g 2(f) 1/bp

x 1+-,'
6g,'(f.) .&g,'(f.) (3 'I)

Repeating the discussion of Sec. II we are led to
the intermediate-fixed-point behavior determined

(I) g2=0, (-', gr' —8g, ) =0 or gr = ~gr',

(11)0(9 28g2)0 or 2162

(ill) g =gr=gx0, (6g'-8g, ')=0 or g'=-', g,'.
(3.3)

We see that cases (I) and (II) are equivalent to the
t-quark case. The more interesting fixed point is
case (III).

We may examine the approach to the fixed points
by considering small displacements and linear-
izing. For case (III) let g, =g+ 6g„g,=g+6g, and
obtain
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by an effective constant g,'.
-2 bo r(t}

l
(3.s)

4 .i

Apart from the choice of elf= 8, this is the same
effective constant determining the behavior in the
t-quark case, which illustrates our discussion of
the universality of the effective constant g,' in
Sec. II.

We now turn to a numerical integration of Eq.
(3.1) in which we retain the effects of vr and ~e,
which slightly destroy theg~ —g~ symmetry through
the small U(1) effects. We assume the coupling
constants of Sec. II and presently extrapolate
through an assumed heavy-fermion threshold at
p. = 200 GeV [we assume a full SU(5) flavor genera-
tion here to maintain anomaly cancellation]. The
resulting extrapolated coupling constants become

1.108
(t+ 2.66) '

2"

(~)

~
'~ g)

eI
I

~ I

I
I
I

'(~)

FIG. 6. Scatter-plot result of numerical integration
of Eq. (3.1) with 5x 5 initial array.

3.142' (t+S9.04} ' (3.9)

case (I): m, =255, m, =0,

case (II): m, =0, m, =250,

case (III): m, =222, m, =217.

(3.10)

The discrepancy in case (I) is due to our lack of
use of the threshold self-consistency condition of

1.178
(121.46 —t) '

which are okay to one-loop precision. In our pre-
sent analysis, we do not worry about the self-con. -
sistent threshold condition of Eq. (2.34) and carry
our integration from IX=10"GeV down to p. =200
GeV.

Our results are presented in Fig. 6 as a scatter
plot in which gr(Mr) and gs(MX) are members of a
5 x 5 array taking on integer values (n, m} for n
~ 4, m &4. These points are integrated down to
JtL,

= 200 GeV and are found to cluster about the
fixed points and a "domain wall" as shown in Fig.
6. In fact, the approach to the fixed points is more
impressive than we show as the domain wall may
be rigorously regarded as a mapping of array
points at ~ for p, =M ~ to their intermediate-fixed-
point values for p, -200 GeV. The density of clus-
tering is sufficiently large that not all of the final
p. = 200 GeV array points are resolvable on our
diagram. We have also indicated the initial direc-
tion of "flow" of the points at M ~.

Obviously, the fixed point of case (I) corres-
ponds to the single heavy t quark. From the pres-
ent analysis we have

Eq. (2.36) in Eq. (3.10) and the new n„which is
now larger than before with nz= 8 and increases
the results.

It is not hard to estimate the curve that consti-
tutes the domain wall in Fig. 6, though we have not
performed a rigorous analysis of this curve.
Hence, we can roughly patch it together by con-
sidering the two cases gr &ye or ge &qr (ignoring
&~ and &~ effects presently which restores the
symmetrygs —gz, ). For example, forgr &gs we
must find a curve that interpolates between case
(I) and case (III) of Eq. (3.1). Hence, we have

Zr = ( g
g'c —

3 g'a ) Rrg'a'
a. &a16 2 1 2 lg (3.11)

as crude approximations to the two patches of the
domain wall. A more rigorous analysis of this
kind of behavior would be interesting. We note
that the numerical clustering about the entire do-
main wall suggests that this is a more general
feature of our intermediate-fixed-point behavior.
If a fourth-generation pair of heavy quarks is dis-
covered not satisfying the fixed-point conditions
of Eq. (3.10) it is of interest to check if the mass-
es are near to the domain-wall conditions of Eq.
(3.11).

A more realistic possibility is that of a fourth
SU(5) generation with a heavy lepton. Again, we
make the simplifying assumption of ignoring Cab-
ibbo mixing with lighter flavors and we also ignore
any neutrino mass. Then, the three Higgs-boson
Yukawa coupling constants g~, g~, g~ satisfy
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16 'd—, g =r (-;g '+-,'g '+r ' 2.0 .

167r —gs =gs(2 gg + Ygz' +gg

8g 2 Qg2 5 g~2} (3.12) ].0 .
16v' —gs =gs(-'gs'+ 38r'+ 3Rs' —-'g' --"g') .

It is clear from the above equations that the lep-
tonic mass will be much smaller than the quark
mass since it does not receive contributions from

2
g~ e

We will integrate Eq. (3.12) numerically assum-
ing the SU(5) relation at M», gs=g~. Without this
assumption we would have a greater distribution
of possible masses. With the SU(5) constraint we
can present the result as a two-dimensional scatter
plot as before for a 5 x 5 initial array of points
(gz, g~) or (gz, gz) taking on integer values (m, n)
atM .

In Fig. 7 we present the results of our numerical
integration for (gr, g~) and (gr, gs). This is qual-
itatively similar to the two-quark case discussed
previously. %'e observe three fixed points in an-
alogy with the three cases discussed above:

10.

'1.0

I

1.0

2.0

2.0
case (I): g~=gz=0, go=1.45,

case (II): gz= 0, gs = 1.36, g~= 0.628,

case (III): go=1.25, go=1.23, go=0.342.

(3.13)

Case (III) corresponds to masses mr =219, m~
= 215, and rn~ = 60. Forthcoming accelerators may
be able to observe such a lepton in the neighbor-
hood of 60 GeV. If so, it would give significant
encouragement to consider an effort to search for
quark partners at the indicated energies.

These predictions would be different if one in-
cluded a fifth heavy generation, or a heavy neu-
trino, or mixing-angle effects. Our present dis-
cussion was aimed at getting a number character-
istic of heavy-lepton masses in the simplest set of
assumptions. %e have not yet carried out a study
of the sensitivity of these results to various mod-
ifications as described above.

IV. FURTHER CONSIDERATIONS

In this section we discuss various constraints
appearing in the literature concerning fermion
masses. Pendleton and Ross discuss several lim-
its on the t quark each of which become potentially
more critical as our prediction increases the mass
to -240 GeV. The character of some of the limits
changes slightly for our SU(5) heavy fourth gener-

FIG. 7. Scatter plots resulting from numerical inte-
gration of Eq. {3.12) relevant to an SU(5) fourth genera-
tion with 5x 5 initial array as in Fig. 6.

3 for quarks
x

1 for leptons
(4.1)

Experimentally p is quite close to unity. Kim et

ation, discussed in the preceding section. The
constraints divide between "hard" experimental
limits on radiative corrections to various pro-
cesses and unitarity bounds and "soft" limits which
appeal to the Higgs-effective-potential stability
and use of perturbation theory. %e find that our
predictions are consistent with all such bounds.

Veltman considers limits on fermion masses in
the standard model from radiative corrections
to neutral-current cross sections. " These emerge
as essentially limits on the mass differences of
members in a weak isodoublet, and we will naively
apply them to quark doublets ignoring QCD cor-
rections (presumably valid for sufficiently heavy
quarks). In terms of the p parameter for a pair
of massive fermions in a weak lsodoublet with

asses m, and m, we have

W I' ~ 2+ 2 ~~1 ~2 2
2 tt' 2 2 2

M 'cos'8 Bv'( ' ' m' —m' m'z W 2 1 1
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al." in giving a phenomenological discussion of
existing neutral-current data quote a resulting
world average of p= 1.018+0.045, or about a max-
imum tolerable 5% departure from unity. Improved
constraints arise by making specialized assump-
tions, e.g. , for internal consistency our model
has assumed no right-handed isodoublets and we
should use a p parameter of 1.002+0.015, closer
to a = 2/o departure from unity at most. Applying
these limits,

for quarks
m, +rn2 -- 2' ~ln 2 x

1 for leptons

5.5 x 10' (5%),
(4.2)

2.1x 10' (2%).

Hence, for a single heavy f, quark with m, = 0 we
have

420 GeV (5P)
m &

260 GeV (2%%up)

For our fourth heavy SU(5) generation near the non-
trivial fixed point the above constraint applies to
the difference m~ —m~, ignoring the lepton contri-
bution which is justified. Of course, improved
accuracy in the determination of p may lead to im-
proved limits on mass differences (with a required
improvement in the analysis); however, our fourth-
generation heavy-fermion prediction at the case
(III) fixed point of Sec. III does not seem likely to
violate this constraint. It is interesting that we
might rule out case (I) and case (II) with slight im-
provements in p as well as ruling out the single-
fixed-point t quark.

Chanowitz et gl."discuss other constraints on
the fermion masses emerging from considerations
of partial-wave unitarity and perturbativity of
weak-heavy fermion scattering far above thresh-
old. For K nearly degenerate isodoublets in the
standard model, quark masses must be less than
500 GeV/v N while leptons must be less than 1
TeV/WN. These limits are easily satisfied by the
uPPex bounds we obtain from the renormalization-
group evolution. All ese being equal for N&4 we
mould begin to run afoul of this bound.

For completeness, we recall the Nanopoulos-
Ross constraint on nz from the successful SU(5)
relations m, /m, and m, /m, .' As we have men-
tioned earlier, these limits of n& 6 were obtained
by ignoring contributions of order gH gQCD which

gH gQcD as in our work, may be important.
If such contributions enter with the opposite sign
then there will be a critical value gH, such that for
g„&g„,sue can have additional heavy fermions,
provided of course that this lower bound is con-
sistent with the aforementioned upper bounds. - If,

however, the sign of these effects reinforces the
Nanopoulos-Ross contributions, then we cannot
have nf & 6 and, moreover, we would have an upper
bound on g„e.g. , & gH„hence an upper bound on
m „emerging from two loops. This is clearly an
interesting calculation" and should produce "in-
teresting" information either way and could be a
sore point for gz&6, or else allow an interesting
"window" for heavy quarks.

To one-loop accuracy we must ask hom the re-
lationships m, /m, and m, /m, are affected by heavy
fermions or a heavy f, quark. The effect upon

m, /m, has been discussed in Ref. 3 in their case
of m, -135 GeV. Here we must include the effects
of a mixing angle 8 such that the charged weak
current of t and b is cos8ty b~. The evolut. ion of

g„/g, is given by (dropping terms of order g', g",
A «g'v )

16m'—In(g, /g, ) =' —-', cos'8 g,' —8g,'. (4 4)

Assuming g, is at its fixed-point value over most
of the evolution from M~, g, =g„which we take to
a constant, we find upon integrating Eq. (4.4)

I

W'ith a typical value of g,'= 1.88 and taking 8 = 0
we find the correction factor in Eq. (4.5) to the
m„/m, value is a factor of = (1.73). This is an

. upper bound and can be made closer to unity by
choosing nonzero 6I.

For the case of a heavy fourth generation and a
light t quark in SU(5) there are no renormalization
effects upon m, /m, and m, /m, in the absence of
mixing, whence we obtain results as in Eq. (4.6).
This arises because the contributions of heavy
quarks and leptons to the light fermions is the
same for light quarks and leptons. Hence, to one-
loop order, the successful SU(5) predictions are
not significantly modified while the two-loop ef-
fects are not completely known.

One obtains soft bounds from consideration of
the stability of the Higgs-boson effective. potential
in the presence of one-.loop radiative correc-
tions. "'" For example, Hung" discusses a strin-
gent bound by demanding that the effective potential
is bounded below as (0

~ P ~0) = v tends to ~ and
simultaneously requiring that the quartic coupling

m„) (icos 8/321r ) g
X t

1A ~ j [usual QU(5) prediction j . (4.5)~t
Any lighter (--,') quark mixing to the t quark with
sin6I yields a correction factor

MD x (4 6)~ Z, [usual SU(5) prediction)
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t (y) = —-', p'y'+ '," y'+ &(!
' ln (4.7)

where

4g (4.8)

100&,

and we determine (P) following Hung's renormali-
zation conditions [Eqs. (5), (6), and (7)]:

If we consider X=0 we find

~ =17'„

(4.12)

When does the potential become unbounded be-
low? This requires that the second term of Eq.
(4.12) becomes negative, or

( ) (() azp( )=;exp(, ). (4.13)

A be Less than unity. For a single heavy t quark
this amounts to m, (134 GeV; however, there are
several reasons to question the utility of this re-
sult. Similarly, Politzer and Wolfram" argue
m, ( 300 GeV with a certain assumption about Use

of perturbation theory.
As mentioned by Hung himself, one may consider

A. to be much larger than unity and still retain per-
turbativity. X is bounded by -167t by unitarity in
which case the above quoted bound is significantly
relaxed to (Zm~')'~'c 873 GeV. This latter con-
straint is very insensitive to the number of ferm-
ions and, for an SU(5) generation with mr=m~
=ms =m, yields m ~ 536 GeV (including quark
color factors) easily satisfied by our predictions
and upper bounds.

Second, the unboundedness of the Higgs effective
potential is only realized for e becoming so large
that the calculation to one-loop order is no longer
self-consistent. For example, let us imagine that
the quartic coupling constant of the Higgs potential
is due entirely to the radiative corrections coming
from a single heavy fermion with Higgs-boson Yu-
kawa coupling g„. From the formulas of Hung,

Regs, rdless of the numerical result, Eq. (4.3) in-
dicates that perturbation theory is breaking down
as the potential turns over, or upon substituting
ba, ck into Eq. (4.12) V(P)- p, '/g„', a nonperturba-
tive result. Presumably, including still higher-
order corrections will not remedy this situation.
Hence, we do not believe that constraints of this
kind are valid even in principle. This differs from
Ref. 19 in which one can conclude that the effec-
tive potential is unstable within the perturbative
domain but that the minimum is located beyond the
perturbative domain.

A final minor objection to Higgs-potential can-
straints is the fact that the gauge hierarchy prob-
lem of SU(5) is not understood and the interplay
between that and our present considerations is un-

known.
Beyond these considerations, which our model

seems to survive, are the assumptions we have
employed and the expectation of their validity. In
our SU(5) analysis we have assumed zero mixing-
angle effects and our predictions are subject to
corrections from mixing angles significantly
larger than a few degrees. About this we can
make few comments since the Kobayashi-Maskawa
angles are known so poorly beyond 8c,b,.», (most
constraints are consistent with sin8, = —,', )." The
fixed-point value of m„ if n~=3, is insensitive to
mixing-angle effects.

In all our discussions we have assumed a desert
between%~ and M~ tolls~, in which only the
SU(2) x U(1) x SU(3) interactions play a significant
role and we have further assumed a pointlike iso-
doublet Higgs boson over the full range of desert
mass scales. Indeed, our starting point at Eq.
(2.3) is invalidated if the Higgs boson is not point-
like above some mass scale M' in the desert.
Since M' may well be a heavy-color (HC) mass
scale -1 to 10 TeV, our results are evidently lost
if the Higgs isodoublet is a composite HC-pion.
Of course, so too are the SU(5) scenarios, such
as m, /nz, . Hence, the RG fixed-point model is
intrinsically a grand-unified-theory GUT model
with a standard GUT unification scale -M ~ and a
standard desert extending up to that scale.

Finally, we comment that if GUT's are real, our
results are at least very stringent bounds upon
the masses of fermions assuming only perturba-
tivity at M~. This point has already been made by
Cabibbo et al.22 Indeed, these bounds excel all of
the others discussed in this section, provided
GUT's are real.

It is compelling, therefore, that the quark mass
scale = 240 GeV seems to play a central role in

the renormalization-group equations of SU(2) x U(1)
x SU(3) in the GUT-desert picture. It might seem
appropriate to consider seriously the related



QUARK AND LEPTON MASSES FROM. . . 703

questions such as the phenomenology and experi-
mental feasibility of searches in this energy
neighborhood in future machines, as mell as im-
provements in the accuracy of the p-parameter
and two-loop analysis including g„'g ' and g„'
effects in m, /m, ."
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